llvm-project/llvm/test/CodeGen/AArch64/bitfield-insert.ll

500 lines
14 KiB
LLVM
Raw Normal View History

; RUN: llc -mtriple=aarch64-none-linux-gnu < %s | FileCheck %s
; First, a simple example from Clang. The registers could plausibly be
; different, but probably won't be.
%struct.foo = type { i8, [2 x i8], i8 }
define [1 x i64] @from_clang([1 x i64] %f.coerce, i32 %n) nounwind readnone {
; CHECK-LABEL: from_clang:
; CHECK: bfi {{w[0-9]+}}, {{w[0-9]+}}, #3, #4
entry:
%f.coerce.fca.0.extract = extractvalue [1 x i64] %f.coerce, 0
%tmp.sroa.0.0.extract.trunc = trunc i64 %f.coerce.fca.0.extract to i32
%bf.value = shl i32 %n, 3
%0 = and i32 %bf.value, 120
%f.sroa.0.0.insert.ext.masked = and i32 %tmp.sroa.0.0.extract.trunc, 135
%1 = or i32 %f.sroa.0.0.insert.ext.masked, %0
%f.sroa.0.0.extract.trunc = zext i32 %1 to i64
%tmp1.sroa.1.1.insert.insert = and i64 %f.coerce.fca.0.extract, 4294967040
%tmp1.sroa.0.0.insert.insert = or i64 %f.sroa.0.0.extract.trunc, %tmp1.sroa.1.1.insert.insert
%.fca.0.insert = insertvalue [1 x i64] undef, i64 %tmp1.sroa.0.0.insert.insert, 0
ret [1 x i64] %.fca.0.insert
}
define void @test_whole32(i32* %existing, i32* %new) {
; CHECK-LABEL: test_whole32:
; CHECK: bfi {{w[0-9]+}}, {{w[0-9]+}}, #26, #5
%oldval = load volatile i32, i32* %existing
%oldval_keep = and i32 %oldval, 2214592511 ; =0x83ffffff
%newval = load volatile i32, i32* %new
%newval_shifted = shl i32 %newval, 26
%newval_masked = and i32 %newval_shifted, 2080374784 ; = 0x7c000000
%combined = or i32 %oldval_keep, %newval_masked
store volatile i32 %combined, i32* %existing
ret void
}
define void @test_whole64(i64* %existing, i64* %new) {
; CHECK-LABEL: test_whole64:
; CHECK: bfi {{x[0-9]+}}, {{x[0-9]+}}, #26, #14
; CHECK-NOT: and
; CHECK: ret
%oldval = load volatile i64, i64* %existing
%oldval_keep = and i64 %oldval, 18446742974265032703 ; = 0xffffff0003ffffffL
%newval = load volatile i64, i64* %new
%newval_shifted = shl i64 %newval, 26
%newval_masked = and i64 %newval_shifted, 1099444518912 ; = 0xfffc000000
%combined = or i64 %oldval_keep, %newval_masked
store volatile i64 %combined, i64* %existing
ret void
}
define void @test_whole32_from64(i64* %existing, i64* %new) {
; CHECK-LABEL: test_whole32_from64:
; CHECK: bfxil {{x[0-9]+}}, {{x[0-9]+}}, #0, #16
; CHECK: ret
%oldval = load volatile i64, i64* %existing
%oldval_keep = and i64 %oldval, 4294901760 ; = 0xffff0000
%newval = load volatile i64, i64* %new
%newval_masked = and i64 %newval, 65535 ; = 0xffff
%combined = or i64 %oldval_keep, %newval_masked
store volatile i64 %combined, i64* %existing
ret void
}
define void @test_32bit_masked(i32 *%existing, i32 *%new) {
; CHECK-LABEL: test_32bit_masked:
; CHECK: and
; CHECK: bfi [[INSERT:w[0-9]+]], {{w[0-9]+}}, #3, #4
%oldval = load volatile i32, i32* %existing
%oldval_keep = and i32 %oldval, 135 ; = 0x87
%newval = load volatile i32, i32* %new
%newval_shifted = shl i32 %newval, 3
%newval_masked = and i32 %newval_shifted, 120 ; = 0x78
%combined = or i32 %oldval_keep, %newval_masked
store volatile i32 %combined, i32* %existing
ret void
}
define void @test_64bit_masked(i64 *%existing, i64 *%new) {
; CHECK-LABEL: test_64bit_masked:
; CHECK: and
; CHECK: bfi [[INSERT:x[0-9]+]], {{x[0-9]+}}, #40, #8
%oldval = load volatile i64, i64* %existing
%oldval_keep = and i64 %oldval, 1095216660480 ; = 0xff_0000_0000
%newval = load volatile i64, i64* %new
%newval_shifted = shl i64 %newval, 40
%newval_masked = and i64 %newval_shifted, 280375465082880 ; = 0xff00_0000_0000
%combined = or i64 %newval_masked, %oldval_keep
store volatile i64 %combined, i64* %existing
ret void
}
; Mask is too complicated for literal ANDwwi, make sure other avenues are tried.
define void @test_32bit_complexmask(i32 *%existing, i32 *%new) {
; CHECK-LABEL: test_32bit_complexmask:
; CHECK: and
; CHECK: bfi {{w[0-9]+}}, {{w[0-9]+}}, #3, #4
%oldval = load volatile i32, i32* %existing
%oldval_keep = and i32 %oldval, 647 ; = 0x287
%newval = load volatile i32, i32* %new
%newval_shifted = shl i32 %newval, 3
%newval_masked = and i32 %newval_shifted, 120 ; = 0x278
%combined = or i32 %oldval_keep, %newval_masked
store volatile i32 %combined, i32* %existing
ret void
}
; Neither mask is is a contiguous set of 1s. BFI can't be used
define void @test_32bit_badmask(i32 *%existing, i32 *%new) {
; CHECK-LABEL: test_32bit_badmask:
; CHECK-NOT: bfi
; CHECK-NOT: bfm
; CHECK: ret
%oldval = load volatile i32, i32* %existing
%oldval_keep = and i32 %oldval, 135 ; = 0x87
%newval = load volatile i32, i32* %new
%newval_shifted = shl i32 %newval, 3
%newval_masked = and i32 %newval_shifted, 632 ; = 0x278
%combined = or i32 %oldval_keep, %newval_masked
store volatile i32 %combined, i32* %existing
ret void
}
; Ditto
define void @test_64bit_badmask(i64 *%existing, i64 *%new) {
; CHECK-LABEL: test_64bit_badmask:
; CHECK-NOT: bfi
; CHECK-NOT: bfm
; CHECK: ret
%oldval = load volatile i64, i64* %existing
%oldval_keep = and i64 %oldval, 135 ; = 0x87
%newval = load volatile i64, i64* %new
%newval_shifted = shl i64 %newval, 3
%newval_masked = and i64 %newval_shifted, 664 ; = 0x278
%combined = or i64 %oldval_keep, %newval_masked
store volatile i64 %combined, i64* %existing
ret void
}
; Bitfield insert where there's a left-over shr needed at the beginning
; (e.g. result of str.bf1 = str.bf2)
define void @test_32bit_with_shr(i32* %existing, i32* %new) {
; CHECK-LABEL: test_32bit_with_shr:
%oldval = load volatile i32, i32* %existing
%oldval_keep = and i32 %oldval, 2214592511 ; =0x83ffffff
%newval = load i32, i32* %new
%newval_shifted = shl i32 %newval, 12
%newval_masked = and i32 %newval_shifted, 2080374784 ; = 0x7c000000
%combined = or i32 %oldval_keep, %newval_masked
store volatile i32 %combined, i32* %existing
; CHECK: lsr [[BIT:w[0-9]+]], {{w[0-9]+}}, #14
; CHECK: bfi {{w[0-9]+}}, [[BIT]], #26, #5
ret void
}
; Bitfield insert where the second or operand is a better match to be folded into the BFM
define void @test_32bit_opnd1_better(i32* %existing, i32* %new) {
; CHECK-LABEL: test_32bit_opnd1_better:
%oldval = load volatile i32, i32* %existing
%oldval_keep = and i32 %oldval, 65535 ; 0x0000ffff
%newval = load i32, i32* %new
%newval_shifted = shl i32 %newval, 16
%newval_masked = and i32 %newval_shifted, 16711680 ; 0x00ff0000
%combined = or i32 %oldval_keep, %newval_masked
store volatile i32 %combined, i32* %existing
; CHECK: and [[BIT:w[0-9]+]], {{w[0-9]+}}, #0xffff
; CHECK: bfi [[BIT]], {{w[0-9]+}}, #16, #8
ret void
}
; Tests when all the bits from one operand are not useful
define i32 @test_nouseful_bits(i8 %a, i32 %b) {
; CHECK-LABEL: test_nouseful_bits:
; CHECK: bfi
; CHECK: bfi
; CHECK: bfi
; CHECK-NOT: bfi
; CHECK-NOT: or
; CHECK: lsl
%conv = zext i8 %a to i32 ; 0 0 0 A
%shl = shl i32 %b, 8 ; B2 B1 B0 0
%or = or i32 %conv, %shl ; B2 B1 B0 A
%shl.1 = shl i32 %or, 8 ; B1 B0 A 0
%or.1 = or i32 %conv, %shl.1 ; B1 B0 A A
%shl.2 = shl i32 %or.1, 8 ; B0 A A 0
%or.2 = or i32 %conv, %shl.2 ; B0 A A A
%shl.3 = shl i32 %or.2, 8 ; A A A 0
%or.3 = or i32 %conv, %shl.3 ; A A A A
%shl.4 = shl i32 %or.3, 8 ; A A A 0
ret i32 %shl.4
}
define void @test_nouseful_strb(i32* %ptr32, i8* %ptr8, i32 %x) {
entry:
; CHECK-LABEL: @test_nouseful_strb
; CHECK: ldr [[REG1:w[0-9]+]],
; CHECK-NOT: and {{w[0-9]+}}, {{w[0-9]+}}, #0xf8
; CHECK-NEXT: bfxil [[REG1]], w2, #16, #3
; CHECK-NEXT: strb [[REG1]],
; CHECK-NEXT: ret
%0 = load i32, i32* %ptr32, align 8
%and = and i32 %0, -8
%shr = lshr i32 %x, 16
%and1 = and i32 %shr, 7
%or = or i32 %and, %and1
%trunc = trunc i32 %or to i8
store i8 %trunc, i8* %ptr8
ret void
}
define void @test_nouseful_strh(i32* %ptr32, i16* %ptr16, i32 %x) {
entry:
; CHECK-LABEL: @test_nouseful_strh
; CHECK: ldr [[REG1:w[0-9]+]],
; CHECK-NOT: and {{w[0-9]+}}, {{w[0-9]+}}, #0xfff0
; CHECK-NEXT: bfxil [[REG1]], w2, #16, #4
; CHECK-NEXT: strh [[REG1]],
; CHECK-NEXT: ret
%0 = load i32, i32* %ptr32, align 8
%and = and i32 %0, -16
%shr = lshr i32 %x, 16
%and1 = and i32 %shr, 15
%or = or i32 %and, %and1
%trunc = trunc i32 %or to i16
store i16 %trunc, i16* %ptr16
ret void
}
define void @test_nouseful_sturb(i32* %ptr32, i8* %ptr8, i32 %x) {
entry:
; CHECK-LABEL: @test_nouseful_sturb
; CHECK: ldr [[REG1:w[0-9]+]],
; CHECK-NOT: and {{w[0-9]+}}, {{w[0-9]+}}, #0xf8
; CHECK-NEXT: bfxil [[REG1]], w2, #16, #3
; CHECK-NEXT: sturb [[REG1]],
; CHECK-NEXT: ret
%0 = load i32, i32* %ptr32, align 8
%and = and i32 %0, -8
%shr = lshr i32 %x, 16
%and1 = and i32 %shr, 7
%or = or i32 %and, %and1
%trunc = trunc i32 %or to i8
%gep = getelementptr i8, i8* %ptr8, i64 -1
store i8 %trunc, i8* %gep
ret void
}
define void @test_nouseful_sturh(i32* %ptr32, i16* %ptr16, i32 %x) {
entry:
; CHECK-LABEL: @test_nouseful_sturh
; CHECK: ldr [[REG1:w[0-9]+]],
; CHECK-NOT: and {{w[0-9]+}}, {{w[0-9]+}}, #0xfff0
; CHECK-NEXT: bfxil [[REG1]], w2, #16, #4
; CHECK-NEXT: sturh [[REG1]],
; CHECK-NEXT: ret
%0 = load i32, i32* %ptr32, align 8
%and = and i32 %0, -16
%shr = lshr i32 %x, 16
%and1 = and i32 %shr, 15
%or = or i32 %and, %and1
%trunc = trunc i32 %or to i16
%gep = getelementptr i16, i16* %ptr16, i64 -1
store i16 %trunc, i16* %gep
ret void
}
; The next set of tests generate a BFXIL from 'or (and X, Mask0Imm),
; (and Y, Mask1Imm)' iff Mask0Imm and ~Mask1Imm are equivalent and one of the
; MaskImms is a shifted mask (e.g., 0x000ffff0).
; CHECK-LABEL: @test_or_and_and1
; CHECK: lsr w8, w1, #4
; CHECK: bfi w0, w8, #4, #12
define i32 @test_or_and_and1(i32 %a, i32 %b) {
entry:
%and = and i32 %a, -65521 ; 0xffff000f
%and1 = and i32 %b, 65520 ; 0x0000fff0
%or = or i32 %and1, %and
ret i32 %or
}
; CHECK-LABEL: @test_or_and_and2
; CHECK: lsr w8, w0, #4
; CHECK: bfi w1, w8, #4, #12
define i32 @test_or_and_and2(i32 %a, i32 %b) {
entry:
%and = and i32 %a, 65520 ; 0x0000fff0
%and1 = and i32 %b, -65521 ; 0xffff000f
%or = or i32 %and1, %and
ret i32 %or
}
; CHECK-LABEL: @test_or_and_and3
; CHECK: lsr x8, x1, #16
; CHECK: bfi x0, x8, #16, #32
define i64 @test_or_and_and3(i64 %a, i64 %b) {
entry:
%and = and i64 %a, -281474976645121 ; 0xffff00000000ffff
%and1 = and i64 %b, 281474976645120 ; 0x0000ffffffff0000
%or = or i64 %and1, %and
ret i64 %or
}
; Don't convert 'and' with multiple uses.
; CHECK-LABEL: @test_or_and_and4
; CHECK: and w8, w0, #0xffff000f
; CHECK: and w9, w1, #0xfff0
; CHECK: orr w0, w9, w8
; CHECK: str w8, [x2
define i32 @test_or_and_and4(i32 %a, i32 %b, i32* %ptr) {
entry:
%and = and i32 %a, -65521
store i32 %and, i32* %ptr, align 4
%and2 = and i32 %b, 65520
%or = or i32 %and2, %and
ret i32 %or
}
; Don't convert 'and' with multiple uses.
; CHECK-LABEL: @test_or_and_and5
; CHECK: and w8, w1, #0xfff0
; CHECK: and w9, w0, #0xffff000f
; CHECK: orr w0, w8, w9
; CHECK: str w8, [x2]
define i32 @test_or_and_and5(i32 %a, i32 %b, i32* %ptr) {
entry:
%and = and i32 %b, 65520
store i32 %and, i32* %ptr, align 4
%and1 = and i32 %a, -65521
%or = or i32 %and, %and1
ret i32 %or
}
; CHECK-LABEL: @test1
; CHECK: mov [[REG:w[0-9]+]], #5
; CHECK: bfxil w0, [[REG]], #0, #4
define i32 @test1(i32 %a) {
%1 = and i32 %a, -16 ; 0xfffffff0
%2 = or i32 %1, 5 ; 0x00000005
ret i32 %2
}
; CHECK-LABEL: @test2
; CHECK: mov [[REG:w[0-9]+]], #10
; CHECK: bfi w0, [[REG]], #22, #4
define i32 @test2(i32 %a) {
%1 = and i32 %a, -62914561 ; 0xfc3fffff
%2 = or i32 %1, 41943040 ; 0x06400000
ret i32 %2
}
; CHECK-LABEL: @test3
; CHECK: mov [[REG:x[0-9]+]], #5
; CHECK: bfxil x0, [[REG]], #0, #3
define i64 @test3(i64 %a) {
%1 = and i64 %a, -8 ; 0xfffffffffffffff8
%2 = or i64 %1, 5 ; 0x0000000000000005
ret i64 %2
}
; CHECK-LABEL: @test4
; CHECK: mov [[REG:x[0-9]+]], #9
; CHECK: bfi x0, [[REG]], #1, #7
define i64 @test4(i64 %a) {
%1 = and i64 %a, -255 ; 0xffffffffffffff01
%2 = or i64 %1, 18 ; 0x0000000000000012
ret i64 %2
}
; Don't generate BFI/BFXIL if the immediate can be encoded in the ORR.
; CHECK-LABEL: @test5
; CHECK: and [[REG:w[0-9]+]], w0, #0xfffffff0
; CHECK: orr w0, [[REG]], #0x6
define i32 @test5(i32 %a) {
%1 = and i32 %a, 4294967280 ; 0xfffffff0
%2 = or i32 %1, 6 ; 0x00000006
ret i32 %2
}
; BFXIL will use the same constant as the ORR, so we don't care how the constant
; is materialized (it's an equal cost either way).
; CHECK-LABEL: @test6
; CHECK: mov [[REG:w[0-9]+]], #23250
; CHECK: movk [[REG]], #11, lsl #16
; CHECK: bfxil w0, [[REG]], #0, #20
define i32 @test6(i32 %a) {
%1 = and i32 %a, 4293918720 ; 0xfff00000
%2 = or i32 %1, 744146 ; 0x000b5ad2
ret i32 %2
}
; BFIs that require the same number of instruction to materialize the constant
; as the original ORR are okay.
; CHECK-LABEL: @test7
; CHECK: mov [[REG:w[0-9]+]], #44393
; CHECK: movk [[REG]], #5, lsl #16
; CHECK: bfi w0, [[REG]], #1, #19
define i32 @test7(i32 %a) {
%1 = and i32 %a, 4293918721 ; 0xfff00001
%2 = or i32 %1, 744146 ; 0x000b5ad2
ret i32 %2
}
; BFIs that require more instructions to materialize the constant as compared
; to the original ORR are not okay. In this case we would be replacing the
; 'and' with a 'movk', which would decrease ILP while using the same number of
; instructions.
; CHECK-LABEL: @test8
; CHECK: mov [[REG2:x[0-9]+]], #2035482624
; CHECK: and [[REG1:x[0-9]+]], x0, #0xff000000000000ff
; CHECK: movk [[REG2]], #36694, lsl #32
; CHECK: orr x0, [[REG1]], [[REG2]]
define i64 @test8(i64 %a) {
%1 = and i64 %a, -72057594037927681 ; 0xff000000000000ff
%2 = or i64 %1, 157601565442048 ; 0x00008f5679530000
ret i64 %2
}
; This test exposed an issue with an overly aggressive assert. The bit of code
; that is expected to catch this case is unable to deal with the trunc, which
; results in a failing check due to a mismatch between the BFI opcode and
; the expected value type of the OR.
; CHECK-LABEL: @test9
; CHECK: lsr x0, x0, #12
; CHECK: lsr [[REG:w[0-9]+]], w1, #23
; CHECK: bfi w0, [[REG]], #23, #9
define i32 @test9(i64 %b, i32 %e) {
%c = lshr i64 %b, 12
%d = trunc i64 %c to i32
%f = and i32 %d, 8388607
%g = and i32 %e, -8388608
%h = or i32 %g, %f
ret i32 %h
}
; CHECK-LABEL: test_complex_type:
; CHECK: ldr d0, [x0], #8
; CHECK: orr [[BOTH:x[0-9]+]], x0, x1, lsl #32
; CHECK: str [[BOTH]], [x2]
define <2 x i32> @test_complex_type(<2 x i32>* %addr, i64 %in, i64* %bf ) {
%vec = load <2 x i32>, <2 x i32>* %addr
%vec.next = getelementptr <2 x i32>, <2 x i32>* %addr, i32 1
%lo = ptrtoint <2 x i32>* %vec.next to i64
%hi = shl i64 %in, 32
%both = or i64 %lo, %hi
store i64 %both, i64* %bf
ret <2 x i32> %vec
}