llvm-project/clang/test/Analysis/malloc.c

1791 lines
41 KiB
C
Raw Normal View History

2012-08-25 04:39:55 +08:00
// RUN: %clang_cc1 -analyze -analyzer-checker=core,alpha.deadcode.UnreachableCode,alpha.core.CastSize,unix.Malloc,debug.ExprInspection -analyzer-store=region -verify %s
#include "Inputs/system-header-simulator.h"
void clang_analyzer_eval(int);
// Without -fms-compatibility, wchar_t isn't a builtin type. MSVC defines
// _WCHAR_T_DEFINED if wchar_t is available. Microsoft recommends that you use
// the builtin type: "Using the typedef version can cause portability
// problems", but we're ok here because we're not actually running anything.
// Also of note is this cryptic warning: "The wchar_t type is not supported
// when you compile C code".
//
// See the docs for more:
// https://msdn.microsoft.com/en-us/library/dh8che7s.aspx
#if !defined(_WCHAR_T_DEFINED)
// "Microsoft implements wchar_t as a two-byte unsigned value"
typedef unsigned short wchar_t;
#define _WCHAR_T_DEFINED
#endif // !defined(_WCHAR_T_DEFINED)
2009-11-14 12:23:25 +08:00
typedef __typeof(sizeof(int)) size_t;
void *malloc(size_t);
void *alloca(size_t);
void *valloc(size_t);
void free(void *);
void *realloc(void *ptr, size_t size);
void *reallocf(void *ptr, size_t size);
void *calloc(size_t nmemb, size_t size);
char *strdup(const char *s);
wchar_t *wcsdup(const wchar_t *s);
char *strndup(const char *s, size_t n);
int memcmp(const void *s1, const void *s2, size_t n);
// Windows variants
char *_strdup(const char *strSource);
wchar_t *_wcsdup(const wchar_t *strSource);
void *_alloca(size_t size);
void myfoo(int *p);
void myfooint(int p);
char *fooRetPtr();
void f1() {
int *p = malloc(12);
return; // expected-warning{{Potential leak of memory pointed to by 'p'}}
}
void f2() {
int *p = malloc(12);
free(p);
free(p); // expected-warning{{Attempt to free released memory}}
}
void f2_realloc_0() {
int *p = malloc(12);
realloc(p,0);
realloc(p,0); // expected-warning{{Attempt to free released memory}}
}
void f2_realloc_1() {
int *p = malloc(12);
int *q = realloc(p,0); // no-warning
}
void reallocNotNullPtr(unsigned sizeIn) {
unsigned size = 12;
char *p = (char*)malloc(size);
if (p) {
char *q = (char*)realloc(p, sizeIn);
char x = *q; // expected-warning {{Potential leak of memory pointed to by 'q'}}
}
}
void allocaTest() {
int *p = alloca(sizeof(int));
} // no warn
void winAllocaTest() {
int *p = _alloca(sizeof(int));
} // no warn
void allocaBuiltinTest() {
int *p = __builtin_alloca(sizeof(int));
} // no warn
int *realloctest1() {
int *q = malloc(12);
q = realloc(q, 20);
return q; // no warning - returning the allocated value
}
// p should be freed if realloc fails.
void reallocFails() {
char *p = malloc(12);
char *r = realloc(p, 12+1);
if (!r) {
free(p);
} else {
free(r);
}
}
void reallocSizeZero1() {
char *p = malloc(12);
char *r = realloc(p, 0);
if (!r) {
free(p); // expected-warning {{Attempt to free released memory}}
} else {
free(r);
}
}
void reallocSizeZero2() {
char *p = malloc(12);
char *r = realloc(p, 0);
if (!r) {
free(p); // expected-warning {{Attempt to free released memory}}
} else {
free(r);
}
free(p); // expected-warning {{Attempt to free released memory}}
}
void reallocSizeZero3() {
char *p = malloc(12);
char *r = realloc(p, 0);
free(r);
}
void reallocSizeZero4() {
char *r = realloc(0, 0);
free(r);
}
void reallocSizeZero5() {
char *r = realloc(0, 0);
}
void reallocPtrZero1() {
char *r = realloc(0, 12);
} // expected-warning {{Potential leak of memory pointed to by 'r'}}
void reallocPtrZero2() {
char *r = realloc(0, 12);
if (r)
free(r);
}
void reallocPtrZero3() {
char *r = realloc(0, 12);
free(r);
}
void reallocRadar6337483_1() {
char *buf = malloc(100);
buf = (char*)realloc(buf, 0x1000000);
if (!buf) {
return;// expected-warning {{Potential leak of memory pointed to by}}
}
free(buf);
}
void reallocRadar6337483_2() {
char *buf = malloc(100);
char *buf2 = (char*)realloc(buf, 0x1000000);
if (!buf2) {
;
} else {
free(buf2);
}
} // expected-warning {{Potential leak of memory pointed to by}}
void reallocRadar6337483_3() {
char * buf = malloc(100);
char * tmp;
tmp = (char*)realloc(buf, 0x1000000);
if (!tmp) {
free(buf);
return;
}
buf = tmp;
free(buf);
}
void reallocRadar6337483_4() {
char *buf = malloc(100);
char *buf2 = (char*)realloc(buf, 0x1000000);
if (!buf2) {
return; // expected-warning {{Potential leak of memory pointed to by}}
} else {
free(buf2);
}
}
int *reallocfTest1() {
int *q = malloc(12);
q = reallocf(q, 20);
return q; // no warning - returning the allocated value
}
void reallocfRadar6337483_4() {
char *buf = malloc(100);
char *buf2 = (char*)reallocf(buf, 0x1000000);
if (!buf2) {
return; // no warning - reallocf frees even on failure
} else {
free(buf2);
}
}
void reallocfRadar6337483_3() {
char * buf = malloc(100);
char * tmp;
tmp = (char*)reallocf(buf, 0x1000000);
if (!tmp) {
free(buf); // expected-warning {{Attempt to free released memory}}
return;
}
buf = tmp;
free(buf);
}
void reallocfPtrZero1() {
char *r = reallocf(0, 12);
} // expected-warning {{Potential leak of memory pointed to by}}
//------------------- Check usage of zero-allocated memory ---------------------
void CheckUseZeroAllocatedNoWarn1() {
int *p = malloc(0);
free(p); // no warning
}
void CheckUseZeroAllocatedNoWarn2() {
int *p = alloca(0); // no warning
}
void CheckUseZeroWinAllocatedNoWarn2() {
int *p = _alloca(0); // no warning
}
void CheckUseZeroAllocatedNoWarn3() {
int *p = malloc(0);
int *q = realloc(p, 8); // no warning
free(q);
}
void CheckUseZeroAllocatedNoWarn4() {
int *p = realloc(0, 8);
*p = 1; // no warning
free(p);
}
void CheckUseZeroAllocated1() {
int *p = malloc(0);
*p = 1; // expected-warning {{Use of zero-allocated memory}}
free(p);
}
char CheckUseZeroAllocated2() {
char *p = alloca(0);
return *p; // expected-warning {{Use of zero-allocated memory}}
}
char CheckUseZeroWinAllocated2() {
char *p = _alloca(0);
return *p; // expected-warning {{Use of zero-allocated memory}}
}
void UseZeroAllocated(int *p) {
if (p)
*p = 7; // expected-warning {{Use of zero-allocated memory}}
}
void CheckUseZeroAllocated3() {
int *p = malloc(0);
UseZeroAllocated(p);
}
void f(char);
void CheckUseZeroAllocated4() {
char *p = valloc(0);
f(*p); // expected-warning {{Use of zero-allocated memory}}
free(p);
}
void CheckUseZeroAllocated5() {
int *p = calloc(0, 2);
*p = 1; // expected-warning {{Use of zero-allocated memory}}
free(p);
}
void CheckUseZeroAllocated6() {
int *p = calloc(2, 0);
*p = 1; // expected-warning {{Use of zero-allocated memory}}
free(p);
}
void CheckUseZeroAllocated7() {
int *p = realloc(0, 0);
*p = 1; // expected-warning {{Use of zero-allocated memory}}
free(p);
}
void CheckUseZeroAllocated8() {
int *p = malloc(8);
int *q = realloc(p, 0);
*q = 1; // expected-warning {{Use of zero-allocated memory}}
free(q);
}
void CheckUseZeroAllocated9() {
int *p = realloc(0, 0);
int *q = realloc(p, 0);
*q = 1; // expected-warning {{Use of zero-allocated memory}}
free(q);
}
void CheckUseZeroAllocatedPathNoWarn(_Bool b) {
int s = 0;
if (b)
s= 10;
char *p = malloc(s);
if (b)
*p = 1; // no warning
free(p);
}
void CheckUseZeroAllocatedPathWarn(_Bool b) {
int s = 10;
if (b)
s= 0;
char *p = malloc(s);
if (b)
*p = 1; // expected-warning {{Use of zero-allocated memory}}
free(p);
}
void CheckUseZeroReallocatedPathNoWarn(_Bool b) {
int s = 0;
if (b)
s= 10;
char *p = malloc(8);
char *q = realloc(p, s);
if (b)
*q = 1; // no warning
free(q);
}
void CheckUseZeroReallocatedPathWarn(_Bool b) {
int s = 10;
if (b)
s= 0;
char *p = malloc(8);
char *q = realloc(p, s);
if (b)
*q = 1; // expected-warning {{Use of zero-allocated memory}}
free(q);
}
// This case tests that storing malloc'ed memory to a static variable which is
// then returned is not leaked. In the absence of known contracts for functions
// or inter-procedural analysis, this is a conservative answer.
int *f3() {
static int *p = 0;
p = malloc(12);
return p; // no-warning
}
// This case tests that storing malloc'ed memory to a static global variable
// which is then returned is not leaked. In the absence of known contracts for
// functions or inter-procedural analysis, this is a conservative answer.
static int *p_f4 = 0;
int *f4() {
p_f4 = malloc(12);
return p_f4; // no-warning
}
int *f5() {
int *q = malloc(12);
q = realloc(q, 20);
return q; // no-warning
}
void f6() {
int *p = malloc(12);
if (!p)
return; // no-warning
else
free(p);
}
void f6_realloc() {
int *p = malloc(12);
if (!p)
return; // no-warning
else
realloc(p,0);
}
char *doit2();
void pr6069() {
char *buf = doit2();
free(buf);
}
void pr6293() {
free(0);
}
void f7() {
char *x = (char*) malloc(4);
free(x);
x[0] = 'a'; // expected-warning{{Use of memory after it is freed}}
}
void f8() {
char *x = (char*) malloc(4);
free(x);
char *y = strndup(x, 4); // expected-warning{{Use of memory after it is freed}}
}
void f7_realloc() {
char *x = (char*) malloc(4);
realloc(x,0);
x[0] = 'a'; // expected-warning{{Use of memory after it is freed}}
}
void PR6123() {
int *x = malloc(11); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}}
}
void PR7217() {
int *buf = malloc(2); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}}
buf[1] = 'c'; // not crash
}
void cast_emtpy_struct() {
struct st {
};
struct st *s = malloc(sizeof(struct st)); // no-warning
free(s);
}
void cast_struct_1() {
struct st {
int i[100];
char j[];
};
struct st *s = malloc(sizeof(struct st)); // no-warning
free(s);
}
void cast_struct_2() {
struct st {
int i[100];
char j[0];
};
struct st *s = malloc(sizeof(struct st)); // no-warning
free(s);
}
void cast_struct_3() {
struct st {
int i[100];
char j[1];
};
struct st *s = malloc(sizeof(struct st)); // no-warning
free(s);
}
void cast_struct_4() {
struct st {
int i[100];
char j[2];
};
struct st *s = malloc(sizeof(struct st)); // no-warning
free(s);
}
void cast_struct_5() {
struct st {
char i[200];
char j[1];
};
struct st *s = malloc(sizeof(struct st) - sizeof(char)); // no-warning
free(s);
}
void cast_struct_warn_1() {
struct st {
int i[100];
char j[2];
};
struct st *s = malloc(sizeof(struct st) + 2); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}}
free(s);
}
void cast_struct_warn_2() {
struct st {
int i[100];
char j[2];
};
struct st *s = malloc(2); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}}
free(s);
}
void cast_struct_flex_array_1() {
struct st {
int i[100];
char j[];
};
struct st *s = malloc(sizeof(struct st) + 3); // no-warning
free(s);
}
void cast_struct_flex_array_2() {
struct st {
int i[100];
char j[0];
};
struct st *s = malloc(sizeof(struct st) + 3); // no-warning
free(s);
}
void cast_struct_flex_array_3() {
struct st {
int i[100];
char j[1];
};
struct st *s = malloc(sizeof(struct st) + 3); // no-warning
free(s);
}
void cast_struct_flex_array_4() {
struct foo {
char f[32];
};
struct st {
char i[100];
struct foo data[];
};
struct st *s = malloc(sizeof(struct st) + 3 * sizeof(struct foo)); // no-warning
free(s);
}
void cast_struct_flex_array_5() {
struct foo {
char f[32];
};
struct st {
char i[100];
struct foo data[0];
};
struct st *s = malloc(sizeof(struct st) + 3 * sizeof(struct foo)); // no-warning
free(s);
}
void cast_struct_flex_array_6() {
struct foo {
char f[32];
};
struct st {
char i[100];
struct foo data[1];
};
struct st *s = malloc(sizeof(struct st) + 3 * sizeof(struct foo)); // no-warning
free(s);
}
void cast_struct_flex_array_warn_1() {
struct foo {
char f[32];
};
struct st {
char i[100];
struct foo data[];
};
struct st *s = malloc(3 * sizeof(struct st) + 3 * sizeof(struct foo)); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}}
free(s);
}
void cast_struct_flex_array_warn_2() {
struct foo {
char f[32];
};
struct st {
char i[100];
struct foo data[0];
};
struct st *s = malloc(3 * sizeof(struct st) + 3 * sizeof(struct foo)); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}}
free(s);
}
void cast_struct_flex_array_warn_3() {
struct foo {
char f[32];
};
struct st {
char i[100];
struct foo data[1];
};
struct st *s = malloc(3 * sizeof(struct st) + 3 * sizeof(struct foo)); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}}
free(s);
}
void cast_struct_flex_array_warn_4() {
struct st {
int i[100];
int j[];
};
struct st *s = malloc(sizeof(struct st) + 3); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}}
free(s);
}
void cast_struct_flex_array_warn_5() {
struct st {
int i[100];
int j[0];
};
struct st *s = malloc(sizeof(struct st) + 3); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}}
free(s);
}
void cast_struct_flex_array_warn_6() {
struct st {
int i[100];
int j[1];
};
struct st *s = malloc(sizeof(struct st) + 3); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}}
free(s);
}
void mallocCastToVoid() {
void *p = malloc(2);
const void *cp = p; // not crash
free(p);
}
void mallocCastToFP() {
void *p = malloc(2);
void (*fp)() = p; // not crash
free(p);
}
// This tests that malloc() buffers are undefined by default
char mallocGarbage () {
char *buf = malloc(2);
char result = buf[1]; // expected-warning{{undefined}}
free(buf);
return result;
}
// This tests that calloc() buffers need to be freed
void callocNoFree () {
char *buf = calloc(2,2);
return; // expected-warning{{Potential leak of memory pointed to by 'buf'}}
}
// These test that calloc() buffers are zeroed by default
char callocZeroesGood () {
char *buf = calloc(2,2);
char result = buf[3]; // no-warning
if (buf[1] == 0) {
free(buf);
}
return result; // no-warning
}
char callocZeroesBad () {
char *buf = calloc(2,2);
char result = buf[3]; // no-warning
if (buf[1] != 0) {
free(buf); // expected-warning{{never executed}}
}
return result; // expected-warning{{Potential leak of memory pointed to by 'buf'}}
}
void nullFree() {
int *p = 0;
free(p); // no warning - a nop
}
void paramFree(int *p) {
myfoo(p);
free(p); // no warning
myfoo(p); // expected-warning {{Use of memory after it is freed}}
}
int* mallocEscapeRet() {
int *p = malloc(12);
return p; // no warning
}
void mallocEscapeFoo() {
int *p = malloc(12);
myfoo(p);
return; // no warning
}
void mallocEscapeFree() {
int *p = malloc(12);
myfoo(p);
free(p);
}
void mallocEscapeFreeFree() {
int *p = malloc(12);
myfoo(p);
free(p);
free(p); // expected-warning{{Attempt to free released memory}}
}
void mallocEscapeFreeUse() {
int *p = malloc(12);
myfoo(p);
free(p);
myfoo(p); // expected-warning{{Use of memory after it is freed}}
}
int *myalloc();
void myalloc2(int **p);
void mallocEscapeFreeCustomAlloc() {
int *p = malloc(12);
myfoo(p);
free(p);
p = myalloc();
free(p); // no warning
}
void mallocEscapeFreeCustomAlloc2() {
int *p = malloc(12);
myfoo(p);
free(p);
myalloc2(&p);
free(p); // no warning
}
void mallocBindFreeUse() {
int *x = malloc(12);
int *y = x;
free(y);
myfoo(x); // expected-warning{{Use of memory after it is freed}}
}
void mallocEscapeMalloc() {
int *p = malloc(12);
myfoo(p);
p = malloc(12);
} // expected-warning{{Potential leak of memory pointed to by}}
void mallocMalloc() {
int *p = malloc(12);
p = malloc(12);
} // expected-warning {{Potential leak of memory pointed to by}}
void mallocFreeMalloc() {
int *p = malloc(12);
free(p);
p = malloc(12);
free(p);
}
void mallocFreeUse_params() {
int *p = malloc(12);
free(p);
myfoo(p); //expected-warning{{Use of memory after it is freed}}
}
void mallocFreeUse_params2() {
int *p = malloc(12);
free(p);
myfooint(*p); //expected-warning{{Use of memory after it is freed}}
}
void mallocFailedOrNot() {
int *p = malloc(12);
if (!p)
free(p);
else
free(p);
}
struct StructWithInt {
int g;
};
int *mallocReturnFreed() {
int *p = malloc(12);
free(p);
return p; // expected-warning {{Use of memory after it is freed}}
}
int useAfterFreeStruct() {
struct StructWithInt *px= malloc(sizeof(struct StructWithInt));
px->g = 5;
free(px);
return px->g; // expected-warning {{Use of memory after it is freed}}
}
void nonSymbolAsFirstArg(int *pp, struct StructWithInt *p);
void mallocEscapeFooNonSymbolArg() {
struct StructWithInt *p = malloc(sizeof(struct StructWithInt));
nonSymbolAsFirstArg(&p->g, p);
return; // no warning
}
void mallocFailedOrNotLeak() {
int *p = malloc(12);
if (p == 0)
return; // no warning
else
return; // expected-warning {{Potential leak of memory pointed to by}}
}
void mallocAssignment() {
char *p = malloc(12);
p = fooRetPtr();
} // expected-warning {{leak}}
int vallocTest() {
char *mem = valloc(12);
return 0; // expected-warning {{Potential leak of memory pointed to by}}
}
void vallocEscapeFreeUse() {
int *p = valloc(12);
myfoo(p);
free(p);
myfoo(p); // expected-warning{{Use of memory after it is freed}}
}
int *Gl;
struct GlStTy {
int *x;
};
struct GlStTy GlS = {0};
void GlobalFree() {
free(Gl);
}
void GlobalMalloc() {
Gl = malloc(12);
}
void GlobalStructMalloc() {
int *a = malloc(12);
GlS.x = a;
}
void GlobalStructMallocFree() {
int *a = malloc(12);
GlS.x = a;
free(GlS.x);
}
char *ArrayG[12];
void globalArrayTest() {
char *p = (char*)malloc(12);
ArrayG[0] = p;
}
// Make sure that we properly handle a pointer stored into a local struct/array.
typedef struct _StructWithPtr {
int *memP;
} StructWithPtr;
static StructWithPtr arrOfStructs[10];
void testMalloc() {
int *x = malloc(12);
StructWithPtr St;
St.memP = x;
arrOfStructs[0] = St; // no-warning
}
StructWithPtr testMalloc2() {
int *x = malloc(12);
StructWithPtr St;
St.memP = x;
return St; // no-warning
}
int *testMalloc3() {
int *x = malloc(12);
int *y = x;
return y; // no-warning
}
void testStructLeak() {
StructWithPtr St;
St.memP = malloc(12);
return; // expected-warning {{Potential leak of memory pointed to by 'St.memP'}}
}
void testElemRegion1() {
char *x = (void*)malloc(2);
int *ix = (int*)x;
free(&(x[0]));
}
void testElemRegion2(int **pp) {
int *p = malloc(12);
*pp = p;
free(pp[0]);
}
void testElemRegion3(int **pp) {
int *p = malloc(12);
*pp = p;
free(*pp);
}
// Region escape testing.
unsigned takePtrToPtr(int **p);
void PassTheAddrOfAllocatedData(int f) {
int *p = malloc(12);
// We don't know what happens after the call. Should stop tracking here.
if (takePtrToPtr(&p))
f++;
free(p); // no warning
}
struct X {
int *p;
};
unsigned takePtrToStruct(struct X *s);
int ** foo2(int *g, int f) {
int *p = malloc(12);
struct X *px= malloc(sizeof(struct X));
px->p = p;
// We don't know what happens after this call. Should not track px nor p.
if (takePtrToStruct(px))
f++;
free(p);
return 0;
}
struct X* RegInvalidationDetect1(struct X *s2) {
struct X *px= malloc(sizeof(struct X));
px->p = 0;
px = s2;
return px; // expected-warning {{Potential leak of memory pointed to by}}
}
struct X* RegInvalidationGiveUp1() {
int *p = malloc(12);
struct X *px= malloc(sizeof(struct X));
px->p = p;
return px;
}
int **RegInvalidationDetect2(int **pp) {
int *p = malloc(12);
pp = &p;
pp++;
return 0;// expected-warning {{Potential leak of memory pointed to by}}
}
extern void exit(int) __attribute__ ((__noreturn__));
void mallocExit(int *g) {
struct xx *p = malloc(12);
if (g != 0)
exit(1);
free(p);
return;
}
extern void __assert_fail (__const char *__assertion, __const char *__file,
unsigned int __line, __const char *__function)
__attribute__ ((__noreturn__));
#define assert(expr) \
((expr) ? (void)(0) : __assert_fail (#expr, __FILE__, __LINE__, __func__))
void mallocAssert(int *g) {
struct xx *p = malloc(12);
assert(g != 0);
free(p);
return;
}
void doNotInvalidateWhenPassedToSystemCalls(char *s) {
char *p = malloc(12);
strlen(p);
strcpy(p, s);
strcpy(s, p);
strcpy(p, p);
memcpy(p, s, 1);
memcpy(s, p, 1);
memcpy(p, p, 1);
} // expected-warning {{leak}}
// Treat source buffer contents as escaped.
void escapeSourceContents(char *s) {
char *p = malloc(12);
memcpy(s, &p, 12); // no warning
void *p1 = malloc(7);
char *a;
memcpy(&a, &p1, sizeof a);
// FIXME: No warning due to limitations imposed by current modelling of
// 'memcpy' (regions metadata is not copied).
int *ptrs[2];
int *allocated = (int *)malloc(4);
memcpy(&ptrs[0], &allocated, sizeof(int *));
// FIXME: No warning due to limitations imposed by current modelling of
// 'memcpy' (regions metadata is not copied).
}
void invalidateDestinationContents() {
int *null = 0;
int *p = (int *)malloc(4);
memcpy(&p, &null, sizeof(int *));
int *ptrs1[2]; // expected-warning {{Potential leak of memory pointed to by}}
ptrs1[0] = (int *)malloc(4);
memcpy(ptrs1, &null, sizeof(int *));
int *ptrs2[2]; // expected-warning {{Potential memory leak}}
ptrs2[0] = (int *)malloc(4);
memcpy(&ptrs2[1], &null, sizeof(int *));
int *ptrs3[2]; // expected-warning {{Potential memory leak}}
ptrs3[0] = (int *)malloc(4);
memcpy(&ptrs3[0], &null, sizeof(int *));
} // expected-warning {{Potential memory leak}}
// Rely on the CString checker evaluation of the strcpy API to convey that the result of strcpy is equal to p.
void symbolLostWithStrcpy(char *s) {
char *p = malloc(12);
p = strcpy(p, s);
free(p);
}
// The same test as the one above, but with what is actually generated on a mac.
static __inline char *
__inline_strcpy_chk (char *restrict __dest, const char *restrict __src)
{
return __builtin___strcpy_chk (__dest, __src, __builtin_object_size (__dest, 2 > 1));
}
void symbolLostWithStrcpy_InlineStrcpyVersion(char *s) {
char *p = malloc(12);
p = ((__builtin_object_size (p, 0) != (size_t) -1) ? __builtin___strcpy_chk (p, s, __builtin_object_size (p, 2 > 1)) : __inline_strcpy_chk (p, s));
free(p);
}
// Here we are returning a pointer one past the allocated value. An idiom which
// can be used for implementing special malloc. The correct uses of this might
// be rare enough so that we could keep this as a warning.
static void *specialMalloc(int n){
int *p;
p = malloc( n+8 );
if( p ){
p[0] = n;
p++;
}
return p;
}
// Potentially, the user could free the struct by performing pointer arithmetic on the return value.
// This is a variation of the specialMalloc issue, though probably would be more rare in correct code.
int *specialMallocWithStruct() {
struct StructWithInt *px= malloc(sizeof(struct StructWithInt));
return &(px->g);
}
// Test various allocation/deallocation functions.
void testStrdup(const char *s, unsigned validIndex) {
char *s2 = strdup(s);
s2[validIndex + 1] = 'b';
} // expected-warning {{Potential leak of memory pointed to by}}
void testWinStrdup(const char *s, unsigned validIndex) {
char *s2 = _strdup(s);
s2[validIndex + 1] = 'b';
} // expected-warning {{Potential leak of memory pointed to by}}
void testWcsdup(const wchar_t *s, unsigned validIndex) {
wchar_t *s2 = wcsdup(s);
s2[validIndex + 1] = 'b';
} // expected-warning {{Potential leak of memory pointed to by}}
void testWinWcsdup(const wchar_t *s, unsigned validIndex) {
wchar_t *s2 = _wcsdup(s);
s2[validIndex + 1] = 'b';
} // expected-warning {{Potential leak of memory pointed to by}}
int testStrndup(const char *s, unsigned validIndex, unsigned size) {
char *s2 = strndup(s, size);
s2 [validIndex + 1] = 'b';
if (s2[validIndex] != 'a')
return 0;
else
return 1;// expected-warning {{Potential leak of memory pointed to by}}
}
void testStrdupContentIsDefined(const char *s, unsigned validIndex) {
char *s2 = strdup(s);
char result = s2[1];// no warning
free(s2);
}
void testWinStrdupContentIsDefined(const char *s, unsigned validIndex) {
char *s2 = _strdup(s);
char result = s2[1];// no warning
free(s2);
}
void testWcsdupContentIsDefined(const wchar_t *s, unsigned validIndex) {
wchar_t *s2 = wcsdup(s);
wchar_t result = s2[1];// no warning
free(s2);
}
void testWinWcsdupContentIsDefined(const wchar_t *s, unsigned validIndex) {
wchar_t *s2 = _wcsdup(s);
wchar_t result = s2[1];// no warning
free(s2);
}
// ----------------------------------------------------------------------------
// Test the system library functions to which the pointer can escape.
// This tests false positive suppression.
// For now, we assume memory passed to pthread_specific escapes.
// TODO: We could check that if a new pthread binding is set, the existing
// binding must be freed; otherwise, a memory leak can occur.
void testPthereadSpecificEscape(pthread_key_t key) {
void *buf = malloc(12);
pthread_setspecific(key, buf); // no warning
}
// PR12101: Test funopen().
static int releasePtr(void *_ctx) {
free(_ctx);
return 0;
}
FILE *useFunOpen() {
void *ctx = malloc(sizeof(int));
FILE *f = funopen(ctx, 0, 0, 0, releasePtr); // no warning
if (f == 0) {
free(ctx);
}
return f;
}
FILE *useFunOpenNoReleaseFunction() {
void *ctx = malloc(sizeof(int));
FILE *f = funopen(ctx, 0, 0, 0, 0);
if (f == 0) {
free(ctx);
}
return f; // expected-warning{{leak}}
}
static int readNothing(void *_ctx, char *buf, int size) {
return 0;
}
FILE *useFunOpenReadNoRelease() {
void *ctx = malloc(sizeof(int));
FILE *f = funopen(ctx, readNothing, 0, 0, 0);
if (f == 0) {
free(ctx);
}
return f; // expected-warning{{leak}}
}
// Test setbuf, setvbuf.
int my_main_no_warning() {
char *p = malloc(100);
setvbuf(stdout, p, 0, 100);
return 0;
}
int my_main_no_warning2() {
char *p = malloc(100);
setbuf(__stdoutp, p);
return 0;
}
int my_main_warn(FILE *f) {
char *p = malloc(100);
setvbuf(f, p, 0, 100);
return 0;// expected-warning {{leak}}
}
// <rdar://problem/10978247>.
// some people use stack allocated memory as an optimization to avoid
// a heap allocation for small work sizes. This tests the analyzer's
// understanding that the malloc'ed memory is not the same as stackBuffer.
void radar10978247(int myValueSize) {
char stackBuffer[128];
char *buffer;
if (myValueSize <= sizeof(stackBuffer))
buffer = stackBuffer;
else
buffer = malloc(myValueSize);
// do stuff with the buffer
if (buffer != stackBuffer)
free(buffer);
}
void radar10978247_positive(int myValueSize) {
char stackBuffer[128];
char *buffer;
if (myValueSize <= sizeof(stackBuffer))
buffer = stackBuffer;
else
buffer = malloc(myValueSize);
// do stuff with the buffer
if (buffer == stackBuffer)
return;
else
return; // expected-warning {{leak}}
}
// <rdar://problem/11269741> Previously this triggered a false positive
// because malloc() is known to return uninitialized memory and the binding
// of 'o' to 'p->n' was not getting propertly handled. Now we report a leak.
struct rdar11269741_a_t {
struct rdar11269741_b_t {
int m;
} n;
};
int rdar11269741(struct rdar11269741_b_t o)
{
struct rdar11269741_a_t *p = (struct rdar11269741_a_t *) malloc(sizeof(*p));
p->n = o;
return p->n.m; // expected-warning {{leak}}
}
// Pointer arithmetic, returning an ElementRegion.
void *radar11329382(unsigned bl) {
void *ptr = malloc (16);
ptr = ptr + (2 - bl);
return ptr; // no warning
}
void __assert_rtn(const char *, const char *, int, const char *) __attribute__((__noreturn__));
int strcmp(const char *, const char *);
char *a (void);
void radar11270219(void) {
char *x = a(), *y = a();
(__builtin_expect(!(x && y), 0) ? __assert_rtn(__func__, "/Users/zaks/tmp/ex.c", 24, "x && y") : (void)0);
strcmp(x, y); // no warning
}
void radar_11358224_test_double_assign_ints_positive_2()
{
void *ptr = malloc(16);
ptr = ptr;
} // expected-warning {{leak}}
// Assume that functions which take a function pointer can free memory even if
// they are defined in system headers and take the const pointer to the
// allocated memory. (radar://11160612)
int const_ptr_and_callback(int, const char*, int n, void(*)(void*));
void r11160612_1() {
char *x = malloc(12);
const_ptr_and_callback(0, x, 12, free); // no - warning
}
// Null is passed as callback.
void r11160612_2() {
char *x = malloc(12);
const_ptr_and_callback(0, x, 12, 0);
} // expected-warning {{leak}}
// Callback is passed to a function defined in a system header.
void r11160612_4() {
char *x = malloc(12);
sqlite3_bind_text_my(0, x, 12, free); // no - warning
}
// Passing callbacks in a struct.
void r11160612_5(StWithCallback St) {
void *x = malloc(12);
dealocateMemWhenDoneByVal(x, St);
}
void r11160612_6(StWithCallback St) {
void *x = malloc(12);
dealocateMemWhenDoneByRef(&St, x);
}
int mySub(int, int);
int myAdd(int, int);
int fPtr(unsigned cond, int x) {
return (cond ? mySub : myAdd)(x, x);
}
// Test anti-aliasing.
void dependsOnValueOfPtr(int *g, unsigned f) {
int *p;
if (f) {
p = g;
} else {
p = malloc(12);
}
if (p != g)
free(p);
else
return; // no warning
return;
}
int CMPRegionHeapToStack() {
int x = 0;
int *x1 = malloc(8);
int *x2 = &x;
clang_analyzer_eval(x1 == x2); // expected-warning{{FALSE}}
free(x1);
return x;
}
int CMPRegionHeapToHeap2() {
int x = 0;
int *x1 = malloc(8);
int *x2 = malloc(8);
int *x4 = x1;
int *x5 = x2;
clang_analyzer_eval(x4 == x5); // expected-warning{{FALSE}}
free(x1);
free(x2);
return x;
}
int CMPRegionHeapToHeap() {
int x = 0;
int *x1 = malloc(8);
int *x4 = x1;
if (x1 == x4) {
free(x1);
return 5/x; // expected-warning{{Division by zero}}
}
return x;// expected-warning{{This statement is never executed}}
}
int HeapAssignment() {
int m = 0;
int *x = malloc(4);
int *y = x;
*x = 5;
clang_analyzer_eval(*x != *y); // expected-warning{{FALSE}}
free(x);
return 0;
}
int *retPtr();
int *retPtrMightAlias(int *x);
int cmpHeapAllocationToUnknown() {
int zero = 0;
int *yBefore = retPtr();
int *m = malloc(8);
int *yAfter = retPtrMightAlias(m);
clang_analyzer_eval(yBefore == m); // expected-warning{{FALSE}}
clang_analyzer_eval(yAfter == m); // expected-warning{{FALSE}}
free(m);
return 0;
}
void localArrayTest() {
char *p = (char*)malloc(12);
char *ArrayL[12];
ArrayL[0] = p;
} // expected-warning {{leak}}
void localStructTest() {
StructWithPtr St;
StructWithPtr *pSt = &St;
pSt->memP = malloc(12);
} // expected-warning{{Potential leak of memory pointed to by}}
#ifdef __INTPTR_TYPE__
// Test double assignment through integers.
typedef __INTPTR_TYPE__ intptr_t;
typedef unsigned __INTPTR_TYPE__ uintptr_t;
static intptr_t glob;
void test_double_assign_ints()
{
void *ptr = malloc (16); // no-warning
glob = (intptr_t)(uintptr_t)ptr;
}
void test_double_assign_ints_positive()
{
void *ptr = malloc(16);
(void*)(intptr_t)(uintptr_t)ptr; // expected-warning {{unused}}
} // expected-warning {{leak}}
#endif
void testCGContextNoLeak()
{
void *ptr = malloc(16);
CGContextRef context = CGBitmapContextCreate(ptr);
// Because you can get the data back out like this, even much later,
// CGBitmapContextCreate is one of our "stop-tracking" exceptions.
free(CGBitmapContextGetData(context));
}
void testCGContextLeak()
{
void *ptr = malloc(16);
CGContextRef context = CGBitmapContextCreate(ptr);
// However, this time we're just leaking the data, because the context
// object doesn't escape and it hasn't been freed in this function.
}
// Allow xpc context to escape. radar://11635258
// TODO: Would be great if we checked that the finalize_connection_context actually releases it.
static void finalize_connection_context(void *ctx) {
int *context = ctx;
free(context);
}
void foo (xpc_connection_t peer) {
int *ctx = calloc(1, sizeof(int));
xpc_connection_set_context(peer, ctx);
xpc_connection_set_finalizer_f(peer, finalize_connection_context);
xpc_connection_resume(peer);
}
// Make sure we catch errors when we free in a function which does not allocate memory.
void freeButNoMalloc(int *p, int x){
if (x) {
free(p);
//user forgot a return here.
}
free(p); // expected-warning {{Attempt to free released memory}}
}
struct HasPtr {
char *p;
};
char* reallocButNoMalloc(struct HasPtr *a, int c, int size) {
int *s;
char *b = realloc(a->p, size);
char *m = realloc(a->p, size); // expected-warning {{Attempt to free released memory}}
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
// We don't expect a use-after-free for a->P here because the warning above
// is a sink.
return a->p; // no-warning
}
// We should not warn in this case since the caller will presumably free a->p in all cases.
int reallocButNoMallocPR13674(struct HasPtr *a, int c, int size) {
int *s;
char *b = realloc(a->p, size);
if (b == 0)
return -1;
a->p = b;
return 0;
}
// Test realloc with no visible malloc.
void *test(void *ptr) {
void *newPtr = realloc(ptr, 4);
if (newPtr == 0) {
if (ptr)
free(ptr); // no-warning
}
return newPtr;
}
char *testLeakWithinReturn(char *str) {
return strdup(strdup(str)); // expected-warning{{leak}}
}
char *testWinLeakWithinReturn(char *str) {
return _strdup(_strdup(str)); // expected-warning{{leak}}
}
wchar_t *testWinWideLeakWithinReturn(wchar_t *str) {
return _wcsdup(_wcsdup(str)); // expected-warning{{leak}}
}
void passConstPtr(const char * ptr);
void testPassConstPointer() {
char * string = malloc(sizeof(char)*10);
passConstPtr(string);
return; // expected-warning {{leak}}
}
void testPassConstPointerIndirectly() {
char *p = malloc(1);
p++;
memcmp(p, p, sizeof(&p));
return; // expected-warning {{leak}}
}
void testPassConstPointerIndirectlyStruct() {
struct HasPtr hp;
hp.p = malloc(10);
memcmp(&hp, &hp, sizeof(hp));
return; // expected-warning {{Potential leak of memory pointed to by 'hp.p'}}
}
void testPassToSystemHeaderFunctionIndirectlyStruct() {
SomeStruct ss;
ss.p = malloc(1);
[analyzer] Indirect invalidation counts as an escape for leak checkers. Consider this example: char *p = malloc(sizeof(char)); systemFunction(&p); free(p); In this case, when we call systemFunction, we know (because it's a system function) that it won't free 'p'. However, we /don't/ know whether or not it will /change/ 'p', so the analyzer is forced to invalidate 'p', wiping out any bindings it contains. But now the malloc'd region looks like a leak, since there are no more bindings pointing to it, and we'll get a spurious leak warning. The fix for this is to notice when something is becoming inaccessible due to invalidation (i.e. an imperfect model, as opposed to being explicitly overwritten) and stop tracking it at that point. Currently, the best way to determine this for a call is the "indirect escape" pointer-escape kind. In practice, all the patch does is take the "system functions don't free memory" special case and limit it to direct parameters, i.e. just the arguments to a call and not other regions accessible to them. This is a conservative change that should only cause us to escape regions more eagerly, which means fewer leak warnings. This isn't perfect for several reasons, the main one being that this example is treated the same as the one above: char **p = malloc(sizeof(char *)); systemFunction(p + 1); // leak Currently, "addresses accessible by offsets of the starting region" and "addresses accessible through bindings of the starting region" are both considered "indirect" regions, hence this uniform treatment. Another issue is our longstanding problem of not distinguishing const and non-const bindings; if in the first example systemFunction's parameter were a char * const *, we should know that the function will not overwrite 'p', and thus we can safely report the leak. <rdar://problem/13758386> llvm-svn: 181607
2013-05-11 01:07:16 +08:00
fakeSystemHeaderCall(&ss); // invalidates ss, making ss.p unreachable
// Technically a false negative here -- we know the system function won't free
// ss.p, but nothing else will either!
} // no-warning
void testPassToSystemHeaderFunctionIndirectlyStructFree() {
SomeStruct ss;
ss.p = malloc(1);
fakeSystemHeaderCall(&ss); // invalidates ss, making ss.p unreachable
free(ss.p);
} // no-warning
void testPassToSystemHeaderFunctionIndirectlyArray() {
int *p[1];
p[0] = malloc(sizeof(int));
fakeSystemHeaderCallIntPtr(p); // invalidates p, making p[0] unreachable
// Technically a false negative here -- we know the system function won't free
// p[0], but nothing else will either!
} // no-warning
void testPassToSystemHeaderFunctionIndirectlyArrayFree() {
int *p[1];
p[0] = malloc(sizeof(int));
fakeSystemHeaderCallIntPtr(p); // invalidates p, making p[0] unreachable
free(p[0]);
} // no-warning
int *testOffsetAllocate(size_t size) {
int *memoryBlock = (int *)malloc(size + sizeof(int));
return &memoryBlock[1]; // no-warning
}
void testOffsetDeallocate(int *memoryBlock) {
free(&memoryBlock[-1]); // no-warning
}
void testOffsetOfRegionFreed() {
__int64_t * array = malloc(sizeof(__int64_t)*2);
array += 1;
free(&array[0]); // expected-warning{{Argument to free() is offset by 8 bytes from the start of memory allocated by malloc()}}
}
void testOffsetOfRegionFreed2() {
__int64_t *p = malloc(sizeof(__int64_t)*2);
p += 1;
free(p); // expected-warning{{Argument to free() is offset by 8 bytes from the start of memory allocated by malloc()}}
}
void testOffsetOfRegionFreed3() {
char *r = malloc(sizeof(char));
r = r - 10;
free(r); // expected-warning {{Argument to free() is offset by -10 bytes from the start of memory allocated by malloc()}}
}
void testOffsetOfRegionFreedAfterFunctionCall() {
int *p = malloc(sizeof(int)*2);
p += 1;
myfoo(p);
free(p); // expected-warning{{Argument to free() is offset by 4 bytes from the start of memory allocated by malloc()}}
}
void testFixManipulatedPointerBeforeFree() {
int * array = malloc(sizeof(int)*2);
array += 1;
free(&array[-1]); // no-warning
}
void testFixManipulatedPointerBeforeFree2() {
char *r = malloc(sizeof(char));
r = r + 10;
free(r-10); // no-warning
}
void freeOffsetPointerPassedToFunction() {
__int64_t *p = malloc(sizeof(__int64_t)*2);
p[1] = 0;
p += 1;
myfooint(*p); // not passing the pointer, only a value pointed by pointer
free(p); // expected-warning {{Argument to free() is offset by 8 bytes from the start of memory allocated by malloc()}}
}
int arbitraryInt();
void freeUnknownOffsetPointer() {
char *r = malloc(sizeof(char));
r = r + arbitraryInt(); // unable to reason about what the offset might be
free(r); // no-warning
}
void testFreeNonMallocPointerWithNoOffset() {
char c;
char *r = &c;
r = r + 10;
free(r-10); // expected-warning {{Argument to free() is the address of the local variable 'c', which is not memory allocated by malloc()}}
}
void testFreeNonMallocPointerWithOffset() {
char c;
char *r = &c;
free(r+1); // expected-warning {{Argument to free() is the address of the local variable 'c', which is not memory allocated by malloc()}}
}
void testOffsetZeroDoubleFree() {
int *array = malloc(sizeof(int)*2);
int *p = &array[0];
free(p);
free(&array[0]); // expected-warning{{Attempt to free released memory}}
}
void testOffsetPassedToStrlen() {
char * string = malloc(sizeof(char)*10);
string += 1;
int length = strlen(string); // expected-warning {{Potential leak of memory pointed to by 'string'}}
}
void testOffsetPassedToStrlenThenFree() {
char * string = malloc(sizeof(char)*10);
string += 1;
int length = strlen(string);
free(string); // expected-warning {{Argument to free() is offset by 1 byte from the start of memory allocated by malloc()}}
}
void testOffsetPassedAsConst() {
char * string = malloc(sizeof(char)*10);
string += 1;
passConstPtr(string);
free(string); // expected-warning {{Argument to free() is offset by 1 byte from the start of memory allocated by malloc()}}
}
char **_vectorSegments;
int _nVectorSegments;
void poolFreeC(void* s) {
free(s); // no-warning
}
void freeMemory() {
while (_nVectorSegments) {
poolFreeC(_vectorSegments[_nVectorSegments++]);
}
}
// PR16730
void testReallocEscaped(void **memory) {
*memory = malloc(47);
char *new_memory = realloc(*memory, 47);
if (new_memory != 0) {
*memory = new_memory;
}
}
// PR16558
void *smallocNoWarn(size_t size) {
if (size == 0) {
return malloc(1); // this branch is never called
}
else {
return malloc(size);
}
}
char *dupstrNoWarn(const char *s) {
const int len = strlen(s);
char *p = (char*) smallocNoWarn(len + 1);
strcpy(p, s); // no-warning
return p;
}
void *smallocWarn(size_t size) {
if (size == 2) {
return malloc(1);
}
else {
return malloc(size);
}
}
char *dupstrWarn(const char *s) {
const int len = strlen(s);
char *p = (char*) smallocWarn(len + 1);
strcpy(p, s); // expected-warning{{String copy function overflows destination buffer}}
return p;
}
int *radar15580979() {
int *data = (int *)malloc(32);
int *p = data ?: (int*)malloc(32); // no warning
return p;
}
// Some data structures may hold onto the pointer and free it later.
void testEscapeThroughSystemCallTakingVoidPointer1(void *queue) {
int *data = (int *)malloc(32);
fake_insque(queue, data); // no warning
}
void testEscapeThroughSystemCallTakingVoidPointer2(fake_rb_tree_t *rbt) {
int *data = (int *)malloc(32);
fake_rb_tree_init(rbt, data);
} //expected-warning{{Potential leak}}
void testEscapeThroughSystemCallTakingVoidPointer3(fake_rb_tree_t *rbt) {
int *data = (int *)malloc(32);
fake_rb_tree_init(rbt, data);
fake_rb_tree_insert_node(rbt, data); // no warning
}
struct IntAndPtr {
int x;
int *p;
};
void constEscape(const void *ptr);
void testConstEscapeThroughAnotherField() {
struct IntAndPtr s;
s.p = malloc(sizeof(int));
constEscape(&(s.x)); // could free s->p!
} // no-warning
// ----------------------------------------------------------------------------
// False negatives.
void testMallocWithParam(int **p) {
*p = (int*) malloc(sizeof(int));
*p = 0; // FIXME: should warn here
}
void testMallocWithParam_2(int **p) {
*p = (int*) malloc(sizeof(int)); // no-warning
}
[analyzer] Indirect invalidation counts as an escape for leak checkers. Consider this example: char *p = malloc(sizeof(char)); systemFunction(&p); free(p); In this case, when we call systemFunction, we know (because it's a system function) that it won't free 'p'. However, we /don't/ know whether or not it will /change/ 'p', so the analyzer is forced to invalidate 'p', wiping out any bindings it contains. But now the malloc'd region looks like a leak, since there are no more bindings pointing to it, and we'll get a spurious leak warning. The fix for this is to notice when something is becoming inaccessible due to invalidation (i.e. an imperfect model, as opposed to being explicitly overwritten) and stop tracking it at that point. Currently, the best way to determine this for a call is the "indirect escape" pointer-escape kind. In practice, all the patch does is take the "system functions don't free memory" special case and limit it to direct parameters, i.e. just the arguments to a call and not other regions accessible to them. This is a conservative change that should only cause us to escape regions more eagerly, which means fewer leak warnings. This isn't perfect for several reasons, the main one being that this example is treated the same as the one above: char **p = malloc(sizeof(char *)); systemFunction(p + 1); // leak Currently, "addresses accessible by offsets of the starting region" and "addresses accessible through bindings of the starting region" are both considered "indirect" regions, hence this uniform treatment. Another issue is our longstanding problem of not distinguishing const and non-const bindings; if in the first example systemFunction's parameter were a char * const *, we should know that the function will not overwrite 'p', and thus we can safely report the leak. <rdar://problem/13758386> llvm-svn: 181607
2013-05-11 01:07:16 +08:00
void testPassToSystemHeaderFunctionIndirectly() {
int *p = malloc(4);
p++;
fakeSystemHeaderCallInt(p);
// FIXME: This is a leak: if we think a system function won't free p, it
// won't free (p-1) either.
}
void testMallocIntoMalloc() {
StructWithPtr *s = malloc(sizeof(StructWithPtr));
s->memP = malloc(sizeof(int));
free(s);
} // FIXME: should warn here