llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl.h

746 lines
22 KiB
C
Raw Normal View History

//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Main internal TSan header file.
//
// Ground rules:
// - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
// function-scope locals)
// - All functions/classes/etc reside in namespace __tsan, except for those
// declared in tsan_interface.h.
// - Platform-specific files should be used instead of ifdefs (*).
// - No system headers included in header files (*).
// - Platform specific headres included only into platform-specific files (*).
//
// (*) Except when inlining is critical for performance.
//===----------------------------------------------------------------------===//
#ifndef TSAN_RTL_H
#define TSAN_RTL_H
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_thread_registry.h"
#include "tsan_clock.h"
#include "tsan_defs.h"
#include "tsan_flags.h"
#include "tsan_sync.h"
#include "tsan_trace.h"
#include "tsan_vector.h"
#include "tsan_report.h"
#include "tsan_platform.h"
#include "tsan_mutexset.h"
#if SANITIZER_WORDSIZE != 64
# error "ThreadSanitizer is supported only on 64-bit platforms"
#endif
namespace __tsan {
// Descriptor of user's memory block.
struct MBlock {
/*
u64 mtx : 1; // must be first
u64 lst : 44;
u64 stk : 31; // on word boundary
u64 tid : kTidBits;
u64 siz : 128 - 1 - 31 - 44 - kTidBits; // 39
*/
u64 raw[2];
void Init(uptr siz, u32 tid, u32 stk) {
raw[0] = raw[1] = 0;
raw[1] |= (u64)siz << ((1 + 44 + 31 + kTidBits) % 64);
raw[1] |= (u64)tid << ((1 + 44 + 31) % 64);
raw[0] |= (u64)stk << (1 + 44);
raw[1] |= (u64)stk >> (64 - 44 - 1);
DCHECK_EQ(Size(), siz);
DCHECK_EQ(Tid(), tid);
DCHECK_EQ(StackId(), stk);
}
u32 Tid() const {
return GetLsb(raw[1] >> ((1 + 44 + 31) % 64), kTidBits);
}
uptr Size() const {
return raw[1] >> ((1 + 31 + 44 + kTidBits) % 64);
}
u32 StackId() const {
return (raw[0] >> (1 + 44)) | GetLsb(raw[1] << (64 - 44 - 1), 31);
}
SyncVar *ListHead() const {
return (SyncVar*)(GetLsb(raw[0] >> 1, 44) << 3);
}
void ListPush(SyncVar *v) {
SyncVar *lst = ListHead();
v->next = lst;
u64 x = (u64)v ^ (u64)lst;
x = (x >> 3) << 1;
raw[0] ^= x;
DCHECK_EQ(ListHead(), v);
}
SyncVar *ListPop() {
SyncVar *lst = ListHead();
SyncVar *nxt = lst->next;
lst->next = 0;
u64 x = (u64)lst ^ (u64)nxt;
x = (x >> 3) << 1;
raw[0] ^= x;
DCHECK_EQ(ListHead(), nxt);
return lst;
}
void ListReset() {
SyncVar *lst = ListHead();
u64 x = (u64)lst;
x = (x >> 3) << 1;
raw[0] ^= x;
DCHECK_EQ(ListHead(), 0);
}
void Lock();
void Unlock();
typedef GenericScopedLock<MBlock> ScopedLock;
};
#ifndef TSAN_GO
#if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW
const uptr kAllocatorSpace = 0x7d0000000000ULL;
#else
const uptr kAllocatorSpace = 0x7d0000000000ULL;
#endif
const uptr kAllocatorSize = 0x10000000000ULL; // 1T.
struct MapUnmapCallback;
typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, sizeof(MBlock),
DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
SecondaryAllocator> Allocator;
Allocator *allocator();
#endif
void TsanCheckFailed(const char *file, int line, const char *cond,
u64 v1, u64 v2);
const u64 kShadowRodata = (u64)-1; // .rodata shadow marker
// FastState (from most significant bit):
// ignore : 1
// tid : kTidBits
// epoch : kClkBits
// unused : -
// history_size : 3
class FastState {
public:
FastState(u64 tid, u64 epoch) {
x_ = tid << kTidShift;
x_ |= epoch << kClkShift;
DCHECK_EQ(tid, this->tid());
DCHECK_EQ(epoch, this->epoch());
DCHECK_EQ(GetIgnoreBit(), false);
}
explicit FastState(u64 x)
: x_(x) {
}
u64 raw() const {
return x_;
}
u64 tid() const {
u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
return res;
}
u64 TidWithIgnore() const {
u64 res = x_ >> kTidShift;
return res;
}
u64 epoch() const {
u64 res = (x_ << (kTidBits + 1)) >> (64 - kClkBits);
return res;
}
void IncrementEpoch() {
u64 old_epoch = epoch();
x_ += 1 << kClkShift;
DCHECK_EQ(old_epoch + 1, epoch());
(void)old_epoch;
}
void SetIgnoreBit() { x_ |= kIgnoreBit; }
void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
bool GetIgnoreBit() const { return (s64)x_ < 0; }
void SetHistorySize(int hs) {
CHECK_GE(hs, 0);
CHECK_LE(hs, 7);
x_ = (x_ & ~7) | hs;
}
int GetHistorySize() const {
return (int)(x_ & 7);
}
void ClearHistorySize() {
x_ &= ~7;
}
u64 GetTracePos() const {
const int hs = GetHistorySize();
// When hs == 0, the trace consists of 2 parts.
const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
return epoch() & mask;
}
private:
friend class Shadow;
static const int kTidShift = 64 - kTidBits - 1;
static const int kClkShift = kTidShift - kClkBits;
static const u64 kIgnoreBit = 1ull << 63;
static const u64 kFreedBit = 1ull << 63;
u64 x_;
};
// Shadow (from most significant bit):
// freed : 1
// tid : kTidBits
// epoch : kClkBits
// is_atomic : 1
// is_read : 1
// size_log : 2
// addr0 : 3
class Shadow : public FastState {
public:
explicit Shadow(u64 x)
: FastState(x) {
}
explicit Shadow(const FastState &s)
: FastState(s.x_) {
ClearHistorySize();
}
void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
DCHECK_EQ(x_ & 31, 0);
DCHECK_LE(addr0, 7);
DCHECK_LE(kAccessSizeLog, 3);
x_ |= (kAccessSizeLog << 3) | addr0;
DCHECK_EQ(kAccessSizeLog, size_log());
DCHECK_EQ(addr0, this->addr0());
}
void SetWrite(unsigned kAccessIsWrite) {
DCHECK_EQ(x_ & kReadBit, 0);
if (!kAccessIsWrite)
x_ |= kReadBit;
DCHECK_EQ(kAccessIsWrite, IsWrite());
}
void SetAtomic(bool kIsAtomic) {
DCHECK(!IsAtomic());
if (kIsAtomic)
x_ |= kAtomicBit;
DCHECK_EQ(IsAtomic(), kIsAtomic);
}
bool IsAtomic() const {
return x_ & kAtomicBit;
}
bool IsZero() const {
return x_ == 0;
}
static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
return shifted_xor == 0;
}
static inline bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
u64 masked_xor = (s1.x_ ^ s2.x_) & 31;
return masked_xor == 0;
}
static inline bool TwoRangesIntersect(Shadow s1, Shadow s2,
unsigned kS2AccessSize) {
bool res = false;
u64 diff = s1.addr0() - s2.addr0();
if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT
// if (s1.addr0() + size1) > s2.addr0()) return true;
if (s1.size() > -diff) res = true;
} else {
// if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
if (kS2AccessSize > diff) res = true;
}
DCHECK_EQ(res, TwoRangesIntersectSLOW(s1, s2));
DCHECK_EQ(res, TwoRangesIntersectSLOW(s2, s1));
return res;
}
// The idea behind the offset is as follows.
// Consider that we have 8 bool's contained within a single 8-byte block
// (mapped to a single shadow "cell"). Now consider that we write to the bools
// from a single thread (which we consider the common case).
// W/o offsetting each access will have to scan 4 shadow values at average
// to find the corresponding shadow value for the bool.
// With offsetting we start scanning shadow with the offset so that
// each access hits necessary shadow straight off (at least in an expected
// optimistic case).
// This logic works seamlessly for any layout of user data. For example,
// if user data is {int, short, char, char}, then accesses to the int are
// offsetted to 0, short - 4, 1st char - 6, 2nd char - 7. Hopefully, accesses
// from a single thread won't need to scan all 8 shadow values.
unsigned ComputeSearchOffset() {
return x_ & 7;
}
u64 addr0() const { return x_ & 7; }
u64 size() const { return 1ull << size_log(); }
bool IsWrite() const { return !IsRead(); }
bool IsRead() const { return x_ & kReadBit; }
// The idea behind the freed bit is as follows.
// When the memory is freed (or otherwise unaccessible) we write to the shadow
// values with tid/epoch related to the free and the freed bit set.
// During memory accesses processing the freed bit is considered
// as msb of tid. So any access races with shadow with freed bit set
// (it is as if write from a thread with which we never synchronized before).
// This allows us to detect accesses to freed memory w/o additional
// overheads in memory access processing and at the same time restore
// tid/epoch of free.
void MarkAsFreed() {
x_ |= kFreedBit;
}
bool IsFreed() const {
return x_ & kFreedBit;
}
bool GetFreedAndReset() {
bool res = x_ & kFreedBit;
x_ &= ~kFreedBit;
return res;
}
bool IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
// analyzes 5-th bit (is_read) and 6-th bit (is_atomic)
bool v = x_ & u64(((kIsWrite ^ 1) << kReadShift)
| (kIsAtomic << kAtomicShift));
DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
return v;
}
bool IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
bool v = ((x_ >> kReadShift) & 3)
<= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
(IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
return v;
}
bool IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
bool v = ((x_ >> kReadShift) & 3)
>= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
(IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
return v;
}
private:
static const u64 kReadShift = 5;
static const u64 kReadBit = 1ull << kReadShift;
static const u64 kAtomicShift = 6;
static const u64 kAtomicBit = 1ull << kAtomicShift;
u64 size_log() const { return (x_ >> 3) & 3; }
static bool TwoRangesIntersectSLOW(const Shadow s1, const Shadow s2) {
if (s1.addr0() == s2.addr0()) return true;
if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
return true;
if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
return true;
return false;
}
};
struct SignalContext;
// This struct is stored in TLS.
struct ThreadState {
FastState fast_state;
// Synch epoch represents the threads's epoch before the last synchronization
// action. It allows to reduce number of shadow state updates.
// For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
// if we are processing write to X from the same thread at epoch=200,
// we do nothing, because both writes happen in the same 'synch epoch'.
// That is, if another memory access does not race with the former write,
// it does not race with the latter as well.
// QUESTION: can we can squeeze this into ThreadState::Fast?
// E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
// taken by epoch between synchs.
// This way we can save one load from tls.
u64 fast_synch_epoch;
// This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
// We do not distinguish beteween ignoring reads and writes
// for better performance.
int ignore_reads_and_writes;
uptr *shadow_stack_pos;
u64 *racy_shadow_addr;
u64 racy_state[2];
#ifndef TSAN_GO
// C/C++ uses embed shadow stack of fixed size.
uptr shadow_stack[kShadowStackSize];
#else
// Go uses satellite shadow stack with dynamic size.
uptr *shadow_stack;
uptr *shadow_stack_end;
#endif
MutexSet mset;
ThreadClock clock;
#ifndef TSAN_GO
AllocatorCache alloc_cache;
#endif
u64 stat[StatCnt];
const int tid;
const int unique_id;
int in_rtl;
bool in_symbolizer;
bool is_alive;
bool is_freeing;
bool is_vptr_access;
const uptr stk_addr;
const uptr stk_size;
const uptr tls_addr;
const uptr tls_size;
DeadlockDetector deadlock_detector;
bool in_signal_handler;
SignalContext *signal_ctx;
#ifndef TSAN_GO
u32 last_sleep_stack_id;
ThreadClock last_sleep_clock;
#endif
// Set in regions of runtime that must be signal-safe and fork-safe.
// If set, malloc must not be called.
int nomalloc;
explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
uptr stk_addr, uptr stk_size,
uptr tls_addr, uptr tls_size);
};
Context *CTX();
#ifndef TSAN_GO
extern THREADLOCAL char cur_thread_placeholder[];
INLINE ThreadState *cur_thread() {
return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
}
#endif
class ThreadContext : public ThreadContextBase {
public:
explicit ThreadContext(int tid);
~ThreadContext();
ThreadState *thr;
#ifdef TSAN_GO
StackTrace creation_stack;
#else
u32 creation_stack_id;
#endif
SyncClock sync;
// Epoch at which the thread had started.
// If we see an event from the thread stamped by an older epoch,
// the event is from a dead thread that shared tid with this thread.
u64 epoch0;
u64 epoch1;
// Override superclass callbacks.
void OnDead();
void OnJoined(void *arg);
void OnFinished();
void OnStarted(void *arg);
void OnCreated(void *arg);
void OnReset();
};
struct RacyStacks {
MD5Hash hash[2];
bool operator==(const RacyStacks &other) const {
if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
return true;
if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
return true;
return false;
}
};
struct RacyAddress {
uptr addr_min;
uptr addr_max;
};
struct FiredSuppression {
ReportType type;
uptr pc;
};
struct Context {
Context();
bool initialized;
SyncTab synctab;
Mutex report_mtx;
int nreported;
int nmissed_expected;
atomic_uint64_t last_symbolize_time_ns;
ThreadRegistry *thread_registry;
Vector<RacyStacks> racy_stacks;
Vector<RacyAddress> racy_addresses;
Vector<FiredSuppression> fired_suppressions;
Flags flags;
u64 stat[StatCnt];
u64 int_alloc_cnt[MBlockTypeCount];
u64 int_alloc_siz[MBlockTypeCount];
};
class ScopedInRtl {
public:
ScopedInRtl();
~ScopedInRtl();
private:
ThreadState*thr_;
int in_rtl_;
int errno_;
};
class ScopedReport {
public:
explicit ScopedReport(ReportType typ);
~ScopedReport();
void AddStack(const StackTrace *stack);
void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack,
const MutexSet *mset);
void AddThread(const ThreadContext *tctx);
void AddMutex(const SyncVar *s);
void AddLocation(uptr addr, uptr size);
void AddSleep(u32 stack_id);
void SetCount(int count);
const ReportDesc *GetReport() const;
private:
Context *ctx_;
ReportDesc *rep_;
void AddMutex(u64 id);
ScopedReport(const ScopedReport&);
void operator = (const ScopedReport&);
};
void RestoreStack(int tid, const u64 epoch, StackTrace *stk, MutexSet *mset);
void StatAggregate(u64 *dst, u64 *src);
void StatOutput(u64 *stat);
void ALWAYS_INLINE INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
if (kCollectStats)
thr->stat[typ] += n;
}
void ALWAYS_INLINE INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
if (kCollectStats)
thr->stat[typ] = n;
}
void MapShadow(uptr addr, uptr size);
void MapThreadTrace(uptr addr, uptr size);
void DontNeedShadowFor(uptr addr, uptr size);
void InitializeShadowMemory();
void InitializeInterceptors();
void InitializeDynamicAnnotations();
void ReportRace(ThreadState *thr);
bool OutputReport(Context *ctx,
const ScopedReport &srep,
const ReportStack *suppress_stack1 = 0,
const ReportStack *suppress_stack2 = 0);
bool IsFiredSuppression(Context *ctx,
const ScopedReport &srep,
const StackTrace &trace);
bool IsExpectedReport(uptr addr, uptr size);
bool FrameIsInternal(const ReportStack *frame);
ReportStack *SkipTsanInternalFrames(ReportStack *ent);
#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
# define DPrintf Printf
#else
# define DPrintf(...)
#endif
#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
# define DPrintf2 Printf
#else
# define DPrintf2(...)
#endif
u32 CurrentStackId(ThreadState *thr, uptr pc);
void PrintCurrentStack(ThreadState *thr, uptr pc);
void PrintCurrentStackSlow(); // uses libunwind
void Initialize(ThreadState *thr);
int Finalize(ThreadState *thr);
SyncVar* GetJavaSync(ThreadState *thr, uptr pc, uptr addr,
bool write_lock, bool create);
SyncVar* GetAndRemoveJavaSync(ThreadState *thr, uptr pc, uptr addr);
void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
void MemoryAccessImpl(ThreadState *thr, uptr addr,
int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
u64 *shadow_mem, Shadow cur);
void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
uptr size, bool is_write);
void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
uptr size, uptr step, bool is_write);
const int kSizeLog1 = 0;
const int kSizeLog2 = 1;
const int kSizeLog4 = 2;
const int kSizeLog8 = 3;
void ALWAYS_INLINE INLINE MemoryRead(ThreadState *thr, uptr pc,
uptr addr, int kAccessSizeLog) {
MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
}
void ALWAYS_INLINE INLINE MemoryWrite(ThreadState *thr, uptr pc,
uptr addr, int kAccessSizeLog) {
MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
}
void ALWAYS_INLINE INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
uptr addr, int kAccessSizeLog) {
MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
}
void ALWAYS_INLINE INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
uptr addr, int kAccessSizeLog) {
MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
}
void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
void IgnoreCtl(ThreadState *thr, bool write, bool begin);
void FuncEntry(ThreadState *thr, uptr pc);
void FuncExit(ThreadState *thr);
int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
2012-10-02 20:58:14 +08:00
void ThreadStart(ThreadState *thr, int tid, uptr os_id);
void ThreadFinish(ThreadState *thr);
int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
void ThreadJoin(ThreadState *thr, uptr pc, int tid);
void ThreadDetach(ThreadState *thr, uptr pc, int tid);
void ThreadFinalize(ThreadState *thr);
void ThreadSetName(ThreadState *thr, const char *name);
int ThreadCount(ThreadState *thr);
void ProcessPendingSignals(ThreadState *thr);
void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
bool rw, bool recursive, bool linker_init);
void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
void MutexLock(ThreadState *thr, uptr pc, uptr addr);
void MutexUnlock(ThreadState *thr, uptr pc, uptr addr);
void MutexReadLock(ThreadState *thr, uptr pc, uptr addr);
void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
void Acquire(ThreadState *thr, uptr pc, uptr addr);
void AcquireGlobal(ThreadState *thr, uptr pc);
void Release(ThreadState *thr, uptr pc, uptr addr);
void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
void AfterSleep(ThreadState *thr, uptr pc);
// The hacky call uses custom calling convention and an assembly thunk.
// It is considerably faster that a normal call for the caller
// if it is not executed (it is intended for slow paths from hot functions).
// The trick is that the call preserves all registers and the compiler
// does not treat it as a call.
// If it does not work for you, use normal call.
#if TSAN_DEBUG == 0
// The caller may not create the stack frame for itself at all,
// so we create a reserve stack frame for it (1024b must be enough).
#define HACKY_CALL(f) \
__asm__ __volatile__("sub $1024, %%rsp;" \
"/*.cfi_adjust_cfa_offset 1024;*/" \
".hidden " #f "_thunk;" \
"call " #f "_thunk;" \
"add $1024, %%rsp;" \
"/*.cfi_adjust_cfa_offset -1024;*/" \
::: "memory", "cc");
#else
#define HACKY_CALL(f) f()
#endif
void TraceSwitch(ThreadState *thr);
uptr TraceTopPC(ThreadState *thr);
uptr TraceSize();
uptr TraceParts();
Trace *ThreadTrace(int tid);
extern "C" void __tsan_trace_switch();
void ALWAYS_INLINE INLINE TraceAddEvent(ThreadState *thr, FastState fs,
EventType typ, u64 addr) {
DCHECK_GE((int)typ, 0);
DCHECK_LE((int)typ, 7);
DCHECK_EQ(GetLsb(addr, 61), addr);
StatInc(thr, StatEvents);
u64 pos = fs.GetTracePos();
if (UNLIKELY((pos % kTracePartSize) == 0)) {
#ifndef TSAN_GO
HACKY_CALL(__tsan_trace_switch);
#else
TraceSwitch(thr);
#endif
}
Event *trace = (Event*)GetThreadTrace(fs.tid());
Event *evp = &trace[pos];
Event ev = (u64)addr | ((u64)typ << 61);
*evp = ev;
}
} // namespace __tsan
#endif // TSAN_RTL_H