llvm-project/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp

362 lines
13 KiB
C++
Raw Normal View History

//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
2004-01-05 07:09:24 +08:00
// This file implements the TwoAddress instruction pass which is used
// by most register allocators. Two-Address instructions are rewritten
// from:
//
// A = B op C
//
// to:
//
// A = B
// A op= C
//
// Note that if a register allocator chooses to use this pass, that it
// has to be capable of handling the non-SSA nature of these rewritten
// virtual registers.
//
// It is also worth noting that the duplicate operand of the two
// address instruction is removed.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "twoaddrinstr"
#include "llvm/CodeGen/Passes.h"
2004-07-22 07:17:57 +08:00
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
namespace {
class VISIBILITY_HIDDEN TwoAddressInstructionPass
: public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
MachineRegisterInfo *MRI;
LiveVariables *LV;
bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
unsigned Reg,
MachineBasicBlock::iterator OldPos);
public:
2007-05-06 21:37:16 +08:00
static char ID; // Pass identification, replacement for typeid
TwoAddressInstructionPass() : MachineFunctionPass((intptr_t)&ID) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LiveVariables>();
AU.addPreserved<LiveVariables>();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
AU.addPreservedID(PHIEliminationID);
MachineFunctionPass::getAnalysisUsage(AU);
}
/// runOnMachineFunction - Pass entry point.
bool runOnMachineFunction(MachineFunction&);
};
}
char TwoAddressInstructionPass::ID = 0;
static RegisterPass<TwoAddressInstructionPass>
X("twoaddressinstruction", "Two-Address instruction pass");
const PassInfo *llvm::TwoAddressInstructionPassID = X.getPassInfo();
/// Sink3AddrInstruction - A two-address instruction has been converted to a
/// three-address instruction to avoid clobbering a register. Try to sink it
/// past the instruction that would kill the above mentioned register to reduce
/// register pressure.
///
bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
MachineInstr *MI, unsigned SavedReg,
MachineBasicBlock::iterator OldPos) {
// Check if it's safe to move this instruction.
bool SeenStore = true; // Be conservative.
if (!MI->isSafeToMove(TII, SeenStore))
return false;
unsigned DefReg = 0;
SmallSet<unsigned, 4> UseRegs;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isRegister())
continue;
unsigned MOReg = MO.getReg();
if (!MOReg)
continue;
if (MO.isUse() && MOReg != SavedReg)
UseRegs.insert(MO.getReg());
if (!MO.isDef())
continue;
if (MO.isImplicit())
// Don't try to move it if it implicitly defines a register.
return false;
if (DefReg)
// For now, don't move any instructions that define multiple registers.
return false;
DefReg = MO.getReg();
}
// Find the instruction that kills SavedReg.
MachineInstr *KillMI = NULL;
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
UE = MRI->use_end(); UI != UE; ++UI) {
MachineOperand &UseMO = UI.getOperand();
if (!UseMO.isKill())
continue;
KillMI = UseMO.getParent();
break;
}
if (!KillMI || KillMI->getParent() != MBB)
return false;
// If any of the definitions are used by another instruction between the
// position and the kill use, then it's not safe to sink it.
//
// FIXME: This can be sped up if there is an easy way to query whether an
// instruction if before or after another instruction. Then we can use
// MachineRegisterInfo def / use instead.
MachineOperand *KillMO = NULL;
MachineBasicBlock::iterator KillPos = KillMI;
++KillPos;
for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
MachineInstr *OtherMI = I;
for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = OtherMI->getOperand(i);
if (!MO.isRegister())
continue;
unsigned MOReg = MO.getReg();
if (!MOReg)
continue;
if (DefReg == MOReg)
return false;
if (MO.isKill()) {
if (OtherMI == KillMI && MOReg == SavedReg)
// Save the operand that kills the register. We want unset the kill
// marker is we can sink MI past it.
KillMO = &MO;
else if (UseRegs.count(MOReg))
// One of the uses is killed before the destination.
return false;
}
}
}
// Update kill and LV information.
KillMO->setIsKill(false);
KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
KillMO->setIsKill(true);
LiveVariables::VarInfo& VarInfo = LV->getVarInfo(SavedReg);
VarInfo.removeKill(KillMI);
VarInfo.Kills.push_back(MI);
// Move instruction to its destination.
MBB->remove(MI);
MBB->insert(KillPos, MI);
++Num3AddrSunk;
return true;
}
/// runOnMachineFunction - Reduce two-address instructions to two operands.
///
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
DOUT << "Machine Function\n";
const TargetMachine &TM = MF.getTarget();
MRI = &MF.getRegInfo();
TII = TM.getInstrInfo();
TRI = TM.getRegisterInfo();
LV = &getAnalysis<LiveVariables>();
bool MadeChange = false;
DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
mbbi != mbbe; ++mbbi) {
for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
mi != me; ) {
MachineBasicBlock::iterator nmi = next(mi);
const TargetInstrDesc &TID = mi->getDesc();
bool FirstTied = true;
for (unsigned si = 1, e = TID.getNumOperands(); si < e; ++si) {
int ti = TID.getOperandConstraint(si, TOI::TIED_TO);
if (ti == -1)
continue;
if (FirstTied) {
++NumTwoAddressInstrs;
DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
}
FirstTied = false;
assert(mi->getOperand(si).isRegister() && mi->getOperand(si).getReg() &&
mi->getOperand(si).isUse() && "two address instruction invalid");
// If the two operands are the same we just remove the use
// and mark the def as def&use, otherwise we have to insert a copy.
if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
// Rewrite:
// a = b op c
// to:
// a = b
// a = a op c
unsigned regA = mi->getOperand(ti).getReg();
unsigned regB = mi->getOperand(si).getReg();
assert(TargetRegisterInfo::isVirtualRegister(regA) &&
TargetRegisterInfo::isVirtualRegister(regB) &&
"cannot update physical register live information");
2004-07-22 07:17:57 +08:00
#ifndef NDEBUG
// First, verify that we don't have a use of a in the instruction (a =
// b + a for example) because our transformation will not work. This
// should never occur because we are in SSA form.
for (unsigned i = 0; i != mi->getNumOperands(); ++i)
assert((int)i == ti ||
!mi->getOperand(i).isRegister() ||
mi->getOperand(i).getReg() != regA);
2004-07-22 07:17:57 +08:00
#endif
// If this instruction is not the killing user of B, see if we can
// rearrange the code to make it so. Making it the killing user will
// allow us to coalesce A and B together, eliminating the copy we are
// about to insert.
if (!mi->killsRegister(regB)) {
// If this instruction is commutative, check to see if C dies. If
// so, swap the B and C operands. This makes the live ranges of A
// and C joinable.
// FIXME: This code also works for A := B op C instructions.
if (TID.isCommutable() && mi->getNumOperands() >= 3) {
assert(mi->getOperand(3-si).isRegister() &&
"Not a proper commutative instruction!");
unsigned regC = mi->getOperand(3-si).getReg();
if (mi->killsRegister(regC)) {
DOUT << "2addr: COMMUTING : " << *mi;
MachineInstr *NewMI = TII->commuteInstruction(mi);
if (NewMI == 0) {
DOUT << "2addr: COMMUTING FAILED!\n";
} else {
DOUT << "2addr: COMMUTED TO: " << *NewMI;
// If the instruction changed to commute it, update livevar.
if (NewMI != mi) {
LV->instructionChanged(mi, NewMI); // Update live variables
mbbi->insert(mi, NewMI); // Insert the new inst
mbbi->erase(mi); // Nuke the old inst.
mi = NewMI;
}
++NumCommuted;
regB = regC;
goto InstructionRearranged;
}
}
}
// If this instruction is potentially convertible to a true
// three-address instruction,
if (TID.isConvertibleTo3Addr()) {
// FIXME: This assumes there are no more operands which are tied
// to another register.
#ifndef NDEBUG
for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
#endif
if (MachineInstr *New=TII->convertToThreeAddress(mbbi, mi, *LV)) {
DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
DOUT << "2addr: TO 3-ADDR: " << *New;
bool Sunk = false;
2008-03-13 16:04:35 +08:00
if (New->findRegisterUseOperand(regB, false, TRI))
// FIXME: Temporary workaround. If the new instruction doesn't
// uses regB, convertToThreeAddress must have created more
// then one instruction.
Sunk = Sink3AddrInstruction(mbbi, New, regB, mi);
mbbi->erase(mi); // Nuke the old inst.
if (!Sunk) {
mi = New;
nmi = next(mi);
}
++NumConvertedTo3Addr;
break; // Done with this instruction.
}
}
}
InstructionRearranged:
const TargetRegisterClass* rc = MF.getRegInfo().getRegClass(regA);
TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
MachineBasicBlock::iterator prevMi = prior(mi);
DOUT << "\t\tprepend:\t"; DEBUG(prevMi->print(*cerr.stream(), &TM));
// Update live variables for regB.
LiveVariables::VarInfo& varInfoB = LV->getVarInfo(regB);
// regB is used in this BB.
varInfoB.UsedBlocks[mbbi->getNumber()] = true;
if (LV->removeVirtualRegisterKilled(regB, mbbi, mi))
LV->addVirtualRegisterKilled(regB, prevMi);
if (LV->removeVirtualRegisterDead(regB, mbbi, mi))
LV->addVirtualRegisterDead(regB, prevMi);
// Replace all occurences of regB with regA.
for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
if (mi->getOperand(i).isRegister() &&
mi->getOperand(i).getReg() == regB)
mi->getOperand(i).setReg(regA);
}
}
assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
MadeChange = true;
DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
}
mi = nmi;
}
}
return MadeChange;
}