llvm-project/llvm/lib/Analysis/LoopInfo.cpp

690 lines
24 KiB
C++
Raw Normal View History

//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the LoopInfo class that is used to identify natural loops
// and determine the loop depth of various nodes of the CFG. Note that the
// loops identified may actually be several natural loops that share the same
// header node... not just a single natural loop.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <algorithm>
using namespace llvm;
// Always verify loopinfo if expensive checking is enabled.
#ifdef XDEBUG
static bool VerifyLoopInfo = true;
#else
static bool VerifyLoopInfo = false;
#endif
static cl::opt<bool,true>
VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
cl::desc("Verify loop info (time consuming)"));
2007-05-03 09:11:54 +08:00
char LoopInfo::ID = 0;
INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
//===----------------------------------------------------------------------===//
// Loop implementation
//
/// isLoopInvariant - Return true if the specified value is loop invariant
///
bool Loop::isLoopInvariant(Value *V) const {
if (Instruction *I = dyn_cast<Instruction>(V))
return !contains(I);
return true; // All non-instructions are loop invariant
}
/// hasLoopInvariantOperands - Return true if all the operands of the
2011-08-04 07:45:50 +08:00
/// specified instruction are loop invariant.
bool Loop::hasLoopInvariantOperands(Instruction *I) const {
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (!isLoopInvariant(I->getOperand(i)))
return false;
2011-08-04 07:45:50 +08:00
return true;
}
/// makeLoopInvariant - If the given value is an instruciton inside of the
/// loop and it can be hoisted, do so to make it trivially loop-invariant.
/// Return true if the value after any hoisting is loop invariant. This
/// function can be used as a slightly more aggressive replacement for
/// isLoopInvariant.
///
/// If InsertPt is specified, it is the point to hoist instructions to.
/// If null, the terminator of the loop preheader is used.
///
bool Loop::makeLoopInvariant(Value *V, bool &Changed,
Instruction *InsertPt) const {
if (Instruction *I = dyn_cast<Instruction>(V))
return makeLoopInvariant(I, Changed, InsertPt);
return true; // All non-instructions are loop-invariant.
}
/// makeLoopInvariant - If the given instruction is inside of the
/// loop and it can be hoisted, do so to make it trivially loop-invariant.
/// Return true if the instruction after any hoisting is loop invariant. This
/// function can be used as a slightly more aggressive replacement for
/// isLoopInvariant.
///
/// If InsertPt is specified, it is the point to hoist instructions to.
/// If null, the terminator of the loop preheader is used.
///
bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
Instruction *InsertPt) const {
// Test if the value is already loop-invariant.
if (isLoopInvariant(I))
return true;
if (!I->isSafeToSpeculativelyExecute())
return false;
if (I->mayReadFromMemory())
return false;
// Determine the insertion point, unless one was given.
if (!InsertPt) {
BasicBlock *Preheader = getLoopPreheader();
// Without a preheader, hoisting is not feasible.
if (!Preheader)
return false;
InsertPt = Preheader->getTerminator();
}
// Don't hoist instructions with loop-variant operands.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
return false;
2011-08-04 07:45:50 +08:00
// Hoist.
I->moveBefore(InsertPt);
Changed = true;
return true;
}
/// getCanonicalInductionVariable - Check to see if the loop has a canonical
/// induction variable: an integer recurrence that starts at 0 and increments
/// by one each time through the loop. If so, return the phi node that
/// corresponds to it.
///
/// The IndVarSimplify pass transforms loops to have a canonical induction
/// variable.
///
PHINode *Loop::getCanonicalInductionVariable() const {
BasicBlock *H = getHeader();
BasicBlock *Incoming = 0, *Backedge = 0;
pred_iterator PI = pred_begin(H);
assert(PI != pred_end(H) &&
"Loop must have at least one backedge!");
Backedge = *PI++;
if (PI == pred_end(H)) return 0; // dead loop
Incoming = *PI++;
if (PI != pred_end(H)) return 0; // multiple backedges?
if (contains(Incoming)) {
if (contains(Backedge))
return 0;
std::swap(Incoming, Backedge);
} else if (!contains(Backedge))
return 0;
// Loop over all of the PHI nodes, looking for a canonical indvar.
for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
if (ConstantInt *CI =
dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
if (CI->isNullValue())
if (Instruction *Inc =
dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
if (Inc->getOpcode() == Instruction::Add &&
Inc->getOperand(0) == PN)
if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
if (CI->equalsInt(1))
return PN;
}
return 0;
}
/// getTripCount - Return a loop-invariant LLVM value indicating the number of
/// times the loop will be executed. Note that this means that the backedge
/// of the loop executes N-1 times. If the trip-count cannot be determined,
/// this returns null.
///
/// The IndVarSimplify pass transforms loops to have a form that this
/// function easily understands.
///
Value *Loop::getTripCount() const {
// Canonical loops will end with a 'cmp ne I, V', where I is the incremented
// canonical induction variable and V is the trip count of the loop.
PHINode *IV = getCanonicalInductionVariable();
if (IV == 0 || IV->getNumIncomingValues() != 2) return 0;
bool P0InLoop = contains(IV->getIncomingBlock(0));
Value *Inc = IV->getIncomingValue(!P0InLoop);
BasicBlock *BackedgeBlock = IV->getIncomingBlock(!P0InLoop);
if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
if (BI->isConditional()) {
if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
if (ICI->getOperand(0) == Inc) {
if (BI->getSuccessor(0) == getHeader()) {
if (ICI->getPredicate() == ICmpInst::ICMP_NE)
return ICI->getOperand(1);
} else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
return ICI->getOperand(1);
}
}
}
}
return 0;
}
/// getSmallConstantTripCount - Returns the trip count of this loop as a
/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
/// or not constant. Will also return 0 if the trip count is very large
/// (>= 2^32)
unsigned Loop::getSmallConstantTripCount() const {
Value* TripCount = this->getTripCount();
if (TripCount) {
if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
// Guard against huge trip counts.
if (TripCountC->getValue().getActiveBits() <= 32) {
return (unsigned)TripCountC->getZExtValue();
}
}
}
return 0;
}
/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
/// trip count of this loop as a normal unsigned value, if possible. This
/// means that the actual trip count is always a multiple of the returned
/// value (don't forget the trip count could very well be zero as well!).
///
/// Returns 1 if the trip count is unknown or not guaranteed to be the
/// multiple of a constant (which is also the case if the trip count is simply
/// constant, use getSmallConstantTripCount for that case), Will also return 1
/// if the trip count is very large (>= 2^32).
unsigned Loop::getSmallConstantTripMultiple() const {
Value* TripCount = this->getTripCount();
// This will hold the ConstantInt result, if any
ConstantInt *Result = NULL;
if (TripCount) {
// See if the trip count is constant itself
Result = dyn_cast<ConstantInt>(TripCount);
// if not, see if it is a multiplication
if (!Result)
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
switch (BO->getOpcode()) {
case BinaryOperator::Mul:
Result = dyn_cast<ConstantInt>(BO->getOperand(1));
break;
case BinaryOperator::Shl:
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
if (CI->getValue().getActiveBits() <= 5)
return 1u << CI->getZExtValue();
break;
default:
break;
}
}
}
// Guard against huge trip counts.
if (Result && Result->getValue().getActiveBits() <= 32) {
return (unsigned)Result->getZExtValue();
} else {
return 1;
}
}
/// isLCSSAForm - Return true if the Loop is in LCSSA form
bool Loop::isLCSSAForm(DominatorTree &DT) const {
// Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
2009-11-10 02:19:43 +08:00
BasicBlock *BB = *BI;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
++UI) {
User *U = *UI;
BasicBlock *UserBB = cast<Instruction>(U)->getParent();
if (PHINode *P = dyn_cast<PHINode>(U))
UserBB = P->getIncomingBlock(UI);
// Check the current block, as a fast-path, before checking whether
// the use is anywhere in the loop. Most values are used in the same
// block they are defined in. Also, blocks not reachable from the
// entry are special; uses in them don't need to go through PHIs.
if (UserBB != BB &&
!LoopBBs.count(UserBB) &&
DT.isReachableFromEntry(UserBB))
return false;
}
}
return true;
}
/// isLoopSimplifyForm - Return true if the Loop is in the form that
/// the LoopSimplify form transforms loops to, which is sometimes called
/// normal form.
bool Loop::isLoopSimplifyForm() const {
// Normal-form loops have a preheader, a single backedge, and all of their
// exits have all their predecessors inside the loop.
return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
}
/// hasDedicatedExits - Return true if no exit block for the loop
/// has a predecessor that is outside the loop.
bool Loop::hasDedicatedExits() const {
// Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
// Each predecessor of each exit block of a normal loop is contained
// within the loop.
SmallVector<BasicBlock *, 4> ExitBlocks;
getExitBlocks(ExitBlocks);
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
for (pred_iterator PI = pred_begin(ExitBlocks[i]),
PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
if (!LoopBBs.count(*PI))
return false;
// All the requirements are met.
return true;
}
/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
/// These are the blocks _outside of the current loop_ which are branched to.
/// This assumes that loop exits are in canonical form.
///
void
Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
assert(hasDedicatedExits() &&
"getUniqueExitBlocks assumes the loop has canonical form exits!");
// Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
std::sort(LoopBBs.begin(), LoopBBs.end());
SmallVector<BasicBlock *, 32> switchExitBlocks;
for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
BasicBlock *current = *BI;
switchExitBlocks.clear();
for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
// If block is inside the loop then it is not a exit block.
if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
continue;
pred_iterator PI = pred_begin(*I);
BasicBlock *firstPred = *PI;
// If current basic block is this exit block's first predecessor
// then only insert exit block in to the output ExitBlocks vector.
// This ensures that same exit block is not inserted twice into
// ExitBlocks vector.
if (current != firstPred)
continue;
// If a terminator has more then two successors, for example SwitchInst,
// then it is possible that there are multiple edges from current block
// to one exit block.
if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
ExitBlocks.push_back(*I);
continue;
}
// In case of multiple edges from current block to exit block, collect
// only one edge in ExitBlocks. Use switchExitBlocks to keep track of
// duplicate edges.
if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
== switchExitBlocks.end()) {
switchExitBlocks.push_back(*I);
ExitBlocks.push_back(*I);
}
}
}
}
/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
/// block, return that block. Otherwise return null.
BasicBlock *Loop::getUniqueExitBlock() const {
SmallVector<BasicBlock *, 8> UniqueExitBlocks;
getUniqueExitBlocks(UniqueExitBlocks);
if (UniqueExitBlocks.size() == 1)
return UniqueExitBlocks[0];
return 0;
}
void Loop::dump() const {
print(dbgs());
}
//===----------------------------------------------------------------------===//
// UnloopUpdater implementation
//
/// Find the new parent loop for all blocks within the "unloop" whose last
/// backedges has just been removed.
class UnloopUpdater {
Loop *Unloop;
LoopInfo *LI;
LoopBlocksDFS DFS;
// Map unloop's immediate subloops to their nearest reachable parents. Nested
// loops within these subloops will not change parents. However, an immediate
// subloop's new parent will be the nearest loop reachable from either its own
// exits *or* any of its nested loop's exits.
DenseMap<Loop*, Loop*> SubloopParents;
// Flag the presence of an irreducible backedge whose destination is a block
// directly contained by the original unloop.
bool FoundIB;
public:
UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
void updateBlockParents();
void removeBlocksFromAncestors();
void updateSubloopParents();
protected:
Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
};
/// updateBlockParents - Update the parent loop for all blocks that are directly
/// contained within the original "unloop".
void UnloopUpdater::updateBlockParents() {
if (Unloop->getNumBlocks()) {
// Perform a post order CFG traversal of all blocks within this loop,
// propagating the nearest loop from sucessors to predecessors.
LoopBlocksTraversal Traversal(DFS, LI);
for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
POE = Traversal.end(); POI != POE; ++POI) {
Loop *L = LI->getLoopFor(*POI);
Loop *NL = getNearestLoop(*POI, L);
if (NL != L) {
// For reducible loops, NL is now an ancestor of Unloop.
assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
"uninitialized successor");
LI->changeLoopFor(*POI, NL);
}
else {
// Or the current block is part of a subloop, in which case its parent
// is unchanged.
assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
}
}
}
// Each irreducible loop within the unloop induces a round of iteration using
// the DFS result cached by Traversal.
bool Changed = FoundIB;
for (unsigned NIters = 0; Changed; ++NIters) {
assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
// Iterate over the postorder list of blocks, propagating the nearest loop
// from successors to predecessors as before.
Changed = false;
for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
POE = DFS.endPostorder(); POI != POE; ++POI) {
Loop *L = LI->getLoopFor(*POI);
Loop *NL = getNearestLoop(*POI, L);
if (NL != L) {
assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
"uninitialized successor");
LI->changeLoopFor(*POI, NL);
Changed = true;
}
}
}
}
/// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
/// their new parents.
void UnloopUpdater::removeBlocksFromAncestors() {
// Remove unloop's blocks from all ancestors below their new parents.
for (Loop::block_iterator BI = Unloop->block_begin(),
BE = Unloop->block_end(); BI != BE; ++BI) {
Loop *NewParent = LI->getLoopFor(*BI);
// If this block is an immediate subloop, remove all blocks (including
// nested subloops) from ancestors below the new parent loop.
// Otherwise, if this block is in a nested subloop, skip it.
if (SubloopParents.count(NewParent))
NewParent = SubloopParents[NewParent];
else if (Unloop->contains(NewParent))
continue;
// Remove blocks from former Ancestors except Unloop itself which will be
// deleted.
for (Loop *OldParent = Unloop->getParentLoop(); OldParent != NewParent;
OldParent = OldParent->getParentLoop()) {
assert(OldParent && "new loop is not an ancestor of the original");
OldParent->removeBlockFromLoop(*BI);
}
}
}
/// updateSubloopParents - Update the parent loop for all subloops directly
/// nested within unloop.
void UnloopUpdater::updateSubloopParents() {
while (!Unloop->empty()) {
Loop *Subloop = *llvm::prior(Unloop->end());
Unloop->removeChildLoop(llvm::prior(Unloop->end()));
assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
if (SubloopParents[Subloop])
SubloopParents[Subloop]->addChildLoop(Subloop);
}
}
/// getNearestLoop - Return the nearest parent loop among this block's
/// successors. If a successor is a subloop header, consider its parent to be
/// the nearest parent of the subloop's exits.
///
/// For subloop blocks, simply update SubloopParents and return NULL.
Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
// Initially for blocks directly contained by Unloop, NearLoop == Unloop and
// is considered uninitialized.
Loop *NearLoop = BBLoop;
Loop *Subloop = 0;
if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
Subloop = NearLoop;
// Find the subloop ancestor that is directly contained within Unloop.
while (Subloop->getParentLoop() != Unloop) {
Subloop = Subloop->getParentLoop();
assert(Subloop && "subloop is not an ancestor of the original loop");
}
// Get the current nearest parent of the Subloop exits, initially Unloop.
if (!SubloopParents.count(Subloop))
SubloopParents[Subloop] = Unloop;
NearLoop = SubloopParents[Subloop];
}
succ_iterator I = succ_begin(BB), E = succ_end(BB);
if (I == E) {
assert(!Subloop && "subloop blocks must have a successor");
NearLoop = 0; // unloop blocks may now exit the function.
}
for (; I != E; ++I) {
if (*I == BB)
continue; // self loops are uninteresting
Loop *L = LI->getLoopFor(*I);
if (L == Unloop) {
// This successor has not been processed. This path must lead to an
// irreducible backedge.
assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
FoundIB = true;
}
if (L != Unloop && Unloop->contains(L)) {
// Successor is in a subloop.
if (Subloop)
continue; // Branching within subloops. Ignore it.
// BB branches from the original into a subloop header.
assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
// Get the current nearest parent of the Subloop's exits.
L = SubloopParents[L];
// L could be Unloop if the only exit was an irreducible backedge.
}
if (L == Unloop) {
continue;
}
// Handle critical edges from Unloop into a sibling loop.
if (L && !L->contains(Unloop)) {
L = L->getParentLoop();
}
// Remember the nearest parent loop among successors or subloop exits.
if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
NearLoop = L;
}
if (Subloop) {
SubloopParents[Subloop] = NearLoop;
return BBLoop;
}
return NearLoop;
}
//===----------------------------------------------------------------------===//
// LoopInfo implementation
//
bool LoopInfo::runOnFunction(Function &) {
releaseMemory();
LI.Calculate(getAnalysis<DominatorTree>().getBase()); // Update
return false;
}
/// updateUnloop - The last backedge has been removed from a loop--now the
/// "unloop". Find a new parent for the blocks contained within unloop and
/// update the loop tree. We don't necessarily have valid dominators at this
/// point, but LoopInfo is still valid except for the removal of this loop.
///
/// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
/// checking first is illegal.
void LoopInfo::updateUnloop(Loop *Unloop) {
// First handle the special case of no parent loop to simplify the algorithm.
if (!Unloop->getParentLoop()) {
// Since BBLoop had no parent, Unloop blocks are no longer in a loop.
for (Loop::block_iterator I = Unloop->block_begin(),
E = Unloop->block_end(); I != E; ++I) {
// Don't reparent blocks in subloops.
if (getLoopFor(*I) != Unloop)
continue;
// Blocks no longer have a parent but are still referenced by Unloop until
// the Unloop object is deleted.
LI.changeLoopFor(*I, 0);
}
// Remove the loop from the top-level LoopInfo object.
for (LoopInfo::iterator I = LI.begin(), E = LI.end();; ++I) {
assert(I != E && "Couldn't find loop");
if (*I == Unloop) {
LI.removeLoop(I);
break;
}
}
// Move all of the subloops to the top-level.
while (!Unloop->empty())
LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));
return;
}
// Update the parent loop for all blocks within the loop. Blocks within
// subloops will not change parents.
UnloopUpdater Updater(Unloop, this);
Updater.updateBlockParents();
// Remove blocks from former ancestor loops.
Updater.removeBlocksFromAncestors();
// Add direct subloops as children in their new parent loop.
Updater.updateSubloopParents();
// Remove unloop from its parent loop.
Loop *ParentLoop = Unloop->getParentLoop();
for (Loop::iterator I = ParentLoop->begin(), E = ParentLoop->end();; ++I) {
assert(I != E && "Couldn't find loop");
if (*I == Unloop) {
ParentLoop->removeChildLoop(I);
break;
}
}
}
void LoopInfo::verifyAnalysis() const {
// LoopInfo is a FunctionPass, but verifying every loop in the function
// each time verifyAnalysis is called is very expensive. The
// -verify-loop-info option can enable this. In order to perform some
// checking by default, LoopPass has been taught to call verifyLoop
// manually during loop pass sequences.
if (!VerifyLoopInfo) return;
for (iterator I = begin(), E = end(); I != E; ++I) {
assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
(*I)->verifyLoopNest();
}
// TODO: check BBMap consistency.
}
void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<DominatorTree>();
}
void LoopInfo::print(raw_ostream &OS, const Module*) const {
LI.print(OS);
}
//===----------------------------------------------------------------------===//
// LoopBlocksDFS implementation
//
/// Traverse the loop blocks and store the DFS result.
/// Useful for clients that just want the final DFS result and don't need to
/// visit blocks during the initial traversal.
void LoopBlocksDFS::perform(LoopInfo *LI) {
LoopBlocksTraversal Traversal(*this, LI);
for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
POE = Traversal.end(); POI != POE; ++POI) ;
}