llvm-project/llvm/lib/Target/Mips/MipsOptimizePICCall.cpp

302 lines
9.0 KiB
C++
Raw Normal View History

//===--------- MipsOptimizePICCall.cpp - Optimize PIC Calls ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates unnecessary instructions that set up $gp and replace
// instructions that load target function addresses with copy instructions.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "optimize-mips-pic-call"
#include "Mips.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "MipsMachineFunction.h"
#include "MipsTargetMachine.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
static cl::opt<bool> LoadTargetFromGOT("mips-load-target-from-got",
cl::init(true),
cl::desc("Load target address from GOT"),
cl::Hidden);
static cl::opt<bool> EraseGPOpnd("mips-erase-gp-opnd",
cl::init(true), cl::desc("Erase GP Operand"),
cl::Hidden);
namespace {
typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
typedef std::pair<unsigned, unsigned> CntRegP;
typedef RecyclingAllocator<BumpPtrAllocator,
ScopedHashTableVal<ValueType, CntRegP> >
AllocatorTy;
typedef ScopedHashTable<ValueType, CntRegP, DenseMapInfo<ValueType>,
AllocatorTy> ScopedHTType;
class MBBInfo {
public:
MBBInfo(MachineDomTreeNode *N);
const MachineDomTreeNode *getNode() const;
bool isVisited() const;
void preVisit(ScopedHTType &ScopedHT);
void postVisit();
private:
MachineDomTreeNode *Node;
ScopedHTType::ScopeTy *HTScope;
};
class OptimizePICCall : public MachineFunctionPass {
public:
OptimizePICCall(TargetMachine &tm) : MachineFunctionPass(ID) {}
virtual const char *getPassName() const { return "Mips OptimizePICCall"; }
bool runOnMachineFunction(MachineFunction &F);
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
/// \brief Visit MBB.
bool visitNode(MBBInfo &MBBI);
/// \brief Test if MI jumps to a function via a register.
///
/// Also, return the virtual register containing the target function's address
/// and the underlying object in Reg and Val respectively, if the function's
/// address can be resolved lazily.
bool isCallViaRegister(MachineInstr &MI, unsigned &Reg,
ValueType &Val) const;
/// \brief Return the number of instructions that dominate the current
/// instruction and load the function address from object Entry.
unsigned getCount(ValueType Entry);
/// \brief Return the destination virtual register of the last instruction
/// that loads from object Entry.
unsigned getReg(ValueType Entry);
/// \brief Update ScopedHT.
void incCntAndSetReg(ValueType Entry, unsigned Reg);
ScopedHTType ScopedHT;
static char ID;
};
char OptimizePICCall::ID = 0;
} // end of anonymous namespace
/// Return the first MachineOperand of MI if it is a used virtual register.
static MachineOperand *getCallTargetRegOpnd(MachineInstr &MI) {
if (MI.getNumOperands() == 0)
return 0;
MachineOperand &MO = MI.getOperand(0);
if (!MO.isReg() || !MO.isUse() ||
!TargetRegisterInfo::isVirtualRegister(MO.getReg()))
return 0;
return &MO;
}
/// Return type of register Reg.
static MVT::SimpleValueType getRegTy(unsigned Reg, MachineFunction &MF) {
const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
assert(RC->vt_end() - RC->vt_begin() == 1);
return *RC->vt_begin();
}
/// Do the following transformation:
///
/// jalr $vreg
/// =>
/// copy $t9, $vreg
/// jalr $t9
static void setCallTargetReg(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I) {
MachineFunction &MF = *MBB->getParent();
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
unsigned SrcReg = I->getOperand(0).getReg();
unsigned DstReg = getRegTy(SrcReg, MF) == MVT::i32 ? Mips::T9 : Mips::T9_64;
BuildMI(*MBB, I, I->getDebugLoc(), TII.get(TargetOpcode::COPY), DstReg)
.addReg(SrcReg);
I->getOperand(0).setReg(DstReg);
}
/// Search MI's operands for register GP and erase it.
static void eraseGPOpnd(MachineInstr &MI) {
if (!EraseGPOpnd)
return;
MachineFunction &MF = *MI.getParent()->getParent();
MVT::SimpleValueType Ty = getRegTy(MI.getOperand(0).getReg(), MF);
unsigned Reg = Ty == MVT::i32 ? Mips::GP : Mips::GP_64;
for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
MachineOperand &MO = MI.getOperand(I);
if (MO.isReg() && MO.getReg() == Reg) {
MI.RemoveOperand(I);
return;
}
}
llvm_unreachable(0);
}
MBBInfo::MBBInfo(MachineDomTreeNode *N) : Node(N), HTScope(0) {}
const MachineDomTreeNode *MBBInfo::getNode() const { return Node; }
bool MBBInfo::isVisited() const { return HTScope; }
void MBBInfo::preVisit(ScopedHTType &ScopedHT) {
HTScope = new ScopedHTType::ScopeTy(ScopedHT);
}
void MBBInfo::postVisit() {
delete HTScope;
}
// OptimizePICCall methods.
bool OptimizePICCall::runOnMachineFunction(MachineFunction &F) {
if (F.getTarget().getSubtarget<MipsSubtarget>().inMips16Mode())
return false;
// Do a pre-order traversal of the dominator tree.
MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
bool Changed = false;
SmallVector<MBBInfo, 8> WorkList(1, MBBInfo(MDT->getRootNode()));
while (!WorkList.empty()) {
MBBInfo &MBBI = WorkList.back();
// If this MBB has already been visited, destroy the scope for the MBB and
// pop it from the work list.
if (MBBI.isVisited()) {
MBBI.postVisit();
WorkList.pop_back();
continue;
}
// Visit the MBB and add its children to the work list.
MBBI.preVisit(ScopedHT);
Changed |= visitNode(MBBI);
const MachineDomTreeNode *Node = MBBI.getNode();
const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
WorkList.append(Children.begin(), Children.end());
}
return Changed;
}
bool OptimizePICCall::visitNode(MBBInfo &MBBI) {
bool Changed = false;
MachineBasicBlock *MBB = MBBI.getNode()->getBlock();
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
++I) {
unsigned Reg;
ValueType Entry;
// Skip instructions that are not call instructions via registers.
if (!isCallViaRegister(*I, Reg, Entry))
continue;
Changed = true;
unsigned N = getCount(Entry);
if (N != 0) {
// If a function has been called more than twice, we do not have to emit a
// load instruction to get the function address from the GOT, but can
// instead reuse the address that has been loaded before.
if (N >= 2 && !LoadTargetFromGOT)
getCallTargetRegOpnd(*I)->setReg(getReg(Entry));
// Erase the $gp operand if this isn't the first time a function has
// been called. $gp needs to be set up only if the function call can go
// through a lazy binding stub.
eraseGPOpnd(*I);
}
if (Entry)
incCntAndSetReg(Entry, Reg);
setCallTargetReg(MBB, I);
}
return Changed;
}
bool OptimizePICCall::isCallViaRegister(MachineInstr &MI, unsigned &Reg,
ValueType &Val) const {
if (!MI.isCall())
return false;
MachineOperand *MO = getCallTargetRegOpnd(MI);
// Return if MI is not a function call via a register.
if (!MO)
return false;
// Get the instruction that loads the function address from the GOT.
Reg = MO->getReg();
Val = (Value*)0;
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
MachineInstr *DefMI = MRI.getVRegDef(Reg);
assert(DefMI);
// See if DefMI is an instruction that loads from a GOT entry that holds the
// address of a lazy binding stub.
if (!DefMI->mayLoad() || DefMI->getNumOperands() < 3)
return true;
unsigned Flags = DefMI->getOperand(2).getTargetFlags();
if (Flags != MipsII::MO_GOT_CALL && Flags != MipsII::MO_CALL_LO16)
return true;
// Return the underlying object for the GOT entry in Val.
assert(DefMI->hasOneMemOperand());
Val = (*DefMI->memoperands_begin())->getValue();
if (!Val)
Val = (*DefMI->memoperands_begin())->getPseudoValue();
return true;
}
unsigned OptimizePICCall::getCount(ValueType Entry) {
return ScopedHT.lookup(Entry).first;
}
unsigned OptimizePICCall::getReg(ValueType Entry) {
unsigned Reg = ScopedHT.lookup(Entry).second;
assert(Reg);
return Reg;
}
void OptimizePICCall::incCntAndSetReg(ValueType Entry, unsigned Reg) {
CntRegP P = ScopedHT.lookup(Entry);
ScopedHT.insert(Entry, std::make_pair(P.first + 1, Reg));
}
/// Return an OptimizeCall object.
FunctionPass *llvm::createMipsOptimizePICCallPass(MipsTargetMachine &TM) {
return new OptimizePICCall(TM);
}