llvm-project/llvm/lib/Target/PowerPC/PPCTOCRegDeps.cpp

156 lines
5.2 KiB
C++
Raw Normal View History

[PowerPC] Add extra r2 read deps on @toc@l relocations If some commits are happy, and some commits are sad, this is a sad commit. It is sad because it restricts instruction scheduling to work around a binutils linker bug, and moreover, one that may never be fixed. On 2012-05-21, GCC was updated not to produce code triggering this bug, and now we'll do the same... When resolving an address using the ELF ABI TOC pointer, two relocations are generally required: one for the high part and one for the low part. Only the high part generally explicitly depends on r2 (the TOC pointer). And, so, we might produce code like this: .Ltmp526: addis 3, 2, .LC12@toc@ha .Ltmp1628: std 2, 40(1) ld 5, 0(27) ld 2, 8(27) ld 11, 16(27) ld 3, .LC12@toc@l(3) rldicl 4, 4, 0, 32 mtctr 5 bctrl ld 2, 40(1) And there is nothing wrong with this code, as such, but there is a linker bug in binutils (https://sourceware.org/bugzilla/show_bug.cgi?id=18414) that will misoptimize this code sequence to this: nop std r2,40(r1) ld r5,0(r27) ld r2,8(r27) ld r11,16(r27) ld r3,-32472(r2) clrldi r4,r4,32 mtctr r5 bctrl ld r2,40(r1) because the linker does not know (and does not check) that the value in r2 changed in between the instruction using the .LC12@toc@ha (TOC-relative) relocation and the instruction using the .LC12@toc@l(3) relocation. Because it finds these instructions using the relocations (and not by scanning the instructions), it has been asserted that there is no good way to detect the change of r2 in between. As a result, this bug may never be fixed (i.e. it may become part of the definition of the ABI). GCC was updated to add extra dependencies on r2 to instructions using the @toc@l relocations to avoid this problem, and we'll do the same here. This is done as a separate pass because: 1. These extra r2 dependencies are not really properties of the instructions, but rather due to a linker bug, and maybe one day we'll be able to get rid of them when targeting linkers without this bug (and, thus, keeping the logic centralized here will make that straightforward). 2. There are ISel-level peephole optimizations that propagate the @toc@l relocations to some user instructions, and so the exta dependencies do not apply only to a fixed set of instructions (without undesirable definition replication). The test case was reduced with the help of bugpoint, with minimal cleaning. I'm looking forward to our upcoming MI serialization support, and with that, much better tests can be created. llvm-svn: 237556
2015-05-18 14:25:59 +08:00
//===-- PPCTOCRegDeps.cpp - Add Extra TOC Register Dependencies -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// When resolving an address using the ELF ABI TOC pointer, two relocations are
// generally required: one for the high part and one for the low part. Only
// the high part generally explicitly depends on r2 (the TOC pointer). And, so,
// we might produce code like this:
//
// .Ltmp526:
// addis 3, 2, .LC12@toc@ha
// .Ltmp1628:
// std 2, 40(1)
// ld 5, 0(27)
// ld 2, 8(27)
// ld 11, 16(27)
// ld 3, .LC12@toc@l(3)
// rldicl 4, 4, 0, 32
// mtctr 5
// bctrl
// ld 2, 40(1)
//
// And there is nothing wrong with this code, as such, but there is a linker bug
// in binutils (https://sourceware.org/bugzilla/show_bug.cgi?id=18414) that will
// misoptimize this code sequence to this:
// nop
// std r2,40(r1)
// ld r5,0(r27)
// ld r2,8(r27)
// ld r11,16(r27)
// ld r3,-32472(r2)
// clrldi r4,r4,32
// mtctr r5
// bctrl
// ld r2,40(r1)
// because the linker does not know (and does not check) that the value in r2
// changed in between the instruction using the .LC12@toc@ha (TOC-relative)
// relocation and the instruction using the .LC12@toc@l(3) relocation.
// Because it finds these instructions using the relocations (and not by
// scanning the instructions), it has been asserted that there is no good way
// to detect the change of r2 in between. As a result, this bug may never be
// fixed (i.e. it may become part of the definition of the ABI). GCC was
// updated to add extra dependencies on r2 to instructions using the @toc@l
// relocations to avoid this problem, and we'll do the same here.
//
// This is done as a separate pass because:
// 1. These extra r2 dependencies are not really properties of the
// instructions, but rather due to a linker bug, and maybe one day we'll be
// able to get rid of them when targeting linkers without this bug (and,
// thus, keeping the logic centralized here will make that
// straightforward).
// 2. There are ISel-level peephole optimizations that propagate the @toc@l
// relocations to some user instructions, and so the exta dependencies do
// not apply only to a fixed set of instructions (without undesirable
// definition replication).
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/PPCPredicates.h"
#include "PPC.h"
[PowerPC] Add extra r2 read deps on @toc@l relocations If some commits are happy, and some commits are sad, this is a sad commit. It is sad because it restricts instruction scheduling to work around a binutils linker bug, and moreover, one that may never be fixed. On 2012-05-21, GCC was updated not to produce code triggering this bug, and now we'll do the same... When resolving an address using the ELF ABI TOC pointer, two relocations are generally required: one for the high part and one for the low part. Only the high part generally explicitly depends on r2 (the TOC pointer). And, so, we might produce code like this: .Ltmp526: addis 3, 2, .LC12@toc@ha .Ltmp1628: std 2, 40(1) ld 5, 0(27) ld 2, 8(27) ld 11, 16(27) ld 3, .LC12@toc@l(3) rldicl 4, 4, 0, 32 mtctr 5 bctrl ld 2, 40(1) And there is nothing wrong with this code, as such, but there is a linker bug in binutils (https://sourceware.org/bugzilla/show_bug.cgi?id=18414) that will misoptimize this code sequence to this: nop std r2,40(r1) ld r5,0(r27) ld r2,8(r27) ld r11,16(r27) ld r3,-32472(r2) clrldi r4,r4,32 mtctr r5 bctrl ld r2,40(r1) because the linker does not know (and does not check) that the value in r2 changed in between the instruction using the .LC12@toc@ha (TOC-relative) relocation and the instruction using the .LC12@toc@l(3) relocation. Because it finds these instructions using the relocations (and not by scanning the instructions), it has been asserted that there is no good way to detect the change of r2 in between. As a result, this bug may never be fixed (i.e. it may become part of the definition of the ABI). GCC was updated to add extra dependencies on r2 to instructions using the @toc@l relocations to avoid this problem, and we'll do the same here. This is done as a separate pass because: 1. These extra r2 dependencies are not really properties of the instructions, but rather due to a linker bug, and maybe one day we'll be able to get rid of them when targeting linkers without this bug (and, thus, keeping the logic centralized here will make that straightforward). 2. There are ISel-level peephole optimizations that propagate the @toc@l relocations to some user instructions, and so the exta dependencies do not apply only to a fixed set of instructions (without undesirable definition replication). The test case was reduced with the help of bugpoint, with minimal cleaning. I'm looking forward to our upcoming MI serialization support, and with that, much better tests can be created. llvm-svn: 237556
2015-05-18 14:25:59 +08:00
#include "PPCInstrBuilder.h"
#include "PPCInstrInfo.h"
[PowerPC] Add extra r2 read deps on @toc@l relocations If some commits are happy, and some commits are sad, this is a sad commit. It is sad because it restricts instruction scheduling to work around a binutils linker bug, and moreover, one that may never be fixed. On 2012-05-21, GCC was updated not to produce code triggering this bug, and now we'll do the same... When resolving an address using the ELF ABI TOC pointer, two relocations are generally required: one for the high part and one for the low part. Only the high part generally explicitly depends on r2 (the TOC pointer). And, so, we might produce code like this: .Ltmp526: addis 3, 2, .LC12@toc@ha .Ltmp1628: std 2, 40(1) ld 5, 0(27) ld 2, 8(27) ld 11, 16(27) ld 3, .LC12@toc@l(3) rldicl 4, 4, 0, 32 mtctr 5 bctrl ld 2, 40(1) And there is nothing wrong with this code, as such, but there is a linker bug in binutils (https://sourceware.org/bugzilla/show_bug.cgi?id=18414) that will misoptimize this code sequence to this: nop std r2,40(r1) ld r5,0(r27) ld r2,8(r27) ld r11,16(r27) ld r3,-32472(r2) clrldi r4,r4,32 mtctr r5 bctrl ld r2,40(r1) because the linker does not know (and does not check) that the value in r2 changed in between the instruction using the .LC12@toc@ha (TOC-relative) relocation and the instruction using the .LC12@toc@l(3) relocation. Because it finds these instructions using the relocations (and not by scanning the instructions), it has been asserted that there is no good way to detect the change of r2 in between. As a result, this bug may never be fixed (i.e. it may become part of the definition of the ABI). GCC was updated to add extra dependencies on r2 to instructions using the @toc@l relocations to avoid this problem, and we'll do the same here. This is done as a separate pass because: 1. These extra r2 dependencies are not really properties of the instructions, but rather due to a linker bug, and maybe one day we'll be able to get rid of them when targeting linkers without this bug (and, thus, keeping the logic centralized here will make that straightforward). 2. There are ISel-level peephole optimizations that propagate the @toc@l relocations to some user instructions, and so the exta dependencies do not apply only to a fixed set of instructions (without undesirable definition replication). The test case was reduced with the help of bugpoint, with minimal cleaning. I'm looking forward to our upcoming MI serialization support, and with that, much better tests can be created. llvm-svn: 237556
2015-05-18 14:25:59 +08:00
#include "PPCMachineFunctionInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "ppc-toc-reg-deps"
namespace llvm {
void initializePPCTOCRegDepsPass(PassRegistry&);
}
namespace {
// PPCTOCRegDeps pass - For simple functions without epilogue code, move
// returns up, and create conditional returns, to avoid unnecessary
// branch-to-blr sequences.
struct PPCTOCRegDeps : public MachineFunctionPass {
static char ID;
PPCTOCRegDeps() : MachineFunctionPass(ID) {
initializePPCTOCRegDepsPass(*PassRegistry::getPassRegistry());
}
protected:
bool hasTOCLoReloc(const MachineInstr &MI) {
if (MI.getOpcode() == PPC::LDtocL ||
MI.getOpcode() == PPC::ADDItocL)
return true;
for (const MachineOperand &MO : MI.operands()) {
if ((MO.getTargetFlags() & PPCII::MO_ACCESS_MASK) == PPCII::MO_TOC_LO)
return true;
}
return false;
}
bool processBlock(MachineBasicBlock &MBB) {
bool Changed = false;
for (auto &MI : MBB) {
if (!hasTOCLoReloc(MI))
continue;
MI.addOperand(MachineOperand::CreateReg(PPC::X2,
false /*IsDef*/,
true /*IsImp*/));
Changed = true;
}
return Changed;
}
public:
bool runOnMachineFunction(MachineFunction &MF) override {
bool Changed = false;
for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
MachineBasicBlock &B = *I++;
if (processBlock(B))
Changed = true;
}
return Changed;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
MachineFunctionPass::getAnalysisUsage(AU);
}
};
}
[PowerPC] Add extra r2 read deps on @toc@l relocations If some commits are happy, and some commits are sad, this is a sad commit. It is sad because it restricts instruction scheduling to work around a binutils linker bug, and moreover, one that may never be fixed. On 2012-05-21, GCC was updated not to produce code triggering this bug, and now we'll do the same... When resolving an address using the ELF ABI TOC pointer, two relocations are generally required: one for the high part and one for the low part. Only the high part generally explicitly depends on r2 (the TOC pointer). And, so, we might produce code like this: .Ltmp526: addis 3, 2, .LC12@toc@ha .Ltmp1628: std 2, 40(1) ld 5, 0(27) ld 2, 8(27) ld 11, 16(27) ld 3, .LC12@toc@l(3) rldicl 4, 4, 0, 32 mtctr 5 bctrl ld 2, 40(1) And there is nothing wrong with this code, as such, but there is a linker bug in binutils (https://sourceware.org/bugzilla/show_bug.cgi?id=18414) that will misoptimize this code sequence to this: nop std r2,40(r1) ld r5,0(r27) ld r2,8(r27) ld r11,16(r27) ld r3,-32472(r2) clrldi r4,r4,32 mtctr r5 bctrl ld r2,40(r1) because the linker does not know (and does not check) that the value in r2 changed in between the instruction using the .LC12@toc@ha (TOC-relative) relocation and the instruction using the .LC12@toc@l(3) relocation. Because it finds these instructions using the relocations (and not by scanning the instructions), it has been asserted that there is no good way to detect the change of r2 in between. As a result, this bug may never be fixed (i.e. it may become part of the definition of the ABI). GCC was updated to add extra dependencies on r2 to instructions using the @toc@l relocations to avoid this problem, and we'll do the same here. This is done as a separate pass because: 1. These extra r2 dependencies are not really properties of the instructions, but rather due to a linker bug, and maybe one day we'll be able to get rid of them when targeting linkers without this bug (and, thus, keeping the logic centralized here will make that straightforward). 2. There are ISel-level peephole optimizations that propagate the @toc@l relocations to some user instructions, and so the exta dependencies do not apply only to a fixed set of instructions (without undesirable definition replication). The test case was reduced with the help of bugpoint, with minimal cleaning. I'm looking forward to our upcoming MI serialization support, and with that, much better tests can be created. llvm-svn: 237556
2015-05-18 14:25:59 +08:00
INITIALIZE_PASS(PPCTOCRegDeps, DEBUG_TYPE,
"PowerPC TOC Register Dependencies", false, false)
char PPCTOCRegDeps::ID = 0;
FunctionPass*
llvm::createPPCTOCRegDepsPass() { return new PPCTOCRegDeps(); }