llvm-project/lldb/source/Core/Scalar.cpp

3366 lines
96 KiB
C++
Raw Normal View History

//===-- Scalar.cpp ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/Scalar.h"
#include <math.h>
#include <inttypes.h>
#include <stdio.h>
#include "lldb/Interpreter/Args.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Stream.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Host/Endian.h"
#include "lldb/Host/StringConvert.h"
#include "Plugins/Process/Utility/InstructionUtils.h"
using namespace lldb;
using namespace lldb_private;
//----------------------------------------------------------------------
// Promote to max type currently follows the ANSI C rule for type
// promotion in expressions.
//----------------------------------------------------------------------
static Scalar::Type
PromoteToMaxType
(
const Scalar& lhs, // The const left hand side object
const Scalar& rhs, // The const right hand side object
Scalar& temp_value, // A modifiable temp value than can be used to hold either the promoted lhs or rhs object
const Scalar* &promoted_lhs_ptr, // Pointer to the resulting possibly promoted value of lhs (at most one of lhs/rhs will get promoted)
const Scalar* &promoted_rhs_ptr // Pointer to the resulting possibly promoted value of rhs (at most one of lhs/rhs will get promoted)
)
{
Scalar result;
// Initialize the promoted values for both the right and left hand side values
// to be the objects themselves. If no promotion is needed (both right and left
// have the same type), then the temp_value will not get used.
promoted_lhs_ptr = &lhs;
promoted_rhs_ptr = &rhs;
// Extract the types of both the right and left hand side values
Scalar::Type lhs_type = lhs.GetType();
Scalar::Type rhs_type = rhs.GetType();
if (lhs_type > rhs_type)
{
// Right hand side need to be promoted
temp_value = rhs; // Copy right hand side into the temp value
if (temp_value.Promote(lhs_type)) // Promote it
promoted_rhs_ptr = &temp_value; // Update the pointer for the promoted right hand side
}
else if (lhs_type < rhs_type)
{
// Left hand side need to be promoted
temp_value = lhs; // Copy left hand side value into the temp value
if (temp_value.Promote(rhs_type)) // Promote it
promoted_lhs_ptr = &temp_value; // Update the pointer for the promoted left hand side
}
2014-07-02 05:22:11 +08:00
// Make sure our type promotion worked as expected
if (promoted_lhs_ptr->GetType() == promoted_rhs_ptr->GetType())
return promoted_lhs_ptr->GetType(); // Return the resulting max type
// Return the void type (zero) if we fail to promote either of the values.
return Scalar::e_void;
}
//----------------------------------------------------------------------
// Scalar constructor
//----------------------------------------------------------------------
Scalar::Scalar() :
m_type(e_void),
m_float((float)0)
{
}
//----------------------------------------------------------------------
// Scalar copy constructor
//----------------------------------------------------------------------
Scalar::Scalar(const Scalar& rhs) :
m_type(rhs.m_type),
m_integer(rhs.m_integer),
m_float(rhs.m_float)
{
}
//Scalar::Scalar(const RegisterValue& reg) :
// m_type(e_void),
// m_data()
//{
// switch (reg.info.encoding)
// {
// case eEncodingUint: // unsigned integer
// switch (reg.info.byte_size)
// {
// case 1: m_type = e_uint; m_data.uint = reg.value.uint8; break;
// case 2: m_type = e_uint; m_data.uint = reg.value.uint16; break;
// case 4: m_type = e_uint; m_data.uint = reg.value.uint32; break;
// case 8: m_type = e_ulonglong; m_data.ulonglong = reg.value.uint64; break;
// break;
// }
// break;
//
// case eEncodingSint: // signed integer
// switch (reg.info.byte_size)
// {
// case 1: m_type = e_sint; m_data.sint = reg.value.sint8; break;
// case 2: m_type = e_sint; m_data.sint = reg.value.sint16; break;
// case 4: m_type = e_sint; m_data.sint = reg.value.sint32; break;
// case 8: m_type = e_slonglong; m_data.slonglong = reg.value.sint64; break;
// break;
// }
// break;
//
// case eEncodingIEEE754: // float
// switch (reg.info.byte_size)
// {
// case 4: m_type = e_float; m_data.flt = reg.value.float32; break;
// case 8: m_type = e_double; m_data.dbl = reg.value.float64; break;
// break;
// }
// break;
// case eEncodingVector: // vector registers
// break;
// }
//}
bool
Scalar::GetData (DataExtractor &data, size_t limit_byte_size) const
{
size_t byte_size = GetByteSize();
static float f_val;
static double d_val;
if (byte_size > 0)
{
if (limit_byte_size < byte_size)
{
if (endian::InlHostByteOrder() == eByteOrderLittle)
{
// On little endian systems if we want fewer bytes from the
// current type we just specify fewer bytes since the LSByte
// is first...
switch(m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
data.SetData((const uint8_t *)m_integer.getRawData(), limit_byte_size, endian::InlHostByteOrder());
return true;
case e_float:
f_val = m_float.convertToFloat();
data.SetData((uint8_t *)&f_val, limit_byte_size, endian::InlHostByteOrder());
return true;
case e_double:
d_val = m_float.convertToDouble();
data.SetData((uint8_t *)&d_val, limit_byte_size, endian::InlHostByteOrder());
return true;
case e_long_double:
static llvm::APInt ldbl_val = m_float.bitcastToAPInt();
data.SetData((const uint8_t *)ldbl_val.getRawData(), limit_byte_size, endian::InlHostByteOrder());
return true;
}
}
else if (endian::InlHostByteOrder() == eByteOrderBig)
{
// On big endian systems if we want fewer bytes from the
// current type have to advance our initial byte pointer and
// trim down the number of bytes since the MSByte is first
switch(m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
data.SetData((const uint8_t *)m_integer.getRawData() + byte_size - limit_byte_size, limit_byte_size, endian::InlHostByteOrder());
return true;
case e_float:
f_val = m_float.convertToFloat();
data.SetData((uint8_t *)&f_val + byte_size - limit_byte_size, limit_byte_size, endian::InlHostByteOrder());
return true;
case e_double:
d_val = m_float.convertToDouble();
data.SetData((uint8_t *)&d_val + byte_size - limit_byte_size, limit_byte_size, endian::InlHostByteOrder());
return true;
case e_long_double:
static llvm::APInt ldbl_val = m_float.bitcastToAPInt();
data.SetData((const uint8_t *)ldbl_val.getRawData() + byte_size - limit_byte_size, limit_byte_size, endian::InlHostByteOrder());
return true;
}
}
}
else
{
// We want all of the data
switch(m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
data.SetData((const uint8_t *)m_integer.getRawData(), byte_size, endian::InlHostByteOrder());
return true;
case e_float:
f_val = m_float.convertToFloat();
data.SetData((uint8_t *)&f_val, byte_size, endian::InlHostByteOrder());
return true;
case e_double:
d_val = m_float.convertToDouble();
data.SetData((uint8_t *)&d_val, byte_size, endian::InlHostByteOrder());
return true;
case e_long_double:
static llvm::APInt ldbl_val = m_float.bitcastToAPInt();
data.SetData((const uint8_t *)ldbl_val.getRawData(), byte_size, endian::InlHostByteOrder());
return true;
}
}
return true;
}
data.Clear();
return false;
}
void *
Scalar::GetBytes() const
{
static float_t flt_val;
static double_t dbl_val;
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return const_cast<void *>(reinterpret_cast<const void *>(m_integer.getRawData()));
case e_float:
flt_val = m_float.convertToFloat();
return (void *)&flt_val;
case e_double:
dbl_val = m_float.convertToDouble();
return (void *)&dbl_val;
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return const_cast<void *>(reinterpret_cast<const void *>(ldbl_val.getRawData()));
}
return NULL;
}
size_t
Scalar::GetByteSize() const
{
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (m_integer.getBitWidth() / 8);
case e_float: return sizeof(float_t);
case e_double: return sizeof(double_t);
case e_long_double: return sizeof(long_double_t);
}
return 0;
}
bool
Scalar::IsZero() const
{
llvm::APInt zero_int = llvm::APInt::getNullValue(m_integer.getBitWidth() / 8);
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return llvm::APInt::isSameValue(zero_int, m_integer);
case e_float:
case e_double:
case e_long_double:
return m_float.isZero();
}
return false;
}
void
Scalar::GetValue (Stream *s, bool show_type) const
{
const uint64_t *src;
if (show_type)
s->Printf("(%s) ", GetTypeAsCString());
switch (m_type)
{
case e_void:
break;
case e_sint: s->Printf("%i", *(const sint_t *) m_integer.getRawData()); break;
case e_uint: s->Printf("0x%8.8x", *(const uint_t *) m_integer.getRawData()); break;
case e_slong: s->Printf("%li", *(const slong_t *) m_integer.getRawData()); break;
case e_ulong: s->Printf("0x%8.8lx", *(const ulong_t *) m_integer.getRawData()); break;
case e_slonglong: s->Printf("%lli", *(const slonglong_t *) m_integer.getRawData()); break;
case e_ulonglong: s->Printf("0x%16.16llx", *(const ulonglong_t *) m_integer.getRawData()); break;
case e_sint128:
case e_sint256:
s->Printf("%s",m_integer.toString(10,true).c_str());
break;
case e_uint128:
src = m_integer.getRawData();
s->Printf("0x%16.16llx%16.16llx", *(const ulonglong_t *)src, *(const ulonglong_t *)(src + 1));
break;
case e_uint256:
s->Printf("%s",m_integer.toString(16,false).c_str());
break;
case e_float: s->Printf("%f", m_float.convertToFloat()); break;
case e_double: s->Printf("%g", m_float.convertToDouble()); break;
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
s->Printf("%Lg", *(const long_double_t *)ldbl_val.getRawData());
break;
}
}
const char *
Scalar::GetTypeAsCString() const
{
switch (m_type)
{
case e_void: return "void";
case e_sint: return "int";
case e_uint: return "unsigned int";
case e_slong: return "long";
case e_ulong: return "unsigned long";
case e_slonglong: return "long long";
case e_ulonglong: return "unsigned long long";
case e_sint128: return "int128_t";
case e_uint128: return "unsigned int128_t";
case e_sint256: return "int256_t";
case e_uint256: return "unsigned int256_t";
case e_float: return "float";
case e_double: return "double";
case e_long_double: return "long double";
}
return "<invalid Scalar type>";
}
//----------------------------------------------------------------------
// Scalar copy constructor
//----------------------------------------------------------------------
Scalar&
Scalar::operator=(const Scalar& rhs)
{
if (this != &rhs)
{
m_type = rhs.m_type;
m_integer = llvm::APInt(rhs.m_integer);
m_float = rhs.m_float;
}
return *this;
}
Scalar&
Scalar::operator= (const int v)
{
m_type = e_sint;
m_integer = llvm::APInt(sizeof(int) * 8, v, true);
return *this;
}
Scalar&
Scalar::operator= (unsigned int v)
{
m_type = e_uint;
m_integer = llvm::APInt(sizeof(int) * 8, v);
return *this;
}
Scalar&
Scalar::operator= (long v)
{
m_type = e_slong;
m_integer = llvm::APInt(sizeof(long) * 8, v, true);
return *this;
}
Scalar&
Scalar::operator= (unsigned long v)
{
m_type = e_ulong;
m_integer = llvm::APInt(sizeof(long) * 8, v);
return *this;
}
Scalar&
Scalar::operator= (long long v)
{
m_type = e_slonglong;
m_integer = llvm::APInt(sizeof(long) * 8, v, true);
return *this;
}
Scalar&
Scalar::operator= (unsigned long long v)
{
m_type = e_ulonglong;
m_integer = llvm::APInt(sizeof(long long) * 8, v);
return *this;
}
Scalar&
Scalar::operator= (float v)
{
m_type = e_float;
m_float = llvm::APFloat(v);
return *this;
}
Scalar&
Scalar::operator= (double v)
{
m_type = e_double;
m_float = llvm::APFloat(v);
return *this;
}
Scalar&
Scalar::operator= (long double v)
{
m_type = e_long_double;
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((type128 *)&v)->x));
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((type128 *)&v)->x));
return *this;
}
Scalar&
Scalar::operator= (llvm::APInt rhs)
{
m_integer = llvm::APInt(rhs);
switch(m_integer.getBitWidth())
{
case 8:
case 16:
case 32:
if(m_integer.isSignedIntN(sizeof(sint_t) * 8))
m_type = e_sint;
else
m_type = e_uint;
break;
case 64:
if(m_integer.isSignedIntN(sizeof(slonglong_t) * 8))
m_type = e_slonglong;
else
m_type = e_ulonglong;
break;
case 128:
if(m_integer.isSignedIntN(BITWIDTH_INT128))
m_type = e_sint128;
else
m_type = e_uint128;
break;
case 256:
if(m_integer.isSignedIntN(BITWIDTH_INT256))
m_type = e_sint256;
else
m_type = e_uint256;
break;
}
return *this;
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
Scalar::~Scalar()
{
}
bool
Scalar::Promote(Scalar::Type type)
{
bool success = false;
switch (m_type)
{
case e_void:
break;
case e_sint:
switch (type)
{
case e_void: break;
case e_sint: success = true; break;
case e_uint:
{
m_integer = llvm::APInt(sizeof(uint_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
}
case e_slong:
{
m_integer = llvm::APInt(sizeof(slong_t) * 8, *(const uint64_t *)m_integer.getRawData(), true);
success = true;
break;
}
case e_ulong:
{
m_integer = llvm::APInt(sizeof(ulong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
}
case e_slonglong:
{
m_integer = llvm::APInt(sizeof(slonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), true);
success = true;
break;
}
case e_ulonglong:
{
m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
}
case e_sint128:
case e_uint128:
{
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
}
case e_sint256:
case e_uint256:
{
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
}
case e_float:
{
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
}
case e_double:
{
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
}
case e_long_double:
{
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
}
break;
case e_uint:
switch (type)
{
case e_void:
case e_sint: break;
case e_uint: success = true; break;
case e_slong:
{
m_integer = llvm::APInt(sizeof(slong_t) * 8, *(const uint64_t *)m_integer.getRawData(), true);
success = true;
break;
}
case e_ulong:
{
m_integer = llvm::APInt(sizeof(ulong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
}
case e_slonglong:
{
m_integer = llvm::APInt(sizeof(slonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), true);
success = true;
break;
}
case e_ulonglong:
{
m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
}
case e_sint128:
case e_uint128:
{
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
}
case e_sint256:
case e_uint256:
{
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
}
case e_float:
{
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
}
case e_double:
{
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
}
case e_long_double:
{
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
}
break;
case e_slong:
switch (type)
{
case e_void:
case e_sint:
case e_uint: break;
case e_slong: success = true; break;
case e_ulong:
{
m_integer = llvm::APInt(sizeof(ulong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
}
case e_slonglong:
{
m_integer = llvm::APInt(sizeof(slonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), true);
success = true;
break;
}
case e_ulonglong:
{
m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
}
case e_sint128:
case e_uint128:
{
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
}
case e_sint256:
case e_uint256:
{
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
}
case e_float:
{
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
}
case e_double:
{
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
}
case e_long_double:
{
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
}
break;
case e_ulong:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong: break;
case e_ulong: success = true; break;
case e_slonglong:
{
m_integer = llvm::APInt(sizeof(slonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), true);
success = true;
break;
}
case e_ulonglong:
{
m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
}
case e_sint128:
case e_uint128:
{
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
}
case e_sint256:
case e_uint256:
{
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
}
case e_float:
{
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
}
case e_double:
{
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
}
case e_long_double:
{
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
}
break;
case e_slonglong:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong: break;
case e_slonglong: success = true; break;
case e_ulonglong:
{
m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
}
case e_sint128:
case e_uint128:
{
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
}
case e_sint256:
case e_uint256:
{
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
}
case e_float:
{
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
}
case e_double:
{
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
}
case e_long_double:
{
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
}
break;
case e_ulonglong:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong: break;
case e_ulonglong: success = true; break;
case e_sint128:
case e_uint128:
{
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
}
case e_sint256:
case e_uint256:
{
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
}
case e_float:
{
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
}
case e_double:
{
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
}
case e_long_double:
{
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
}
break;
case e_sint128:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong: break;
case e_sint128: success = true; break;
case e_uint128:
{
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
}
case e_sint256:
case e_uint256:
{
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
}
case e_float:
{
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
}
case e_double:
{
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
}
case e_long_double:
{
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
}
break;
case e_uint128:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128: break;
case e_uint128: success = true; break;
case e_sint256:
case e_uint256:
{
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
}
case e_float:
{
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
}
case e_double:
{
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
}
case e_long_double:
{
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
}
break;
case e_sint256:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128: break;
case e_sint256: success = true; break;
case e_uint256:
{
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
}
case e_float:
{
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
}
case e_double:
{
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
}
case e_long_double:
{
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
}
break;
case e_uint256:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256: break;
case e_uint256: success = true; break;
case e_float:
{
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
}
case e_double:
{
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
}
case e_long_double:
{
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
}
break;
case e_float:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256: break;
case e_float: success = true; break;
case e_double:
{
m_float = llvm::APFloat((float_t)m_float.convertToFloat());
success = true;
break;
}
case e_long_double:
{
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_float.bitcastToAPInt());
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_float.bitcastToAPInt());
success = true;
break;
}
}
break;
case e_double:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
case e_float: break;
case e_double: success = true; break;
case e_long_double:
{
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_float.bitcastToAPInt());
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_float.bitcastToAPInt());
success = true;
break;
}
}
break;
case e_long_double:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
case e_float:
case e_double: break;
case e_long_double: success = true; break;
}
break;
}
if (success)
m_type = type;
return success;
}
const char *
Scalar::GetValueTypeAsCString (Scalar::Type type)
{
switch (type)
{
case e_void: return "void";
case e_sint: return "int";
case e_uint: return "unsigned int";
case e_slong: return "long";
case e_ulong: return "unsigned long";
case e_slonglong: return "long long";
case e_ulonglong: return "unsigned long long";
case e_float: return "float";
case e_double: return "double";
case e_long_double: return "long double";
case e_sint128: return "int128_t";
case e_uint128: return "uint128_t";
case e_sint256: return "int256_t";
case e_uint256: return "uint256_t";
}
return "???";
}
Scalar::Type
Scalar::GetValueTypeForSignedIntegerWithByteSize (size_t byte_size)
{
if (byte_size <= sizeof(sint_t))
return e_sint;
if (byte_size <= sizeof(slong_t))
return e_slong;
if (byte_size <= sizeof(slonglong_t))
return e_slonglong;
return e_void;
}
Scalar::Type
Scalar::GetValueTypeForUnsignedIntegerWithByteSize (size_t byte_size)
{
if (byte_size <= sizeof(uint_t))
return e_uint;
if (byte_size <= sizeof(ulong_t))
return e_ulong;
if (byte_size <= sizeof(ulonglong_t))
return e_ulonglong;
return e_void;
}
Scalar::Type
Scalar::GetValueTypeForFloatWithByteSize (size_t byte_size)
{
if (byte_size == sizeof(float_t))
return e_float;
if (byte_size == sizeof(double_t))
return e_double;
if (byte_size == sizeof(long_double_t))
return e_long_double;
return e_void;
}
bool
Scalar::Cast(Scalar::Type type)
{
bool success = false;
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
switch (type)
{
case e_void: break;
case e_sint:
{
m_integer = m_integer.sextOrTrunc(sizeof(sint_t) * 8);
success = true;
break;
}
case e_uint:
{
m_integer = m_integer.zextOrTrunc(sizeof(sint_t) * 8);
success = true;
break;
}
case e_slong:
{
m_integer = m_integer.sextOrTrunc(sizeof(slong_t) * 8);
success = true;
break;
}
case e_ulong:
{
m_integer = m_integer.zextOrTrunc(sizeof(slong_t) * 8);
success = true;
break;
}
case e_slonglong:
{
m_integer = m_integer.sextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
}
case e_ulonglong:
{
m_integer = m_integer.zextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
}
case e_sint128:
{
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128);
success = true;
break;
}
case e_uint128:
{
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128);
success = true;
break;
}
case e_sint256:
{
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256);
success = true;
break;
}
case e_uint256:
{
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256);
success = true;
break;
}
case e_float:
{
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
}
case e_double:
{
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
}
case e_long_double:
{
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
}
break;
case e_float:
switch (type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256: m_integer = m_float.bitcastToAPInt(); success = true; break;
case e_float: m_float = llvm::APFloat(m_float.convertToFloat()); success = true; break;
case e_double: m_float = llvm::APFloat(m_float.convertToFloat()); success = true; break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_float.bitcastToAPInt());
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_float.bitcastToAPInt());
success = true;
break;
}
break;
case e_double:
switch (type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256: m_integer = m_float.bitcastToAPInt(); success = true; break;
case e_float: m_float = llvm::APFloat(m_float.convertToDouble()); success = true; break;
case e_double: m_float = llvm::APFloat(m_float.convertToDouble()); success = true; break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_float.bitcastToAPInt());
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_float.bitcastToAPInt());
success = true;
break;
}
break;
case e_long_double:
switch (type)
{
case e_void: break;
case e_sint:
{
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.sextOrTrunc(sizeof(sint_t) * 8);
success = true;
break;
}
case e_uint:
{
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.zextOrTrunc(sizeof(sint_t) * 8);
success = true;
break;
}
case e_slong:
{
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.sextOrTrunc(sizeof(slong_t) * 8);
success = true;
break;
}
case e_ulong:
{
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.zextOrTrunc(sizeof(slong_t) * 8);
success = true;
break;
}
case e_slonglong:
{
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.sextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
}
case e_ulonglong:
{
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.zextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
}
case e_sint128:
{
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128);
success = true;
break;
}
case e_uint128:
{
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128);
success = true;
break;
}
case e_sint256:
{
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256);
success = true;
break;
}
case e_uint256:
{
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256);
success = true;
break;
}
case e_float: m_float = llvm::APFloat(m_float.convertToFloat()); success = true; break;
case e_double: m_float = llvm::APFloat(m_float.convertToFloat()); success = true; break;
case e_long_double: success = true; break;
}
break;
}
if (success)
m_type = type;
return success;
}
bool
Scalar::MakeSigned ()
{
bool success = false;
switch (m_type)
{
case e_void: break;
case e_sint: success = true; break;
case e_uint: m_type = e_sint; success = true; break;
case e_slong: success = true; break;
case e_ulong: m_type = e_slong; success = true; break;
case e_slonglong: success = true; break;
case e_ulonglong: m_type = e_slonglong; success = true; break;
case e_sint128: success = true; break;
case e_uint128: m_type = e_sint; success = true; break;
case e_sint256: success = true; break;
case e_uint256: m_type = e_sint; success = true; break;
case e_float: success = true; break;
case e_double: success = true; break;
case e_long_double: success = true; break;
}
return success;
}
char
Scalar::SChar(char fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const schar_t *)(m_integer.sextOrTrunc(sizeof(schar_t) * 8)).getRawData();
case e_float:
return (schar_t)m_float.convertToFloat();
case e_double:
return (schar_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (schar_t)*ldbl_val.getRawData();
}
return fail_value;
}
unsigned char
Scalar::UChar(unsigned char fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const uchar_t *)m_integer.getRawData();
case e_float:
return (uchar_t)m_float.convertToFloat();
case e_double:
return (uchar_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (uchar_t)*ldbl_val.getRawData();
}
return fail_value;
}
short
Scalar::SShort(short fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const sshort_t *)(m_integer.sextOrTrunc(sizeof(sshort_t) * 8)).getRawData();
case e_float:
return (sshort_t)m_float.convertToFloat();
case e_double:
return (sshort_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const sshort_t *)ldbl_val.getRawData();
}
return fail_value;
}
unsigned short
Scalar::UShort(unsigned short fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const ushort_t *)m_integer.getRawData();
case e_float:
return (ushort_t)m_float.convertToFloat();
case e_double:
return (ushort_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const ushort_t *)ldbl_val.getRawData();;
}
return fail_value;
}
int
Scalar::SInt(int fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const sint_t *)(m_integer.sextOrTrunc(sizeof(sint_t) * 8)).getRawData();
case e_float:
return (sint_t)m_float.convertToFloat();
case e_double:
return (sint_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const sint_t *)ldbl_val.getRawData();
}
return fail_value;
}
unsigned int
Scalar::UInt(unsigned int fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const uint_t *)m_integer.getRawData();
case e_float:
return (uint_t)m_float.convertToFloat();
case e_double:
return (uint_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const uint_t *)ldbl_val.getRawData();
}
return fail_value;
}
long
Scalar::SLong(long fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const slong_t *)(m_integer.sextOrTrunc(sizeof(slong_t) * 8)).getRawData();
case e_float:
return (slong_t)m_float.convertToFloat();
case e_double:
return (slong_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const slong_t *)ldbl_val.getRawData();
}
return fail_value;
}
unsigned long
Scalar::ULong(unsigned long fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const ulong_t *)m_integer.getRawData();
case e_float:
return (ulong_t)m_float.convertToFloat();
case e_double:
return (ulong_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const ulong_t *)ldbl_val.getRawData();
}
return fail_value;
}
uint64_t
Scalar::GetRawBits64(uint64_t fail_value) const
{
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *m_integer.getRawData();
case e_float:
return (uint64_t)m_float.convertToFloat();
case e_double:
return (uint64_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *ldbl_val.getRawData();
}
return fail_value;
}
long long
Scalar::SLongLong(long long fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const slonglong_t *)(m_integer.sextOrTrunc(sizeof(slonglong_t) * 8)).getRawData();
case e_float:
return (slonglong_t)m_float.convertToFloat();
case e_double:
return (slonglong_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const slonglong_t *)ldbl_val.getRawData();
}
return fail_value;
}
unsigned long long
Scalar::ULongLong(unsigned long long fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const ulonglong_t *)m_integer.getRawData();
case e_float:
return (ulonglong_t)m_float.convertToFloat();
case e_double:
return (ulonglong_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const ulonglong_t *)ldbl_val.getRawData();
}
return fail_value;
}
llvm::APInt
Scalar::SInt128(llvm::APInt& fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer;
case e_float:
case e_double:
case e_long_double:
return m_float.bitcastToAPInt();
}
return fail_value;
}
llvm::APInt
Scalar::UInt128(const llvm::APInt& fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer;
case e_float:
case e_double:
case e_long_double:
return m_float.bitcastToAPInt();
}
return fail_value;
}
llvm::APInt
Scalar::SInt256(llvm::APInt& fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer;
case e_float:
case e_double:
case e_long_double:
return m_float.bitcastToAPInt();
}
return fail_value;
}
llvm::APInt
Scalar::UInt256(const llvm::APInt& fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer;
case e_float:
case e_double:
case e_long_double:
return m_float.bitcastToAPInt();
}
return fail_value;
}
float
Scalar::Float(float fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer.bitsToFloat();
case e_float:
return m_float.convertToFloat();
case e_double:
return (float_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return ldbl_val.bitsToFloat();
}
return fail_value;
}
double
Scalar::Double(double fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer.bitsToDouble();
case e_float:
return (double_t)m_float.convertToFloat();
case e_double:
return m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return ldbl_val.bitsToFloat();
}
return fail_value;
}
long double
Scalar::LongDouble(long double fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (long_double_t)m_integer.bitsToDouble();
case e_float:
return (long_double_t)m_float.convertToFloat();
case e_double:
return (long_double_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (long_double_t)ldbl_val.bitsToDouble();
}
return fail_value;
}
Scalar&
Scalar::operator+= (const Scalar& rhs)
{
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((m_type = PromoteToMaxType(*this, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
{
m_integer = a->m_integer + b->m_integer;
break;
}
case e_float:
case e_double:
case e_long_double:
{
m_float = a->m_float + b->m_float;
break;
}
}
}
return *this;
}
Scalar&
Scalar::operator<<= (const Scalar& rhs)
{
switch (m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
{
m_integer <<= *rhs.m_integer.getRawData();
break;
}
}
break;
}
return *this;
}
bool
Scalar::ShiftRightLogical(const Scalar& rhs)
{
switch (m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = m_integer.lshr(*(const uint_t *) rhs.m_integer.getRawData()); break;
}
break;
}
return m_type != e_void;
}
Scalar&
Scalar::operator>>= (const Scalar& rhs)
{
switch (m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
{
m_integer = m_integer.ashr(*(const uint_t *)rhs.m_integer.getRawData());
break;
}
}
break;
}
return *this;
}
Scalar&
Scalar::operator&= (const Scalar& rhs)
{
switch (m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
{
m_integer &= rhs.m_integer;
break;
}
}
break;
}
return *this;
}
bool
Scalar::AbsoluteValue()
{
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_slong:
case e_slonglong:
case e_sint128:
case e_sint256:
if (m_integer.isNegative())
m_integer = -m_integer;
return true;
case e_uint:
case e_ulong:
case e_ulonglong: return true;
case e_uint128:
case e_uint256:
case e_float:
case e_double:
case e_long_double:
m_float.clearSign();
return true;
}
return false;
}
bool
Scalar::UnaryNegate()
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = -m_integer; return true;
case e_float:
case e_double:
case e_long_double:
m_float.changeSign(); return true;
}
return false;
}
bool
Scalar::OnesComplement()
{
switch (m_type)
{
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = ~m_integer; return true;
case e_void:
case e_float:
case e_double:
case e_long_double:
break;
}
return false;
}
const Scalar
lldb_private::operator+ (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer + b->m_integer; break;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result.m_float = a->m_float + b->m_float; break;
}
}
return result;
}
const Scalar
lldb_private::operator- (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer - b->m_integer; break;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result.m_float = a->m_float - b->m_float; break;
}
}
return result;
}
const Scalar
lldb_private::operator/ (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
{
if (b->m_integer != 0)
{
result.m_integer = *a->m_integer.getRawData() / *b->m_integer.getRawData();
return result;
}
break;
}
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
if (b->m_float.isZero())
{
result.m_float = a->m_float / b->m_float;
return result;
}
break;
}
}
// For division only, the only way it should make it here is if a promotion failed,
// or if we are trying to do a divide by zero.
result.m_type = Scalar::e_void;
return result;
}
const Scalar
lldb_private::operator* (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer * b->m_integer; break;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result.m_float = a->m_float * b->m_float; break;
}
}
return result;
}
const Scalar
lldb_private::operator& (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer & b->m_integer; break;
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
// No bitwise AND on floats, doubles of long doubles
result.m_type = Scalar::e_void;
break;
}
}
return result;
}
const Scalar
lldb_private::operator| (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer | b->m_integer; break;
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
// No bitwise AND on floats, doubles of long doubles
result.m_type = Scalar::e_void;
break;
}
}
return result;
}
const Scalar
lldb_private::operator% (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
default: break;
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
{
if (b->m_integer != 0)
{
result.m_integer = *a->m_integer.getRawData() % *b->m_integer.getRawData();
return result;
}
break;
}
}
}
result.m_type = Scalar::e_void;
return result;
}
const Scalar
lldb_private::operator^ (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer ^ b->m_integer; break;
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
// No bitwise AND on floats, doubles of long doubles
result.m_type = Scalar::e_void;
break;
}
}
return result;
}
const Scalar
lldb_private::operator<< (const Scalar& lhs, const Scalar &rhs)
{
Scalar result = lhs;
result <<= rhs;
return result;
}
const Scalar
lldb_private::operator>> (const Scalar& lhs, const Scalar &rhs)
{
Scalar result = lhs;
result >>= rhs;
return result;
}
// Return the raw unsigned integer without any casting or conversion
unsigned int
Scalar::RawUInt () const
{
return *(const uint_t *) m_integer.getRawData();
}
// Return the raw unsigned long without any casting or conversion
unsigned long
Scalar::RawULong () const
{
return *(const ulong_t *) m_integer.getRawData();
}
// Return the raw unsigned long long without any casting or conversion
unsigned long long
Scalar::RawULongLong () const
{
return *(const ulonglong_t *) m_integer.getRawData();
}
Error
Scalar::SetValueFromCString (const char *value_str, Encoding encoding, size_t byte_size)
{
Error error;
if (value_str == NULL || value_str[0] == '\0')
{
error.SetErrorString ("Invalid c-string value string.");
return error;
}
bool success = false;
switch (encoding)
{
case eEncodingInvalid:
error.SetErrorString ("Invalid encoding.");
break;
case eEncodingUint:
if (byte_size <= sizeof (unsigned long long))
{
uint64_t uval64 = StringConvert::ToUInt64(value_str, UINT64_MAX, 0, &success);
if (!success)
error.SetErrorStringWithFormat ("'%s' is not a valid unsigned integer string value", value_str);
else if (!UIntValueIsValidForSize (uval64, byte_size))
error.SetErrorStringWithFormat("value 0x%" PRIx64 " is too large to fit in a %" PRIu64 " byte unsigned integer value", uval64, (uint64_t)byte_size);
else
{
m_type = Scalar::GetValueTypeForUnsignedIntegerWithByteSize (byte_size);
switch (m_type)
{
case e_uint: m_integer = llvm::APInt(sizeof(uint_t) * 8, uval64, false); break;
case e_ulong: m_integer = llvm::APInt(sizeof(ulong_t) * 8, uval64, false); break;
case e_ulonglong: m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, uval64, false); break;
default:
error.SetErrorStringWithFormat("unsupported unsigned integer byte size: %" PRIu64 "", (uint64_t)byte_size);
break;
}
}
}
else
{
error.SetErrorStringWithFormat("unsupported unsigned integer byte size: %" PRIu64 "", (uint64_t)byte_size);
return error;
}
break;
case eEncodingSint:
if (byte_size <= sizeof (long long))
{
uint64_t sval64 = StringConvert::ToSInt64(value_str, INT64_MAX, 0, &success);
if (!success)
error.SetErrorStringWithFormat ("'%s' is not a valid signed integer string value", value_str);
else if (!SIntValueIsValidForSize (sval64, byte_size))
error.SetErrorStringWithFormat("value 0x%" PRIx64 " is too large to fit in a %" PRIu64 " byte signed integer value", sval64, (uint64_t)byte_size);
else
{
m_type = Scalar::GetValueTypeForSignedIntegerWithByteSize (byte_size);
switch (m_type)
{
case e_sint: m_integer = llvm::APInt(sizeof(sint_t) * 8, sval64, true); break;
case e_slong: m_integer = llvm::APInt(sizeof(slong_t) * 8, sval64, true); break;
case e_slonglong: m_integer = llvm::APInt(sizeof(slonglong_t) * 8, sval64, true); break;
default:
error.SetErrorStringWithFormat("unsupported signed integer byte size: %" PRIu64 "", (uint64_t)byte_size);
break;
}
}
}
else
{
error.SetErrorStringWithFormat("unsupported signed integer byte size: %" PRIu64 "", (uint64_t)byte_size);
return error;
}
break;
case eEncodingIEEE754:
static float f_val;
static double d_val;
static long double l_val;
if (byte_size == sizeof (float))
{
if (::sscanf (value_str, "%f", &f_val) == 1)
{
m_float = llvm::APFloat(f_val);
m_type = e_float;
}
else
error.SetErrorStringWithFormat ("'%s' is not a valid float string value", value_str);
}
else if (byte_size == sizeof (double))
{
if (::sscanf (value_str, "%lf", &d_val) == 1)
{
m_float = llvm::APFloat(d_val);
m_type = e_double;
}
else
error.SetErrorStringWithFormat ("'%s' is not a valid float string value", value_str);
}
else if (byte_size == sizeof (long double))
{
if (::sscanf (value_str, "%Lf", &l_val) == 1)
{
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((type128 *)&l_val)->x));
m_type = e_long_double;
}
else
error.SetErrorStringWithFormat ("'%s' is not a valid float string value", value_str);
}
else
{
error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64 "", (uint64_t)byte_size);
return error;
}
break;
case eEncodingVector:
error.SetErrorString ("vector encoding unsupported.");
break;
}
if (error.Fail())
m_type = e_void;
return error;
}
Error
Scalar::SetValueFromData (DataExtractor &data, lldb::Encoding encoding, size_t byte_size)
{
Error error;
type128 int128;
type256 int256;
switch (encoding)
{
case lldb::eEncodingInvalid:
error.SetErrorString ("invalid encoding");
break;
case lldb::eEncodingVector:
error.SetErrorString ("vector encoding unsupported");
break;
case lldb::eEncodingUint:
{
lldb::offset_t offset = 0;
switch (byte_size)
{
case 1: operator=((uint8_t)data.GetU8(&offset)); break;
case 2: operator=((uint16_t)data.GetU16(&offset)); break;
case 4: operator=((uint32_t)data.GetU32(&offset)); break;
case 8: operator=((uint64_t)data.GetU64(&offset)); break;
case 16:
{
if (data.GetByteOrder() == eByteOrderBig)
{
int128.x[1] = (uint64_t)data.GetU64 (&offset);
int128.x[0] = (uint64_t)data.GetU64 (&offset + 1);
}
else
{
int128.x[0] = (uint64_t)data.GetU64 (&offset);
int128.x[1] = (uint64_t)data.GetU64 (&offset + 1);
}
operator=(llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, int128.x));
break;
}
case 32:
{
if (data.GetByteOrder() == eByteOrderBig)
{
int256.x[3] = (uint64_t)data.GetU64 (&offset);
int256.x[2] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[1] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[0] = (uint64_t)data.GetU64 (&offset + 1);
}
else
{
int256.x[0] = (uint64_t)data.GetU64 (&offset);
int256.x[1] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[2] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[3] = (uint64_t)data.GetU64 (&offset + 1);
}
operator=(llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, int256.x));
break;
}
default:
error.SetErrorStringWithFormat("unsupported unsigned integer byte size: %" PRIu64 "", (uint64_t)byte_size);
break;
}
}
break;
case lldb::eEncodingSint:
{
lldb::offset_t offset = 0;
switch (byte_size)
{
case 1: operator=((int8_t)data.GetU8(&offset)); break;
case 2: operator=((int16_t)data.GetU16(&offset)); break;
case 4: operator=((int32_t)data.GetU32(&offset)); break;
case 8: operator=((int64_t)data.GetU64(&offset)); break;
case 16:
{
if (data.GetByteOrder() == eByteOrderBig)
{
int128.x[1] = (uint64_t)data.GetU64 (&offset);
int128.x[0] = (uint64_t)data.GetU64 (&offset + 1);
}
else
{
int128.x[0] = (uint64_t)data.GetU64 (&offset);
int128.x[1] = (uint64_t)data.GetU64 (&offset + 1);
}
operator=(llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, int128.x));
break;
}
case 32:
{
if (data.GetByteOrder() == eByteOrderBig)
{
int256.x[3] = (uint64_t)data.GetU64 (&offset);
int256.x[2] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[1] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[0] = (uint64_t)data.GetU64 (&offset + 1);
}
else
{
int256.x[0] = (uint64_t)data.GetU64 (&offset);
int256.x[1] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[2] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[3] = (uint64_t)data.GetU64 (&offset + 1);
}
operator=(llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, int256.x));
break;
}
default:
error.SetErrorStringWithFormat("unsupported signed integer byte size: %" PRIu64 "", (uint64_t)byte_size);
break;
}
}
break;
case lldb::eEncodingIEEE754:
{
lldb::offset_t offset = 0;
if (byte_size == sizeof (float))
operator=((float)data.GetFloat(&offset));
else if (byte_size == sizeof (double))
operator=((double)data.GetDouble(&offset));
else if (byte_size == sizeof (long double))
operator=((long double)data.GetLongDouble(&offset));
else
error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64 "", (uint64_t)byte_size);
}
break;
}
return error;
}
bool
Scalar::SignExtend (uint32_t sign_bit_pos)
{
const uint32_t max_bit_pos = GetByteSize() * 8;
if (sign_bit_pos < max_bit_pos)
{
switch (m_type)
{
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
return false;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
if (max_bit_pos == sign_bit_pos)
return true;
else if (sign_bit_pos < (max_bit_pos-1))
{
llvm::APInt sign_bit = llvm::APInt::getSignBit(sign_bit_pos + 1);
llvm::APInt bitwize_and = m_integer & sign_bit;
if (bitwize_and.getBoolValue())
{
const llvm::APInt mask = ~(sign_bit) + llvm::APInt(m_integer.getBitWidth(), 1);
m_integer |= mask;
}
return true;
}
break;
}
}
return false;
}
size_t
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
Scalar::GetAsMemoryData (void *dst,
size_t dst_len,
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
lldb::ByteOrder dst_byte_order,
Error &error) const
{
// Get a data extractor that points to the native scalar data
DataExtractor data;
if (!GetData(data))
{
error.SetErrorString ("invalid scalar value");
return 0;
}
const size_t src_len = data.GetByteSize();
// Prepare a memory buffer that contains some or all of the register value
const size_t bytes_copied = data.CopyByteOrderedData (0, // src offset
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
src_len, // src length
dst, // dst buffer
dst_len, // dst length
dst_byte_order); // dst byte order
if (bytes_copied == 0)
error.SetErrorString ("failed to copy data");
return bytes_copied;
}
bool
Scalar::ExtractBitfield (uint32_t bit_size,
uint32_t bit_offset)
{
if (bit_size == 0)
return true;
uint32_t msbit = bit_offset + bit_size - 1;
uint32_t lsbit = bit_offset;
uint64_t result;
switch (m_type)
{
case Scalar::e_void:
break;
case e_float:
result = SignedBits ((uint64_t )m_float.convertToFloat(), msbit, lsbit);
m_float = llvm::APFloat((float_t)result);
return true;
case e_double:
result = SignedBits ((uint64_t )m_float.convertToDouble(), msbit, lsbit);
m_float = llvm::APFloat((double_t)result);
return true;
case e_long_double:
m_integer = m_float.bitcastToAPInt();
result = SignedBits (*m_integer.getRawData(), msbit, lsbit);
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((type128 *)&result)->x));
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((type128 *)&result)->x));
return true;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
m_integer = SignedBits (*m_integer.getRawData(), msbit, lsbit);
return true;
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
m_integer = UnsignedBits (*m_integer.getRawData(), msbit, lsbit);
return true;
}
return false;
}
bool
lldb_private::operator== (const Scalar& lhs, const Scalar& rhs)
{
// If either entry is void then we can just compare the types
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return lhs.m_type == rhs.m_type;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
return a->m_integer == b->m_integer;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if(result == llvm::APFloat::cmpEqual)
return true;
}
return false;
}
bool
lldb_private::operator!= (const Scalar& lhs, const Scalar& rhs)
{
// If either entry is void then we can just compare the types
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return lhs.m_type != rhs.m_type;
Scalar temp_value; // A temp value that might get a copy of either promoted value
const Scalar* a;
const Scalar* b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
return a->m_integer != b->m_integer;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if(result != llvm::APFloat::cmpEqual)
return true;
}
return true;
}
bool
lldb_private::operator< (const Scalar& lhs, const Scalar& rhs)
{
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
return a->m_integer.slt(b->m_integer);
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
return a->m_integer.ult(b->m_integer);
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if(result == llvm::APFloat::cmpLessThan)
return true;
}
return false;
}
bool
lldb_private::operator<= (const Scalar& lhs, const Scalar& rhs)
{
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
return a->m_integer.sle(b->m_integer);
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
return a->m_integer.ule(b->m_integer);
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if(result == llvm::APFloat::cmpLessThan || result == llvm::APFloat::cmpEqual)
return true;
}
return false;
}
bool
lldb_private::operator> (const Scalar& lhs, const Scalar& rhs)
{
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
return a->m_integer.sgt(b->m_integer);
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
return a->m_integer.ugt(b->m_integer);
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if(result == llvm::APFloat::cmpGreaterThan)
return true;
}
return false;
}
bool
lldb_private::operator>= (const Scalar& lhs, const Scalar& rhs)
{
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
return a->m_integer.sge(b->m_integer);
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
return a->m_integer.uge(b->m_integer);
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if(result == llvm::APFloat::cmpGreaterThan || result == llvm::APFloat::cmpEqual)
return true;
}
return false;
}
bool
Scalar::ClearBit (uint32_t bit)
{
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256: m_integer.clearBit(bit); return true;
case e_float:
case e_double:
case e_long_double: break;
}
return false;
}
bool
Scalar::SetBit (uint32_t bit)
{
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256: m_integer.setBit(bit); return true;
case e_float:
case e_double:
case e_long_double: break;
}
return false;
}
void
Scalar::SetType (const RegisterInfo *reg_info)
{
const uint32_t byte_size = reg_info->byte_size;
switch (reg_info->encoding)
{
case eEncodingInvalid:
break;
case eEncodingUint:
if (byte_size == 1 || byte_size == 2 || byte_size == 4)
{
m_integer = llvm::APInt(sizeof(uint_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
m_type = e_uint;
}
if (byte_size == 8)
{
m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
m_type = e_ulonglong;
}
if (byte_size == 16)
{
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData())->x);
m_type = e_uint128;
}
if (byte_size == 32)
{
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData())->x);
m_type = e_uint256;
}
break;
case eEncodingSint:
if (byte_size == 1 || byte_size == 2 || byte_size == 4)
{
m_integer = llvm::APInt(sizeof(sint_t) * 8, *(const uint64_t *)m_integer.getRawData(), true);
m_type = e_sint;
}
if (byte_size == 8)
{
m_integer = llvm::APInt(sizeof(slonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), true);
m_type = e_slonglong;
}
if (byte_size == 16)
{
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData())->x);
m_type = e_sint128;
}
if (byte_size == 32)
{
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData())->x);
m_type = e_sint256;
}
break;
case eEncodingIEEE754:
if (byte_size == sizeof(float))
{
bool losesInfo = false;
m_float.convert(llvm::APFloat::IEEEsingle, llvm::APFloat::rmTowardZero, &losesInfo);
m_type = e_float;
}
else if (byte_size == sizeof(double))
{
bool losesInfo = false;
m_float.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmTowardZero, &losesInfo);
m_type = e_double;
}
else if (byte_size == sizeof(long double))
{
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_float.bitcastToAPInt());
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_float.bitcastToAPInt());
m_type = e_long_double;
}
break;
case eEncodingVector:
m_type = e_void;
break;
}
}