2010-01-05 14:09:35 +08:00
|
|
|
//===- InstCombineMulDivRem.cpp -------------------------------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
|
|
|
|
// srem, urem, frem.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2015-01-22 13:25:13 +08:00
|
|
|
#include "InstCombineInternal.h"
|
2017-10-25 05:24:53 +08:00
|
|
|
#include "llvm/ADT/APFloat.h"
|
|
|
|
#include "llvm/ADT/APInt.h"
|
|
|
|
#include "llvm/ADT/SmallVector.h"
|
2010-12-21 22:00:22 +08:00
|
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
2017-10-25 05:24:53 +08:00
|
|
|
#include "llvm/IR/BasicBlock.h"
|
|
|
|
#include "llvm/IR/Constant.h"
|
|
|
|
#include "llvm/IR/Constants.h"
|
|
|
|
#include "llvm/IR/InstrTypes.h"
|
|
|
|
#include "llvm/IR/Instruction.h"
|
|
|
|
#include "llvm/IR/Instructions.h"
|
2013-01-02 19:36:10 +08:00
|
|
|
#include "llvm/IR/IntrinsicInst.h"
|
2017-10-25 05:24:53 +08:00
|
|
|
#include "llvm/IR/Intrinsics.h"
|
|
|
|
#include "llvm/IR/Operator.h"
|
2014-03-04 19:08:18 +08:00
|
|
|
#include "llvm/IR/PatternMatch.h"
|
2017-10-25 05:24:53 +08:00
|
|
|
#include "llvm/IR/Type.h"
|
|
|
|
#include "llvm/IR/Value.h"
|
|
|
|
#include "llvm/Support/Casting.h"
|
|
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
#include "llvm/Support/KnownBits.h"
|
|
|
|
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
|
2018-01-11 14:33:00 +08:00
|
|
|
#include "llvm/Transforms/Utils/BuildLibCalls.h"
|
2017-10-25 05:24:53 +08:00
|
|
|
#include <cassert>
|
|
|
|
#include <cstddef>
|
|
|
|
#include <cstdint>
|
|
|
|
#include <utility>
|
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
using namespace llvm;
|
|
|
|
using namespace PatternMatch;
|
|
|
|
|
2014-04-22 10:55:47 +08:00
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
|
|
|
2015-09-09 23:24:36 +08:00
|
|
|
/// The specific integer value is used in a context where it is known to be
|
|
|
|
/// non-zero. If this allows us to simplify the computation, do so and return
|
|
|
|
/// the new operand, otherwise return null.
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
|
2015-03-10 10:37:25 +08:00
|
|
|
Instruction &CxtI) {
|
Carve out a place in instcombine to put transformations which work knowing that their
result is non-zero. Implement an example optimization (PR9814), which allows us to
transform:
A / ((1 << B) >>u 2)
into:
A >>u (B-2)
which we compile into:
_divu3: ## @divu3
leal -2(%rsi), %ecx
shrl %cl, %edi
movl %edi, %eax
ret
instead of:
_divu3: ## @divu3
movb %sil, %cl
movl $1, %esi
shll %cl, %esi
shrl $2, %esi
movl %edi, %eax
xorl %edx, %edx
divl %esi, %eax
ret
llvm-svn: 131860
2011-05-23 02:18:41 +08:00
|
|
|
// If V has multiple uses, then we would have to do more analysis to determine
|
|
|
|
// if this is safe. For example, the use could be in dynamically unreached
|
|
|
|
// code.
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!V->hasOneUse()) return nullptr;
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2011-05-23 08:32:19 +08:00
|
|
|
bool MadeChange = false;
|
|
|
|
|
|
|
|
// ((1 << A) >>u B) --> (1 << (A-B))
|
|
|
|
// Because V cannot be zero, we know that B is less than A.
|
2014-10-15 04:28:40 +08:00
|
|
|
Value *A = nullptr, *B = nullptr, *One = nullptr;
|
|
|
|
if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
|
|
|
|
match(One, m_One())) {
|
2017-07-08 07:16:26 +08:00
|
|
|
A = IC.Builder.CreateSub(A, B);
|
|
|
|
return IC.Builder.CreateShl(One, A);
|
2011-05-23 08:32:19 +08:00
|
|
|
}
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2011-05-23 08:21:50 +08:00
|
|
|
// (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
|
|
|
|
// inexact. Similarly for <<.
|
2016-05-23 01:08:52 +08:00
|
|
|
BinaryOperator *I = dyn_cast<BinaryOperator>(V);
|
|
|
|
if (I && I->isLogicalShift() &&
|
2017-05-26 05:51:12 +08:00
|
|
|
IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
|
2016-05-23 01:08:52 +08:00
|
|
|
// We know that this is an exact/nuw shift and that the input is a
|
|
|
|
// non-zero context as well.
|
|
|
|
if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
|
|
|
|
I->setOperand(0, V2);
|
|
|
|
MadeChange = true;
|
|
|
|
}
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2016-05-23 01:08:52 +08:00
|
|
|
if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
|
|
|
|
I->setIsExact();
|
|
|
|
MadeChange = true;
|
|
|
|
}
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2016-05-23 01:08:52 +08:00
|
|
|
if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
|
|
|
|
I->setHasNoUnsignedWrap();
|
|
|
|
MadeChange = true;
|
2011-05-23 08:21:50 +08:00
|
|
|
}
|
2016-05-23 01:08:52 +08:00
|
|
|
}
|
2011-05-23 08:32:19 +08:00
|
|
|
|
2011-05-23 02:26:48 +08:00
|
|
|
// TODO: Lots more we could do here:
|
|
|
|
// If V is a phi node, we can call this on each of its operands.
|
|
|
|
// "select cond, X, 0" can simplify to "X".
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return MadeChange ? V : nullptr;
|
Carve out a place in instcombine to put transformations which work knowing that their
result is non-zero. Implement an example optimization (PR9814), which allows us to
transform:
A / ((1 << B) >>u 2)
into:
A >>u (B-2)
which we compile into:
_divu3: ## @divu3
leal -2(%rsi), %ecx
shrl %cl, %edi
movl %edi, %eax
ret
instead of:
_divu3: ## @divu3
movb %sil, %cl
movl $1, %esi
shll %cl, %esi
shrl $2, %esi
movl %edi, %eax
xorl %edx, %edx
divl %esi, %eax
ret
llvm-svn: 131860
2011-05-23 02:18:41 +08:00
|
|
|
}
|
|
|
|
|
2013-05-31 22:27:15 +08:00
|
|
|
/// \brief A helper routine of InstCombiner::visitMul().
|
|
|
|
///
|
2018-02-08 22:10:01 +08:00
|
|
|
/// If C is a scalar/vector of known powers of 2, then this function returns
|
|
|
|
/// a new scalar/vector obtained from logBase2 of C.
|
2013-05-31 22:27:15 +08:00
|
|
|
/// Return a null pointer otherwise.
|
2018-02-08 22:10:01 +08:00
|
|
|
static Constant *getLogBase2(Type *Ty, Constant *C) {
|
2013-05-31 22:27:15 +08:00
|
|
|
const APInt *IVal;
|
2018-02-13 21:16:26 +08:00
|
|
|
if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
|
|
|
|
return ConstantInt::get(Ty, IVal->logBase2());
|
2018-02-08 22:10:01 +08:00
|
|
|
|
|
|
|
if (!Ty->isVectorTy())
|
|
|
|
return nullptr;
|
2013-05-31 22:27:15 +08:00
|
|
|
|
2018-02-08 22:10:01 +08:00
|
|
|
SmallVector<Constant *, 4> Elts;
|
|
|
|
for (unsigned I = 0, E = Ty->getVectorNumElements(); I != E; ++I) {
|
|
|
|
Constant *Elt = C->getAggregateElement(I);
|
|
|
|
if (!Elt)
|
|
|
|
return nullptr;
|
|
|
|
if (isa<UndefValue>(Elt)) {
|
|
|
|
Elts.push_back(UndefValue::get(Ty->getScalarType()));
|
|
|
|
continue;
|
|
|
|
}
|
2013-05-31 22:27:15 +08:00
|
|
|
if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2018-02-08 22:10:01 +08:00
|
|
|
Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
|
2013-05-31 22:27:15 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return ConstantVector::get(Elts);
|
|
|
|
}
|
|
|
|
|
2014-12-26 17:10:14 +08:00
|
|
|
/// \brief Return true if we can prove that:
|
|
|
|
/// (mul LHS, RHS) === (mul nsw LHS, RHS)
|
2017-05-22 14:25:31 +08:00
|
|
|
bool InstCombiner::willNotOverflowSignedMul(const Value *LHS,
|
|
|
|
const Value *RHS,
|
|
|
|
const Instruction &CxtI) const {
|
2014-12-26 17:10:14 +08:00
|
|
|
// Multiplying n * m significant bits yields a result of n + m significant
|
|
|
|
// bits. If the total number of significant bits does not exceed the
|
|
|
|
// result bit width (minus 1), there is no overflow.
|
|
|
|
// This means if we have enough leading sign bits in the operands
|
|
|
|
// we can guarantee that the result does not overflow.
|
|
|
|
// Ref: "Hacker's Delight" by Henry Warren
|
|
|
|
unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
|
|
|
|
|
|
|
|
// Note that underestimating the number of sign bits gives a more
|
|
|
|
// conservative answer.
|
2015-03-10 10:37:25 +08:00
|
|
|
unsigned SignBits =
|
|
|
|
ComputeNumSignBits(LHS, 0, &CxtI) + ComputeNumSignBits(RHS, 0, &CxtI);
|
2014-12-26 17:10:14 +08:00
|
|
|
|
|
|
|
// First handle the easy case: if we have enough sign bits there's
|
|
|
|
// definitely no overflow.
|
|
|
|
if (SignBits > BitWidth + 1)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// There are two ambiguous cases where there can be no overflow:
|
|
|
|
// SignBits == BitWidth + 1 and
|
|
|
|
// SignBits == BitWidth
|
|
|
|
// The second case is difficult to check, therefore we only handle the
|
|
|
|
// first case.
|
|
|
|
if (SignBits == BitWidth + 1) {
|
|
|
|
// It overflows only when both arguments are negative and the true
|
|
|
|
// product is exactly the minimum negative number.
|
|
|
|
// E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
|
|
|
|
// For simplicity we just check if at least one side is not negative.
|
2017-05-15 14:39:41 +08:00
|
|
|
KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, &CxtI);
|
|
|
|
KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, &CxtI);
|
|
|
|
if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
|
2014-12-26 17:10:14 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
Instruction *InstCombiner::visitMul(BinaryOperator &I) {
|
2010-11-13 23:10:37 +08:00
|
|
|
bool Changed = SimplifyAssociativeOrCommutative(I);
|
2010-01-05 14:09:35 +08:00
|
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
|
|
|
2014-05-11 16:46:12 +08:00
|
|
|
if (Value *V = SimplifyVectorOp(I))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2014-05-11 16:46:12 +08:00
|
|
|
|
2017-06-09 11:21:29 +08:00
|
|
|
if (Value *V = SimplifyMulInst(Op0, Op1, SQ.getWithInstruction(&I)))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2010-01-05 14:09:35 +08:00
|
|
|
|
2010-12-22 21:36:08 +08:00
|
|
|
if (Value *V = SimplifyUsingDistributiveLaws(I))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2010-12-22 21:36:08 +08:00
|
|
|
|
2014-11-22 12:52:38 +08:00
|
|
|
// X * -1 == 0 - X
|
|
|
|
if (match(Op1, m_AllOnes())) {
|
|
|
|
BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
|
|
|
|
if (I.hasNoSignedWrap())
|
|
|
|
BO->setHasNoSignedWrap();
|
|
|
|
return BO;
|
|
|
|
}
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2013-05-31 22:27:15 +08:00
|
|
|
// Also allow combining multiply instructions on vectors.
|
|
|
|
{
|
|
|
|
Value *NewOp;
|
|
|
|
Constant *C1, *C2;
|
|
|
|
const APInt *IVal;
|
|
|
|
if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
|
|
|
|
m_Constant(C1))) &&
|
2014-11-22 12:52:52 +08:00
|
|
|
match(C1, m_APInt(IVal))) {
|
|
|
|
// ((X << C2)*C1) == (X * (C1 << C2))
|
|
|
|
Constant *Shl = ConstantExpr::getShl(C1, C2);
|
|
|
|
BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
|
|
|
|
BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
|
|
|
|
if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
|
|
|
|
BO->setHasNoUnsignedWrap();
|
|
|
|
if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
|
|
|
|
Shl->isNotMinSignedValue())
|
|
|
|
BO->setHasNoSignedWrap();
|
|
|
|
return BO;
|
|
|
|
}
|
2013-05-31 22:27:15 +08:00
|
|
|
|
|
|
|
if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
|
2018-02-08 22:10:01 +08:00
|
|
|
// Replace X*(2^C) with X << C, where C is either a scalar or a vector.
|
|
|
|
if (Constant *NewCst = getLogBase2(NewOp->getType(), C1)) {
|
2015-04-18 12:41:30 +08:00
|
|
|
unsigned Width = NewCst->getType()->getPrimitiveSizeInBits();
|
2013-05-31 22:27:15 +08:00
|
|
|
BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
|
2014-10-07 18:19:34 +08:00
|
|
|
|
|
|
|
if (I.hasNoUnsignedWrap())
|
|
|
|
Shl->setHasNoUnsignedWrap();
|
2015-04-18 12:41:30 +08:00
|
|
|
if (I.hasNoSignedWrap()) {
|
2017-06-28 03:57:53 +08:00
|
|
|
const APInt *V;
|
|
|
|
if (match(NewCst, m_APInt(V)) && *V != Width - 1)
|
2015-04-18 12:41:30 +08:00
|
|
|
Shl->setHasNoSignedWrap();
|
|
|
|
}
|
2014-10-07 18:19:34 +08:00
|
|
|
|
2013-05-31 22:27:15 +08:00
|
|
|
return Shl;
|
|
|
|
}
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
2013-05-31 22:27:15 +08:00
|
|
|
}
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2013-05-31 22:27:15 +08:00
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
2011-06-02 00:42:47 +08:00
|
|
|
// (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
|
|
|
|
// (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
|
|
|
|
// The "* (2**n)" thus becomes a potential shifting opportunity.
|
2011-05-31 04:00:33 +08:00
|
|
|
{
|
|
|
|
const APInt & Val = CI->getValue();
|
|
|
|
const APInt &PosVal = Val.abs();
|
|
|
|
if (Val.isNegative() && PosVal.isPowerOf2()) {
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *X = nullptr, *Y = nullptr;
|
2011-06-02 00:42:47 +08:00
|
|
|
if (Op0->hasOneUse()) {
|
|
|
|
ConstantInt *C1;
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *Sub = nullptr;
|
2011-06-02 00:42:47 +08:00
|
|
|
if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
|
2017-07-08 07:16:26 +08:00
|
|
|
Sub = Builder.CreateSub(X, Y, "suba");
|
2011-06-02 00:42:47 +08:00
|
|
|
else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
|
2017-07-08 07:16:26 +08:00
|
|
|
Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc");
|
2011-06-02 00:42:47 +08:00
|
|
|
if (Sub)
|
|
|
|
return
|
|
|
|
BinaryOperator::CreateMul(Sub,
|
|
|
|
ConstantInt::get(Y->getType(), PosVal));
|
2011-05-31 04:00:33 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2011-02-10 13:36:31 +08:00
|
|
|
}
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2011-02-10 13:36:31 +08:00
|
|
|
// Simplify mul instructions with a constant RHS.
|
2013-04-06 05:20:12 +08:00
|
|
|
if (isa<Constant>(Op1)) {
|
2017-01-11 07:49:07 +08:00
|
|
|
if (Instruction *FoldedMul = foldOpWithConstantIntoOperand(I))
|
|
|
|
return FoldedMul;
|
2014-01-19 23:24:22 +08:00
|
|
|
|
|
|
|
// Canonicalize (X+C1)*CI -> X*CI+C1*CI.
|
|
|
|
{
|
|
|
|
Value *X;
|
|
|
|
Constant *C1;
|
|
|
|
if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
|
2017-07-08 07:16:26 +08:00
|
|
|
Value *Mul = Builder.CreateMul(C1, Op1);
|
2014-06-19 15:14:33 +08:00
|
|
|
// Only go forward with the transform if C1*CI simplifies to a tidier
|
|
|
|
// constant.
|
|
|
|
if (!match(Mul, m_Mul(m_Value(), m_Value())))
|
2017-07-08 07:16:26 +08:00
|
|
|
return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
|
2014-01-19 23:24:22 +08:00
|
|
|
}
|
|
|
|
}
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
2018-02-15 00:50:55 +08:00
|
|
|
// -X * C --> X * -C
|
|
|
|
Value *X, *Y;
|
|
|
|
Constant *Op1C;
|
|
|
|
if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
|
|
|
|
return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
|
|
|
|
|
|
|
|
// -X * -Y --> X * Y
|
|
|
|
if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
|
|
|
|
auto *NewMul = BinaryOperator::CreateMul(X, Y);
|
|
|
|
if (I.hasNoSignedWrap() &&
|
|
|
|
cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
|
|
|
|
cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
|
|
|
|
NewMul->setHasNoSignedWrap();
|
|
|
|
return NewMul;
|
2014-11-22 15:25:19 +08:00
|
|
|
}
|
2010-01-05 14:09:35 +08:00
|
|
|
|
|
|
|
// (X / Y) * Y = X - (X % Y)
|
|
|
|
// (X / Y) * -Y = (X % Y) - X
|
|
|
|
{
|
2017-03-15 01:27:27 +08:00
|
|
|
Value *Y = Op1;
|
|
|
|
BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
|
|
|
|
if (!Div || (Div->getOpcode() != Instruction::UDiv &&
|
|
|
|
Div->getOpcode() != Instruction::SDiv)) {
|
|
|
|
Y = Op0;
|
|
|
|
Div = dyn_cast<BinaryOperator>(Op1);
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
2017-03-15 01:27:27 +08:00
|
|
|
Value *Neg = dyn_castNegVal(Y);
|
|
|
|
if (Div && Div->hasOneUse() &&
|
|
|
|
(Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
|
|
|
|
(Div->getOpcode() == Instruction::UDiv ||
|
|
|
|
Div->getOpcode() == Instruction::SDiv)) {
|
|
|
|
Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
|
2010-01-05 14:09:35 +08:00
|
|
|
|
2011-02-07 05:44:57 +08:00
|
|
|
// If the division is exact, X % Y is zero, so we end up with X or -X.
|
2017-03-15 01:27:27 +08:00
|
|
|
if (Div->isExact()) {
|
|
|
|
if (DivOp1 == Y)
|
|
|
|
return replaceInstUsesWith(I, X);
|
|
|
|
return BinaryOperator::CreateNeg(X);
|
|
|
|
}
|
2010-01-05 14:09:35 +08:00
|
|
|
|
2017-03-15 01:27:27 +08:00
|
|
|
auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
|
|
|
|
: Instruction::SRem;
|
2017-07-08 07:16:26 +08:00
|
|
|
Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
|
2017-03-15 01:27:27 +08:00
|
|
|
if (DivOp1 == Y)
|
|
|
|
return BinaryOperator::CreateSub(X, Rem);
|
|
|
|
return BinaryOperator::CreateSub(Rem, X);
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// i1 mul -> i1 and.
|
2017-07-09 15:04:03 +08:00
|
|
|
if (I.getType()->isIntOrIntVectorTy(1))
|
2010-01-05 14:09:35 +08:00
|
|
|
return BinaryOperator::CreateAnd(Op0, Op1);
|
|
|
|
|
|
|
|
// X*(1 << Y) --> X << Y
|
|
|
|
// (1 << Y)*X --> X << Y
|
|
|
|
{
|
|
|
|
Value *Y;
|
2014-11-22 16:57:02 +08:00
|
|
|
BinaryOperator *BO = nullptr;
|
|
|
|
bool ShlNSW = false;
|
|
|
|
if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
|
|
|
|
BO = BinaryOperator::CreateShl(Op1, Y);
|
2015-01-04 15:36:02 +08:00
|
|
|
ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
|
2014-11-25 00:41:13 +08:00
|
|
|
} else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
|
2014-11-22 16:57:02 +08:00
|
|
|
BO = BinaryOperator::CreateShl(Op0, Y);
|
2015-01-04 15:36:02 +08:00
|
|
|
ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
|
2014-11-22 16:57:02 +08:00
|
|
|
}
|
|
|
|
if (BO) {
|
|
|
|
if (I.hasNoUnsignedWrap())
|
|
|
|
BO->setHasNoUnsignedWrap();
|
|
|
|
if (I.hasNoSignedWrap() && ShlNSW)
|
|
|
|
BO->setHasNoSignedWrap();
|
|
|
|
return BO;
|
|
|
|
}
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2018-02-14 04:41:22 +08:00
|
|
|
// (bool X) * Y --> X ? Y : 0
|
2018-02-14 06:24:37 +08:00
|
|
|
// Y * (bool X) --> X ? Y : 0
|
2018-02-14 04:41:22 +08:00
|
|
|
if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
|
|
|
|
return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
|
|
|
|
if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
|
|
|
|
return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
|
|
|
|
|
2018-02-14 06:24:37 +08:00
|
|
|
// (lshr X, 31) * Y --> (ashr X, 31) & Y
|
|
|
|
// Y * (lshr X, 31) --> (ashr X, 31) & Y
|
|
|
|
// TODO: We are not checking one-use because the elimination of the multiply
|
|
|
|
// is better for analysis?
|
|
|
|
// TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
|
|
|
|
// more similar to what we're doing above.
|
|
|
|
const APInt *C;
|
|
|
|
if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
|
|
|
|
return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
|
|
|
|
if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
|
|
|
|
return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
|
2010-01-05 14:09:35 +08:00
|
|
|
|
2016-12-30 08:28:58 +08:00
|
|
|
// Check for (mul (sext x), y), see if we can merge this into an
|
|
|
|
// integer mul followed by a sext.
|
|
|
|
if (SExtInst *Op0Conv = dyn_cast<SExtInst>(Op0)) {
|
|
|
|
// (mul (sext x), cst) --> (sext (mul x, cst'))
|
|
|
|
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
|
|
|
|
if (Op0Conv->hasOneUse()) {
|
|
|
|
Constant *CI =
|
|
|
|
ConstantExpr::getTrunc(Op1C, Op0Conv->getOperand(0)->getType());
|
|
|
|
if (ConstantExpr::getSExt(CI, I.getType()) == Op1C &&
|
2017-05-22 14:25:31 +08:00
|
|
|
willNotOverflowSignedMul(Op0Conv->getOperand(0), CI, I)) {
|
2016-12-30 08:28:58 +08:00
|
|
|
// Insert the new, smaller mul.
|
|
|
|
Value *NewMul =
|
2017-07-08 07:16:26 +08:00
|
|
|
Builder.CreateNSWMul(Op0Conv->getOperand(0), CI, "mulconv");
|
2016-12-30 08:28:58 +08:00
|
|
|
return new SExtInst(NewMul, I.getType());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// (mul (sext x), (sext y)) --> (sext (mul int x, y))
|
|
|
|
if (SExtInst *Op1Conv = dyn_cast<SExtInst>(Op1)) {
|
|
|
|
// Only do this if x/y have the same type, if at last one of them has a
|
|
|
|
// single use (so we don't increase the number of sexts), and if the
|
|
|
|
// integer mul will not overflow.
|
|
|
|
if (Op0Conv->getOperand(0)->getType() ==
|
|
|
|
Op1Conv->getOperand(0)->getType() &&
|
|
|
|
(Op0Conv->hasOneUse() || Op1Conv->hasOneUse()) &&
|
2017-05-22 14:25:31 +08:00
|
|
|
willNotOverflowSignedMul(Op0Conv->getOperand(0),
|
2016-12-30 08:28:58 +08:00
|
|
|
Op1Conv->getOperand(0), I)) {
|
|
|
|
// Insert the new integer mul.
|
2017-07-08 07:16:26 +08:00
|
|
|
Value *NewMul = Builder.CreateNSWMul(
|
2016-12-30 08:28:58 +08:00
|
|
|
Op0Conv->getOperand(0), Op1Conv->getOperand(0), "mulconv");
|
|
|
|
return new SExtInst(NewMul, I.getType());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check for (mul (zext x), y), see if we can merge this into an
|
|
|
|
// integer mul followed by a zext.
|
|
|
|
if (auto *Op0Conv = dyn_cast<ZExtInst>(Op0)) {
|
|
|
|
// (mul (zext x), cst) --> (zext (mul x, cst'))
|
|
|
|
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
|
|
|
|
if (Op0Conv->hasOneUse()) {
|
|
|
|
Constant *CI =
|
|
|
|
ConstantExpr::getTrunc(Op1C, Op0Conv->getOperand(0)->getType());
|
|
|
|
if (ConstantExpr::getZExt(CI, I.getType()) == Op1C &&
|
2017-05-15 10:44:08 +08:00
|
|
|
willNotOverflowUnsignedMul(Op0Conv->getOperand(0), CI, I)) {
|
2016-12-30 08:28:58 +08:00
|
|
|
// Insert the new, smaller mul.
|
|
|
|
Value *NewMul =
|
2017-07-08 07:16:26 +08:00
|
|
|
Builder.CreateNUWMul(Op0Conv->getOperand(0), CI, "mulconv");
|
2016-12-30 08:28:58 +08:00
|
|
|
return new ZExtInst(NewMul, I.getType());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// (mul (zext x), (zext y)) --> (zext (mul int x, y))
|
|
|
|
if (auto *Op1Conv = dyn_cast<ZExtInst>(Op1)) {
|
|
|
|
// Only do this if x/y have the same type, if at last one of them has a
|
|
|
|
// single use (so we don't increase the number of zexts), and if the
|
|
|
|
// integer mul will not overflow.
|
|
|
|
if (Op0Conv->getOperand(0)->getType() ==
|
|
|
|
Op1Conv->getOperand(0)->getType() &&
|
|
|
|
(Op0Conv->hasOneUse() || Op1Conv->hasOneUse()) &&
|
2017-05-15 10:44:08 +08:00
|
|
|
willNotOverflowUnsignedMul(Op0Conv->getOperand(0),
|
|
|
|
Op1Conv->getOperand(0), I)) {
|
2016-12-30 08:28:58 +08:00
|
|
|
// Insert the new integer mul.
|
2017-07-08 07:16:26 +08:00
|
|
|
Value *NewMul = Builder.CreateNUWMul(
|
2016-12-30 08:28:58 +08:00
|
|
|
Op0Conv->getOperand(0), Op1Conv->getOperand(0), "mulconv");
|
|
|
|
return new ZExtInst(NewMul, I.getType());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-05-22 14:25:31 +08:00
|
|
|
if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
|
2014-12-26 17:10:14 +08:00
|
|
|
Changed = true;
|
|
|
|
I.setHasNoSignedWrap(true);
|
|
|
|
}
|
|
|
|
|
2017-05-15 10:44:08 +08:00
|
|
|
if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
|
2014-12-26 17:50:35 +08:00
|
|
|
Changed = true;
|
|
|
|
I.setHasNoUnsignedWrap(true);
|
|
|
|
}
|
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return Changed ? &I : nullptr;
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
2014-10-14 08:33:23 +08:00
|
|
|
/// Detect pattern log2(Y * 0.5) with corresponding fast math flags.
|
2012-12-01 06:07:05 +08:00
|
|
|
static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
|
2014-10-14 08:33:23 +08:00
|
|
|
if (!Op->hasOneUse())
|
|
|
|
return;
|
|
|
|
|
|
|
|
IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
|
|
|
|
if (!II)
|
|
|
|
return;
|
[IR] redefine 'UnsafeAlgebra' / 'reassoc' fast-math-flags and add 'trans' fast-math-flag
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
llvm-svn: 317488
2017-11-07 00:27:15 +08:00
|
|
|
if (II->getIntrinsicID() != Intrinsic::log2 || !II->isFast())
|
2014-10-14 08:33:23 +08:00
|
|
|
return;
|
|
|
|
Log2 = II;
|
|
|
|
|
|
|
|
Value *OpLog2Of = II->getArgOperand(0);
|
|
|
|
if (!OpLog2Of->hasOneUse())
|
|
|
|
return;
|
|
|
|
|
|
|
|
Instruction *I = dyn_cast<Instruction>(OpLog2Of);
|
|
|
|
if (!I)
|
|
|
|
return;
|
[IR] redefine 'UnsafeAlgebra' / 'reassoc' fast-math-flags and add 'trans' fast-math-flag
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
llvm-svn: 317488
2017-11-07 00:27:15 +08:00
|
|
|
|
|
|
|
if (I->getOpcode() != Instruction::FMul || !I->isFast())
|
2014-10-14 08:33:23 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
if (match(I->getOperand(0), m_SpecificFP(0.5)))
|
|
|
|
Y = I->getOperand(1);
|
|
|
|
else if (match(I->getOperand(1), m_SpecificFP(0.5)))
|
|
|
|
Y = I->getOperand(0);
|
2013-04-06 05:20:12 +08:00
|
|
|
}
|
2012-12-01 06:07:05 +08:00
|
|
|
|
2018-02-15 01:16:33 +08:00
|
|
|
/// Helper function of InstCombiner::visitFMul(). Return true iff the given
|
|
|
|
/// value is FMul or FDiv with one and only one operand being a finite-non-zero
|
|
|
|
/// constant (i.e. not Zero/NaN/Infinity).
|
2013-01-08 05:39:23 +08:00
|
|
|
static bool isFMulOrFDivWithConstant(Value *V) {
|
2018-02-15 01:16:33 +08:00
|
|
|
Constant *C;
|
|
|
|
return (match(V, m_FMul(m_Value(), m_Constant(C))) ||
|
|
|
|
match(V, m_FDiv(m_Value(), m_Constant(C))) ||
|
2018-02-17 06:32:54 +08:00
|
|
|
match(V, m_FDiv(m_Constant(C), m_Value()))) && C->isFiniteNonZeroFP();
|
2013-01-08 05:39:23 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
|
|
|
|
/// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
|
|
|
|
/// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
|
2013-04-06 05:20:12 +08:00
|
|
|
/// This function is to simplify "FMulOrDiv * C" and returns the
|
2013-01-08 05:39:23 +08:00
|
|
|
/// resulting expression. Note that this function could return NULL in
|
|
|
|
/// case the constants cannot be folded into a normal floating-point.
|
2014-01-19 21:36:27 +08:00
|
|
|
Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C,
|
2013-01-08 06:41:28 +08:00
|
|
|
Instruction *InsertBefore) {
|
2013-01-08 05:39:23 +08:00
|
|
|
assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
|
|
|
|
|
|
|
|
Value *Opnd0 = FMulOrDiv->getOperand(0);
|
|
|
|
Value *Opnd1 = FMulOrDiv->getOperand(1);
|
|
|
|
|
2014-01-19 21:36:27 +08:00
|
|
|
Constant *C0 = dyn_cast<Constant>(Opnd0);
|
|
|
|
Constant *C1 = dyn_cast<Constant>(Opnd1);
|
2013-01-08 05:39:23 +08:00
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
BinaryOperator *R = nullptr;
|
2013-01-08 05:39:23 +08:00
|
|
|
|
|
|
|
// (X * C0) * C => X * (C0*C)
|
|
|
|
if (FMulOrDiv->getOpcode() == Instruction::FMul) {
|
|
|
|
Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
|
2018-02-17 06:32:54 +08:00
|
|
|
if (F->isNormalFP())
|
2013-01-08 05:39:23 +08:00
|
|
|
R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
|
|
|
|
} else {
|
|
|
|
if (C0) {
|
|
|
|
// (C0 / X) * C => (C0 * C) / X
|
2013-09-20 05:13:46 +08:00
|
|
|
if (FMulOrDiv->hasOneUse()) {
|
|
|
|
// It would otherwise introduce another div.
|
2014-01-19 21:36:27 +08:00
|
|
|
Constant *F = ConstantExpr::getFMul(C0, C);
|
2018-02-17 06:32:54 +08:00
|
|
|
if (F->isNormalFP())
|
2013-09-20 05:13:46 +08:00
|
|
|
R = BinaryOperator::CreateFDiv(F, Opnd1);
|
|
|
|
}
|
2013-01-08 05:39:23 +08:00
|
|
|
} else {
|
|
|
|
// (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
|
2014-01-19 21:36:27 +08:00
|
|
|
Constant *F = ConstantExpr::getFDiv(C, C1);
|
2018-02-17 06:32:54 +08:00
|
|
|
if (F->isNormalFP()) {
|
2013-01-08 05:39:23 +08:00
|
|
|
R = BinaryOperator::CreateFMul(Opnd0, F);
|
|
|
|
} else {
|
2013-04-06 05:20:12 +08:00
|
|
|
// (X / C1) * C => X / (C1/C)
|
2013-01-08 05:39:23 +08:00
|
|
|
Constant *F = ConstantExpr::getFDiv(C1, C);
|
2018-02-17 06:32:54 +08:00
|
|
|
if (F->isNormalFP())
|
2013-01-08 05:39:23 +08:00
|
|
|
R = BinaryOperator::CreateFDiv(Opnd0, F);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (R) {
|
[IR] redefine 'UnsafeAlgebra' / 'reassoc' fast-math-flags and add 'trans' fast-math-flag
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
llvm-svn: 317488
2017-11-07 00:27:15 +08:00
|
|
|
R->setFast(true);
|
2013-01-08 05:39:23 +08:00
|
|
|
InsertNewInstWith(R, *InsertBefore);
|
|
|
|
}
|
|
|
|
|
|
|
|
return R;
|
|
|
|
}
|
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
|
2010-11-13 23:10:37 +08:00
|
|
|
bool Changed = SimplifyAssociativeOrCommutative(I);
|
2010-01-05 14:09:35 +08:00
|
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
|
|
|
2014-05-11 16:46:12 +08:00
|
|
|
if (Value *V = SimplifyVectorOp(I))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2014-05-11 16:46:12 +08:00
|
|
|
|
2017-06-09 11:21:29 +08:00
|
|
|
if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(),
|
|
|
|
SQ.getWithInstruction(&I)))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2010-01-05 14:09:35 +08:00
|
|
|
|
[IR] redefine 'UnsafeAlgebra' / 'reassoc' fast-math-flags and add 'trans' fast-math-flag
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
llvm-svn: 317488
2017-11-07 00:27:15 +08:00
|
|
|
bool AllowReassociate = I.isFast();
|
2013-01-16 05:09:32 +08:00
|
|
|
|
2012-12-12 08:28:32 +08:00
|
|
|
// Simplify mul instructions with a constant RHS.
|
2018-02-15 00:56:44 +08:00
|
|
|
if (auto *C = dyn_cast<Constant>(Op1)) {
|
2017-01-11 07:49:07 +08:00
|
|
|
if (Instruction *FoldedMul = foldOpWithConstantIntoOperand(I))
|
|
|
|
return FoldedMul;
|
2013-01-08 05:39:23 +08:00
|
|
|
|
2014-01-17 04:36:42 +08:00
|
|
|
// (fmul X, -1.0) --> (fsub -0.0, X)
|
2018-02-15 00:56:44 +08:00
|
|
|
if (match(C, m_SpecificFP(-1.0))) {
|
2014-01-19 00:43:14 +08:00
|
|
|
Constant *NegZero = ConstantFP::getNegativeZero(Op1->getType());
|
|
|
|
Instruction *RI = BinaryOperator::CreateFSub(NegZero, Op0);
|
2014-01-17 04:36:42 +08:00
|
|
|
RI->copyFastMathFlags(&I);
|
|
|
|
return RI;
|
|
|
|
}
|
|
|
|
|
2018-02-17 06:32:54 +08:00
|
|
|
if (AllowReassociate && C->isFiniteNonZeroFP()) {
|
2013-01-08 05:39:23 +08:00
|
|
|
// Let MDC denote an expression in one of these forms:
|
|
|
|
// X * C, C/X, X/C, where C is a constant.
|
|
|
|
//
|
|
|
|
// Try to simplify "MDC * Constant"
|
2014-01-19 21:36:27 +08:00
|
|
|
if (isFMulOrFDivWithConstant(Op0))
|
|
|
|
if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2013-01-08 05:39:23 +08:00
|
|
|
|
2013-03-01 05:12:40 +08:00
|
|
|
// (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
|
2013-01-08 05:39:23 +08:00
|
|
|
Instruction *FAddSub = dyn_cast<Instruction>(Op0);
|
|
|
|
if (FAddSub &&
|
|
|
|
(FAddSub->getOpcode() == Instruction::FAdd ||
|
|
|
|
FAddSub->getOpcode() == Instruction::FSub)) {
|
|
|
|
Value *Opnd0 = FAddSub->getOperand(0);
|
|
|
|
Value *Opnd1 = FAddSub->getOperand(1);
|
2014-01-19 21:36:27 +08:00
|
|
|
Constant *C0 = dyn_cast<Constant>(Opnd0);
|
|
|
|
Constant *C1 = dyn_cast<Constant>(Opnd1);
|
2013-01-08 05:39:23 +08:00
|
|
|
bool Swap = false;
|
|
|
|
if (C0) {
|
2013-01-08 06:41:28 +08:00
|
|
|
std::swap(C0, C1);
|
|
|
|
std::swap(Opnd0, Opnd1);
|
2013-04-06 05:20:12 +08:00
|
|
|
Swap = true;
|
2013-01-08 05:39:23 +08:00
|
|
|
}
|
|
|
|
|
2018-02-17 06:32:54 +08:00
|
|
|
if (C1 && C1->isFiniteNonZeroFP() && isFMulOrFDivWithConstant(Opnd0)) {
|
2013-03-01 05:12:40 +08:00
|
|
|
Value *M1 = ConstantExpr::getFMul(C1, C);
|
2018-02-17 06:32:54 +08:00
|
|
|
Value *M0 = cast<Constant>(M1)->isNormalFP() ?
|
|
|
|
foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
|
|
|
|
nullptr;
|
2013-01-08 05:39:23 +08:00
|
|
|
if (M0 && M1) {
|
|
|
|
if (Swap && FAddSub->getOpcode() == Instruction::FSub)
|
|
|
|
std::swap(M0, M1);
|
|
|
|
|
2013-09-30 23:39:59 +08:00
|
|
|
Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd)
|
|
|
|
? BinaryOperator::CreateFAdd(M0, M1)
|
|
|
|
: BinaryOperator::CreateFSub(M0, M1);
|
2013-01-16 05:09:32 +08:00
|
|
|
RI->copyFastMathFlags(&I);
|
2013-01-08 05:39:23 +08:00
|
|
|
return RI;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
2016-01-30 13:02:00 +08:00
|
|
|
if (Op0 == Op1) {
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
|
|
|
|
// sqrt(X) * sqrt(X) -> X
|
|
|
|
if (AllowReassociate && II->getIntrinsicID() == Intrinsic::sqrt)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, II->getOperand(0));
|
2010-01-05 14:09:35 +08:00
|
|
|
|
2016-01-30 13:02:00 +08:00
|
|
|
// fabs(X) * fabs(X) -> X * X
|
|
|
|
if (II->getIntrinsicID() == Intrinsic::fabs) {
|
|
|
|
Instruction *FMulVal = BinaryOperator::CreateFMul(II->getOperand(0),
|
|
|
|
II->getOperand(0),
|
|
|
|
I.getName());
|
|
|
|
FMulVal->copyFastMathFlags(&I);
|
|
|
|
return FMulVal;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-12-01 03:09:41 +08:00
|
|
|
// Under unsafe algebra do:
|
|
|
|
// X * log2(0.5*Y) = X*log2(Y) - X
|
2014-10-02 23:20:45 +08:00
|
|
|
if (AllowReassociate) {
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *OpX = nullptr;
|
|
|
|
Value *OpY = nullptr;
|
2012-12-01 03:09:41 +08:00
|
|
|
IntrinsicInst *Log2;
|
2012-12-01 06:07:05 +08:00
|
|
|
detectLog2OfHalf(Op0, OpY, Log2);
|
|
|
|
if (OpY) {
|
|
|
|
OpX = Op1;
|
|
|
|
} else {
|
|
|
|
detectLog2OfHalf(Op1, OpY, Log2);
|
|
|
|
if (OpY) {
|
|
|
|
OpX = Op0;
|
2012-12-01 03:09:41 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
// if pattern detected emit alternate sequence
|
|
|
|
if (OpX && OpY) {
|
2017-07-08 07:16:26 +08:00
|
|
|
BuilderTy::FastMathFlagGuard Guard(Builder);
|
|
|
|
Builder.setFastMathFlags(Log2->getFastMathFlags());
|
2012-12-01 03:09:41 +08:00
|
|
|
Log2->setArgOperand(0, OpY);
|
2017-07-08 07:16:26 +08:00
|
|
|
Value *FMulVal = Builder.CreateFMul(OpX, Log2);
|
|
|
|
Value *FSub = Builder.CreateFSub(FMulVal, OpX);
|
2013-09-30 23:39:59 +08:00
|
|
|
FSub->takeName(&I);
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, FSub);
|
2012-12-01 03:09:41 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-01-02 13:58:11 +08:00
|
|
|
// sqrt(a) * sqrt(b) -> sqrt(a * b)
|
2018-02-13 02:38:35 +08:00
|
|
|
if (AllowReassociate && Op0->hasOneUse() && Op1->hasOneUse()) {
|
2018-01-02 13:58:11 +08:00
|
|
|
Value *Opnd0 = nullptr;
|
|
|
|
Value *Opnd1 = nullptr;
|
|
|
|
if (match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(Opnd0))) &&
|
|
|
|
match(Op1, m_Intrinsic<Intrinsic::sqrt>(m_Value(Opnd1)))) {
|
|
|
|
BuilderTy::FastMathFlagGuard Guard(Builder);
|
|
|
|
Builder.setFastMathFlags(I.getFastMathFlags());
|
|
|
|
Value *FMulVal = Builder.CreateFMul(Opnd0, Opnd1);
|
|
|
|
Value *Sqrt = Intrinsic::getDeclaration(I.getModule(),
|
|
|
|
Intrinsic::sqrt, I.getType());
|
|
|
|
Value *SqrtCall = Builder.CreateCall(Sqrt, FMulVal);
|
|
|
|
return replaceInstUsesWith(I, SqrtCall);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-01-16 05:09:32 +08:00
|
|
|
// Handle symmetric situation in a 2-iteration loop
|
|
|
|
Value *Opnd0 = Op0;
|
|
|
|
Value *Opnd1 = Op1;
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
|
|
bool IgnoreZeroSign = I.hasNoSignedZeros();
|
|
|
|
if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
|
2017-07-08 07:16:26 +08:00
|
|
|
BuilderTy::FastMathFlagGuard Guard(Builder);
|
|
|
|
Builder.setFastMathFlags(I.getFastMathFlags());
|
2013-09-30 23:39:59 +08:00
|
|
|
|
2013-01-16 05:09:32 +08:00
|
|
|
Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
|
|
|
|
Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
|
|
|
|
|
|
|
|
// -X * -Y => X*Y
|
2014-01-17 04:59:41 +08:00
|
|
|
if (N1) {
|
2017-07-08 07:16:26 +08:00
|
|
|
Value *FMul = Builder.CreateFMul(N0, N1);
|
2014-01-17 04:59:41 +08:00
|
|
|
FMul->takeName(&I);
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, FMul);
|
2014-01-17 04:59:41 +08:00
|
|
|
}
|
2013-01-16 05:09:32 +08:00
|
|
|
|
|
|
|
if (Opnd0->hasOneUse()) {
|
|
|
|
// -X * Y => -(X*Y) (Promote negation as high as possible)
|
2017-07-08 07:16:26 +08:00
|
|
|
Value *T = Builder.CreateFMul(N0, Opnd1);
|
|
|
|
Value *Neg = Builder.CreateFNeg(T);
|
2013-09-30 23:39:59 +08:00
|
|
|
Neg->takeName(&I);
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Neg);
|
2013-01-16 05:09:32 +08:00
|
|
|
}
|
2012-12-15 02:46:06 +08:00
|
|
|
}
|
|
|
|
|
2017-09-21 01:32:16 +08:00
|
|
|
// Handle specials cases for FMul with selects feeding the operation
|
|
|
|
if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
|
|
|
|
return replaceInstUsesWith(I, V);
|
|
|
|
|
2013-01-16 05:09:32 +08:00
|
|
|
// (X*Y) * X => (X*X) * Y where Y != X
|
2013-04-06 05:20:12 +08:00
|
|
|
// The purpose is two-fold:
|
2013-01-16 05:09:32 +08:00
|
|
|
// 1) to form a power expression (of X).
|
|
|
|
// 2) potentially shorten the critical path: After transformation, the
|
|
|
|
// latency of the instruction Y is amortized by the expression of X*X,
|
|
|
|
// and therefore Y is in a "less critical" position compared to what it
|
|
|
|
// was before the transformation.
|
|
|
|
if (AllowReassociate) {
|
|
|
|
Value *Opnd0_0, *Opnd0_1;
|
|
|
|
if (Opnd0->hasOneUse() &&
|
|
|
|
match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *Y = nullptr;
|
2013-01-16 05:09:32 +08:00
|
|
|
if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
|
|
|
|
Y = Opnd0_1;
|
|
|
|
else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
|
|
|
|
Y = Opnd0_0;
|
|
|
|
|
|
|
|
if (Y) {
|
2017-07-08 07:16:26 +08:00
|
|
|
BuilderTy::FastMathFlagGuard Guard(Builder);
|
|
|
|
Builder.setFastMathFlags(I.getFastMathFlags());
|
|
|
|
Value *T = Builder.CreateFMul(Opnd1, Opnd1);
|
|
|
|
Value *R = Builder.CreateFMul(T, Y);
|
2013-09-30 23:39:59 +08:00
|
|
|
R->takeName(&I);
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, R);
|
2013-01-16 05:09:32 +08:00
|
|
|
}
|
2012-12-15 02:46:06 +08:00
|
|
|
}
|
|
|
|
}
|
2013-01-16 05:09:32 +08:00
|
|
|
|
|
|
|
if (!isa<Constant>(Op1))
|
|
|
|
std::swap(Opnd0, Opnd1);
|
|
|
|
else
|
|
|
|
break;
|
2012-12-15 02:46:06 +08:00
|
|
|
}
|
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return Changed ? &I : nullptr;
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
2017-10-07 07:20:16 +08:00
|
|
|
/// Fold a divide or remainder with a select instruction divisor when one of the
|
|
|
|
/// select operands is zero. In that case, we can use the other select operand
|
|
|
|
/// because div/rem by zero is undefined.
|
|
|
|
bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
|
|
|
|
SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
|
|
|
|
if (!SI)
|
2010-01-05 14:09:35 +08:00
|
|
|
return false;
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2017-10-07 07:20:16 +08:00
|
|
|
int NonNullOperand;
|
|
|
|
if (match(SI->getTrueValue(), m_Zero()))
|
|
|
|
// div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
|
|
|
|
NonNullOperand = 2;
|
|
|
|
else if (match(SI->getFalseValue(), m_Zero()))
|
|
|
|
// div/rem X, (Cond ? Y : 0) -> div/rem X, Y
|
|
|
|
NonNullOperand = 1;
|
|
|
|
else
|
|
|
|
return false;
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
// Change the div/rem to use 'Y' instead of the select.
|
|
|
|
I.setOperand(1, SI->getOperand(NonNullOperand));
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
// Okay, we know we replace the operand of the div/rem with 'Y' with no
|
|
|
|
// problem. However, the select, or the condition of the select may have
|
|
|
|
// multiple uses. Based on our knowledge that the operand must be non-zero,
|
|
|
|
// propagate the known value for the select into other uses of it, and
|
|
|
|
// propagate a known value of the condition into its other users.
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
// If the select and condition only have a single use, don't bother with this,
|
|
|
|
// early exit.
|
2017-10-07 07:20:16 +08:00
|
|
|
Value *SelectCond = SI->getCondition();
|
2010-01-05 14:09:35 +08:00
|
|
|
if (SI->use_empty() && SelectCond->hasOneUse())
|
|
|
|
return true;
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
// Scan the current block backward, looking for other uses of SI.
|
2015-10-14 00:59:33 +08:00
|
|
|
BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
|
2017-10-07 07:43:06 +08:00
|
|
|
Type *CondTy = SelectCond->getType();
|
2010-01-05 14:09:35 +08:00
|
|
|
while (BBI != BBFront) {
|
|
|
|
--BBI;
|
|
|
|
// If we found a call to a function, we can't assume it will return, so
|
|
|
|
// information from below it cannot be propagated above it.
|
|
|
|
if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
|
|
|
|
break;
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
// Replace uses of the select or its condition with the known values.
|
|
|
|
for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
|
|
|
|
I != E; ++I) {
|
|
|
|
if (*I == SI) {
|
|
|
|
*I = SI->getOperand(NonNullOperand);
|
2015-10-14 00:59:33 +08:00
|
|
|
Worklist.Add(&*BBI);
|
2010-01-05 14:09:35 +08:00
|
|
|
} else if (*I == SelectCond) {
|
2017-10-07 07:43:06 +08:00
|
|
|
*I = NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
|
|
|
|
: ConstantInt::getFalse(CondTy);
|
2015-10-14 00:59:33 +08:00
|
|
|
Worklist.Add(&*BBI);
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
}
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
// If we past the instruction, quit looking for it.
|
|
|
|
if (&*BBI == SI)
|
2014-04-25 13:29:35 +08:00
|
|
|
SI = nullptr;
|
2010-01-05 14:09:35 +08:00
|
|
|
if (&*BBI == SelectCond)
|
2014-04-25 13:29:35 +08:00
|
|
|
SelectCond = nullptr;
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
// If we ran out of things to eliminate, break out of the loop.
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!SelectCond && !SI)
|
2010-01-05 14:09:35 +08:00
|
|
|
break;
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2018-02-13 02:38:35 +08:00
|
|
|
/// True if the multiply can not be expressed in an int this size.
|
|
|
|
static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
|
|
|
|
bool IsSigned) {
|
|
|
|
bool Overflow;
|
|
|
|
Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
|
|
|
|
return Overflow;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// True if C2 is a multiple of C1. Quotient contains C2/C1.
|
|
|
|
static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
|
|
|
|
bool IsSigned) {
|
|
|
|
assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
|
|
|
|
|
|
|
|
// Bail if we will divide by zero.
|
|
|
|
if (C2.isNullValue())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Bail if we would divide INT_MIN by -1.
|
|
|
|
if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
|
|
|
|
if (IsSigned)
|
|
|
|
APInt::sdivrem(C1, C2, Quotient, Remainder);
|
|
|
|
else
|
|
|
|
APInt::udivrem(C1, C2, Quotient, Remainder);
|
|
|
|
|
|
|
|
return Remainder.isMinValue();
|
|
|
|
}
|
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
/// This function implements the transforms common to both integer division
|
|
|
|
/// instructions (udiv and sdiv). It is called by the visitors to those integer
|
|
|
|
/// division instructions.
|
|
|
|
/// @brief Common integer divide transforms
|
|
|
|
Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
|
|
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
2018-01-22 00:14:51 +08:00
|
|
|
bool IsSigned = I.getOpcode() == Instruction::SDiv;
|
2018-02-12 22:14:56 +08:00
|
|
|
Type *Ty = I.getType();
|
2010-01-05 14:09:35 +08:00
|
|
|
|
Carve out a place in instcombine to put transformations which work knowing that their
result is non-zero. Implement an example optimization (PR9814), which allows us to
transform:
A / ((1 << B) >>u 2)
into:
A >>u (B-2)
which we compile into:
_divu3: ## @divu3
leal -2(%rsi), %ecx
shrl %cl, %edi
movl %edi, %eax
ret
instead of:
_divu3: ## @divu3
movb %sil, %cl
movl $1, %esi
shll %cl, %esi
shrl $2, %esi
movl %edi, %eax
xorl %edx, %edx
divl %esi, %eax
ret
llvm-svn: 131860
2011-05-23 02:18:41 +08:00
|
|
|
// The RHS is known non-zero.
|
2015-03-10 10:37:25 +08:00
|
|
|
if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
|
Carve out a place in instcombine to put transformations which work knowing that their
result is non-zero. Implement an example optimization (PR9814), which allows us to
transform:
A / ((1 << B) >>u 2)
into:
A >>u (B-2)
which we compile into:
_divu3: ## @divu3
leal -2(%rsi), %ecx
shrl %cl, %edi
movl %edi, %eax
ret
instead of:
_divu3: ## @divu3
movb %sil, %cl
movl $1, %esi
shll %cl, %esi
shrl $2, %esi
movl %edi, %eax
xorl %edx, %edx
divl %esi, %eax
ret
llvm-svn: 131860
2011-05-23 02:18:41 +08:00
|
|
|
I.setOperand(1, V);
|
|
|
|
return &I;
|
|
|
|
}
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
// Handle cases involving: [su]div X, (select Cond, Y, Z)
|
|
|
|
// This does not apply for fdiv.
|
2017-10-07 07:20:16 +08:00
|
|
|
if (simplifyDivRemOfSelectWithZeroOp(I))
|
2010-01-05 14:09:35 +08:00
|
|
|
return &I;
|
|
|
|
|
2018-02-13 02:38:35 +08:00
|
|
|
const APInt *C2;
|
|
|
|
if (match(Op1, m_APInt(C2))) {
|
|
|
|
Value *X;
|
|
|
|
const APInt *C1;
|
|
|
|
|
|
|
|
// (X / C1) / C2 -> X / (C1*C2)
|
|
|
|
if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
|
|
|
|
(!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
|
|
|
|
APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
|
|
|
|
if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
|
|
|
|
return BinaryOperator::Create(I.getOpcode(), X,
|
|
|
|
ConstantInt::get(Ty, Product));
|
|
|
|
}
|
InstCombine: Combine mul with div.
We can combne a mul with a div if one of the operands is a multiple of
the other:
%mul = mul nsw nuw %a, C1
%ret = udiv %mul, C2
=>
%ret = mul nsw %a, (C1 / C2)
This can expose further optimization opportunities if we end up
multiplying or dividing by a power of 2.
Consider this small example:
define i32 @f(i32 %a) {
%mul = mul nuw i32 %a, 14
%div = udiv exact i32 %mul, 7
ret i32 %div
}
which gets CodeGen'd to:
imull $14, %edi, %eax
imulq $613566757, %rax, %rcx
shrq $32, %rcx
subl %ecx, %eax
shrl %eax
addl %ecx, %eax
shrl $2, %eax
retq
We can now transform this into:
define i32 @f(i32 %a) {
%shl = shl nuw i32 %a, 1
ret i32 %shl
}
which gets CodeGen'd to:
leal (%rdi,%rdi), %eax
retq
This fixes PR20681.
llvm-svn: 215815
2014-08-16 16:55:06 +08:00
|
|
|
|
2018-02-13 02:38:35 +08:00
|
|
|
if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
|
|
|
|
(!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
|
|
|
|
APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
|
InstCombine: Combine mul with div.
We can combne a mul with a div if one of the operands is a multiple of
the other:
%mul = mul nsw nuw %a, C1
%ret = udiv %mul, C2
=>
%ret = mul nsw %a, (C1 / C2)
This can expose further optimization opportunities if we end up
multiplying or dividing by a power of 2.
Consider this small example:
define i32 @f(i32 %a) {
%mul = mul nuw i32 %a, 14
%div = udiv exact i32 %mul, 7
ret i32 %div
}
which gets CodeGen'd to:
imull $14, %edi, %eax
imulq $613566757, %rax, %rcx
shrq $32, %rcx
subl %ecx, %eax
shrl %eax
addl %ecx, %eax
shrl $2, %eax
retq
We can now transform this into:
define i32 @f(i32 %a) {
%shl = shl nuw i32 %a, 1
ret i32 %shl
}
which gets CodeGen'd to:
leal (%rdi,%rdi), %eax
retq
This fixes PR20681.
llvm-svn: 215815
2014-08-16 16:55:06 +08:00
|
|
|
|
2018-02-13 02:38:35 +08:00
|
|
|
// (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
|
|
|
|
if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
|
|
|
|
auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
|
|
|
|
ConstantInt::get(Ty, Quotient));
|
|
|
|
NewDiv->setIsExact(I.isExact());
|
|
|
|
return NewDiv;
|
2014-10-12 16:34:24 +08:00
|
|
|
}
|
InstCombine: Combine mul with div.
We can combne a mul with a div if one of the operands is a multiple of
the other:
%mul = mul nsw nuw %a, C1
%ret = udiv %mul, C2
=>
%ret = mul nsw %a, (C1 / C2)
This can expose further optimization opportunities if we end up
multiplying or dividing by a power of 2.
Consider this small example:
define i32 @f(i32 %a) {
%mul = mul nuw i32 %a, 14
%div = udiv exact i32 %mul, 7
ret i32 %div
}
which gets CodeGen'd to:
imull $14, %edi, %eax
imulq $613566757, %rax, %rcx
shrq $32, %rcx
subl %ecx, %eax
shrl %eax
addl %ecx, %eax
shrl $2, %eax
retq
We can now transform this into:
define i32 @f(i32 %a) {
%shl = shl nuw i32 %a, 1
ret i32 %shl
}
which gets CodeGen'd to:
leal (%rdi,%rdi), %eax
retq
This fixes PR20681.
llvm-svn: 215815
2014-08-16 16:55:06 +08:00
|
|
|
|
2018-02-13 02:38:35 +08:00
|
|
|
// (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
|
|
|
|
if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
|
|
|
|
auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
|
|
|
|
ConstantInt::get(Ty, Quotient));
|
|
|
|
auto *OBO = cast<OverflowingBinaryOperator>(Op0);
|
|
|
|
Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
|
|
|
|
Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
|
|
|
|
return Mul;
|
|
|
|
}
|
|
|
|
}
|
2014-10-12 16:34:24 +08:00
|
|
|
|
2018-02-13 02:38:35 +08:00
|
|
|
if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
|
|
|
|
*C1 != C1->getBitWidth() - 1) ||
|
|
|
|
(!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
|
|
|
|
APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
|
|
|
|
APInt C1Shifted = APInt::getOneBitSet(
|
|
|
|
C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
|
|
|
|
|
|
|
|
// (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of C1.
|
|
|
|
if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
|
|
|
|
auto *BO = BinaryOperator::Create(I.getOpcode(), X,
|
|
|
|
ConstantInt::get(Ty, Quotient));
|
|
|
|
BO->setIsExact(I.isExact());
|
|
|
|
return BO;
|
InstCombine: Combine mul with div.
We can combne a mul with a div if one of the operands is a multiple of
the other:
%mul = mul nsw nuw %a, C1
%ret = udiv %mul, C2
=>
%ret = mul nsw %a, (C1 / C2)
This can expose further optimization opportunities if we end up
multiplying or dividing by a power of 2.
Consider this small example:
define i32 @f(i32 %a) {
%mul = mul nuw i32 %a, 14
%div = udiv exact i32 %mul, 7
ret i32 %div
}
which gets CodeGen'd to:
imull $14, %edi, %eax
imulq $613566757, %rax, %rcx
shrq $32, %rcx
subl %ecx, %eax
shrl %eax
addl %ecx, %eax
shrl $2, %eax
retq
We can now transform this into:
define i32 @f(i32 %a) {
%shl = shl nuw i32 %a, 1
ret i32 %shl
}
which gets CodeGen'd to:
leal (%rdi,%rdi), %eax
retq
This fixes PR20681.
llvm-svn: 215815
2014-08-16 16:55:06 +08:00
|
|
|
}
|
|
|
|
|
2018-02-13 02:38:35 +08:00
|
|
|
// (X << C1) / C2 -> X * (C2 >> C1) if C1 is a multiple of C2.
|
|
|
|
if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
|
|
|
|
auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
|
|
|
|
ConstantInt::get(Ty, Quotient));
|
|
|
|
auto *OBO = cast<OverflowingBinaryOperator>(Op0);
|
|
|
|
Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
|
|
|
|
Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
|
|
|
|
return Mul;
|
|
|
|
}
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
2018-02-13 02:38:35 +08:00
|
|
|
|
|
|
|
if (!C2->isNullValue()) // avoid X udiv 0
|
|
|
|
if (Instruction *FoldedDiv = foldOpWithConstantIntoOperand(I))
|
|
|
|
return FoldedDiv;
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
2017-04-17 11:41:47 +08:00
|
|
|
if (match(Op0, m_One())) {
|
2018-02-12 22:14:56 +08:00
|
|
|
assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
|
|
|
|
if (IsSigned) {
|
2017-04-17 11:41:47 +08:00
|
|
|
// If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
|
|
|
|
// result is one, if Op1 is -1 then the result is minus one, otherwise
|
|
|
|
// it's zero.
|
2017-07-08 07:16:26 +08:00
|
|
|
Value *Inc = Builder.CreateAdd(Op1, Op0);
|
2018-02-12 22:14:56 +08:00
|
|
|
Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
|
|
|
|
return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
|
2017-04-17 11:41:47 +08:00
|
|
|
} else {
|
|
|
|
// If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
|
|
|
|
// result is one, otherwise it's zero.
|
2018-02-12 22:14:56 +08:00
|
|
|
return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
|
2014-05-14 11:03:05 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-05-01 02:16:00 +08:00
|
|
|
// See if we can fold away this div instruction.
|
|
|
|
if (SimplifyDemandedInstructionBits(I))
|
|
|
|
return &I;
|
|
|
|
|
2011-01-29 00:51:11 +08:00
|
|
|
// (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
|
2018-01-22 00:14:51 +08:00
|
|
|
Value *X, *Z;
|
|
|
|
if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
|
|
|
|
if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
|
|
|
|
(!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
|
2011-01-29 00:51:11 +08:00
|
|
|
return BinaryOperator::Create(I.getOpcode(), X, Op1);
|
2018-01-22 00:14:51 +08:00
|
|
|
|
|
|
|
// (X << Y) / X -> 1 << Y
|
|
|
|
Value *Y;
|
|
|
|
if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
|
2018-02-12 22:14:56 +08:00
|
|
|
return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
|
2018-01-22 00:14:51 +08:00
|
|
|
if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
|
2018-02-12 22:14:56 +08:00
|
|
|
return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
|
2010-01-05 14:09:35 +08:00
|
|
|
|
2018-02-12 01:20:32 +08:00
|
|
|
// X / (X * Y) -> 1 / Y if the multiplication does not overflow.
|
|
|
|
if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
|
|
|
|
bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
|
|
|
|
bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
|
|
|
|
if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
|
2018-02-12 22:14:56 +08:00
|
|
|
I.setOperand(0, ConstantInt::get(Ty, 1));
|
2018-02-12 01:20:32 +08:00
|
|
|
I.setOperand(1, Y);
|
|
|
|
return &I;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
2017-10-25 05:24:53 +08:00
|
|
|
static const unsigned MaxDepth = 6;
|
|
|
|
|
2013-07-05 05:17:49 +08:00
|
|
|
namespace {
|
2017-10-25 05:24:53 +08:00
|
|
|
|
|
|
|
using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
|
|
|
|
const BinaryOperator &I,
|
|
|
|
InstCombiner &IC);
|
2013-07-05 05:17:49 +08:00
|
|
|
|
|
|
|
/// \brief Used to maintain state for visitUDivOperand().
|
|
|
|
struct UDivFoldAction {
|
2017-10-25 05:24:53 +08:00
|
|
|
/// Informs visitUDiv() how to fold this operand. This can be zero if this
|
|
|
|
/// action joins two actions together.
|
|
|
|
FoldUDivOperandCb FoldAction;
|
|
|
|
|
|
|
|
/// Which operand to fold.
|
|
|
|
Value *OperandToFold;
|
2013-07-05 05:17:49 +08:00
|
|
|
|
|
|
|
union {
|
2017-10-25 05:24:53 +08:00
|
|
|
/// The instruction returned when FoldAction is invoked.
|
|
|
|
Instruction *FoldResult;
|
2013-07-05 05:17:49 +08:00
|
|
|
|
2017-10-25 05:24:53 +08:00
|
|
|
/// Stores the LHS action index if this action joins two actions together.
|
|
|
|
size_t SelectLHSIdx;
|
2013-07-05 05:17:49 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
|
2014-04-25 13:29:35 +08:00
|
|
|
: FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
|
2013-07-05 05:17:49 +08:00
|
|
|
UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
|
|
|
|
: FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
|
|
|
|
};
|
2017-10-25 05:24:53 +08:00
|
|
|
|
|
|
|
} // end anonymous namespace
|
Revert r185257 (InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms)
I'm reverting this commit because:
1. As discussed during review, it needs to be rewritten (to avoid creating and
then deleting instructions).
2. This is causing optimizer crashes. Specifically, I'm seeing things like
this:
While deleting: i1 %
Use still stuck around after Def is destroyed: <badref> = select i1 <badref>, i32 0, i32 1
opt: /src/llvm-trunk/lib/IR/Value.cpp:79: virtual llvm::Value::~Value(): Assertion `use_empty() && "Uses remain when a value is destroyed!"' failed.
I'd guess that these will go away once we're no longer creating/deleting
instructions here, but just in case, I'm adding a regression test.
Because the code is bring rewritten, I've just XFAIL'd the original regression test. Original commit message:
InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms
Real world code sometimes has the denominator of a 'udiv' be a
'select'. LLVM can handle such cases but only when the 'select'
operands are symmetric in structure (both select operands are a constant
power of two or a left shift, etc.). This falls apart if we are dealt a
'udiv' where the code is not symetric or if the select operands lead us
to more select instructions.
Instead, we should treat the LHS and each select operand as a distinct
divide operation and try to optimize them independently. If we can
to simplify each operation, then we can replace the 'udiv' with, say, a
'lshr' that has a new select with a bunch of new operands for the
select.
llvm-svn: 185415
2013-07-02 13:21:11 +08:00
|
|
|
|
2013-07-05 05:17:49 +08:00
|
|
|
// X udiv 2^C -> X >> C
|
|
|
|
static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
|
|
|
|
const BinaryOperator &I, InstCombiner &IC) {
|
2018-02-08 22:46:10 +08:00
|
|
|
Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1));
|
|
|
|
if (!C1)
|
|
|
|
llvm_unreachable("Failed to constant fold udiv -> logbase2");
|
|
|
|
BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
|
2014-10-07 20:04:07 +08:00
|
|
|
if (I.isExact())
|
|
|
|
LShr->setIsExact();
|
2013-07-05 05:17:49 +08:00
|
|
|
return LShr;
|
|
|
|
}
|
Revert r185257 (InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms)
I'm reverting this commit because:
1. As discussed during review, it needs to be rewritten (to avoid creating and
then deleting instructions).
2. This is causing optimizer crashes. Specifically, I'm seeing things like
this:
While deleting: i1 %
Use still stuck around after Def is destroyed: <badref> = select i1 <badref>, i32 0, i32 1
opt: /src/llvm-trunk/lib/IR/Value.cpp:79: virtual llvm::Value::~Value(): Assertion `use_empty() && "Uses remain when a value is destroyed!"' failed.
I'd guess that these will go away once we're no longer creating/deleting
instructions here, but just in case, I'm adding a regression test.
Because the code is bring rewritten, I've just XFAIL'd the original regression test. Original commit message:
InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms
Real world code sometimes has the denominator of a 'udiv' be a
'select'. LLVM can handle such cases but only when the 'select'
operands are symmetric in structure (both select operands are a constant
power of two or a left shift, etc.). This falls apart if we are dealt a
'udiv' where the code is not symetric or if the select operands lead us
to more select instructions.
Instead, we should treat the LHS and each select operand as a distinct
divide operation and try to optimize them independently. If we can
to simplify each operation, then we can replace the 'udiv' with, say, a
'lshr' that has a new select with a bunch of new operands for the
select.
llvm-svn: 185415
2013-07-02 13:21:11 +08:00
|
|
|
|
2013-07-05 05:17:49 +08:00
|
|
|
// X udiv C, where C >= signbit
|
|
|
|
static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
|
|
|
|
const BinaryOperator &I, InstCombiner &IC) {
|
2018-02-09 18:43:59 +08:00
|
|
|
Value *ICI = IC.Builder.CreateICmpULT(Op0, cast<Constant>(Op1));
|
2013-07-05 05:17:49 +08:00
|
|
|
return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
|
|
|
|
ConstantInt::get(I.getType(), 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
|
2016-09-26 20:07:23 +08:00
|
|
|
// X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2)
|
2013-07-05 05:17:49 +08:00
|
|
|
static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
|
|
|
|
InstCombiner &IC) {
|
2016-09-26 20:07:23 +08:00
|
|
|
Value *ShiftLeft;
|
|
|
|
if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
|
|
|
|
ShiftLeft = Op1;
|
|
|
|
|
2018-02-08 23:19:38 +08:00
|
|
|
Constant *CI;
|
2016-09-26 20:07:23 +08:00
|
|
|
Value *N;
|
2018-02-08 23:19:38 +08:00
|
|
|
if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
|
2016-09-26 20:07:23 +08:00
|
|
|
llvm_unreachable("match should never fail here!");
|
2018-02-08 23:19:38 +08:00
|
|
|
Constant *Log2Base = getLogBase2(N->getType(), CI);
|
|
|
|
if (!Log2Base)
|
|
|
|
llvm_unreachable("getLogBase2 should never fail here!");
|
|
|
|
N = IC.Builder.CreateAdd(N, Log2Base);
|
2016-09-26 20:07:23 +08:00
|
|
|
if (Op1 != ShiftLeft)
|
2017-07-08 07:16:26 +08:00
|
|
|
N = IC.Builder.CreateZExt(N, Op1->getType());
|
2013-07-05 05:17:49 +08:00
|
|
|
BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
|
2014-10-07 20:04:07 +08:00
|
|
|
if (I.isExact())
|
|
|
|
LShr->setIsExact();
|
2013-07-05 05:17:49 +08:00
|
|
|
return LShr;
|
|
|
|
}
|
|
|
|
|
|
|
|
// \brief Recursively visits the possible right hand operands of a udiv
|
|
|
|
// instruction, seeing through select instructions, to determine if we can
|
|
|
|
// replace the udiv with something simpler. If we find that an operand is not
|
|
|
|
// able to simplify the udiv, we abort the entire transformation.
|
|
|
|
static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
|
|
|
|
SmallVectorImpl<UDivFoldAction> &Actions,
|
|
|
|
unsigned Depth = 0) {
|
|
|
|
// Check to see if this is an unsigned division with an exact power of 2,
|
|
|
|
// if so, convert to a right shift.
|
|
|
|
if (match(Op1, m_Power2())) {
|
|
|
|
Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
|
|
|
|
return Actions.size();
|
2011-11-08 07:04:49 +08:00
|
|
|
}
|
2010-01-05 14:09:35 +08:00
|
|
|
|
2018-02-09 18:43:59 +08:00
|
|
|
// X udiv C, where C >= signbit
|
|
|
|
if (match(Op1, m_Negative())) {
|
|
|
|
Actions.push_back(UDivFoldAction(foldUDivNegCst, Op1));
|
|
|
|
return Actions.size();
|
|
|
|
}
|
2013-07-05 05:17:49 +08:00
|
|
|
|
|
|
|
// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
|
|
|
|
if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
|
|
|
|
match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
|
|
|
|
Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
|
|
|
|
return Actions.size();
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
2013-07-05 05:17:49 +08:00
|
|
|
// The remaining tests are all recursive, so bail out if we hit the limit.
|
|
|
|
if (Depth++ == MaxDepth)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
|
2014-08-30 17:19:05 +08:00
|
|
|
if (size_t LHSIdx =
|
|
|
|
visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
|
|
|
|
if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
|
|
|
|
Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
|
2013-07-05 05:17:49 +08:00
|
|
|
return Actions.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-08-25 06:54:01 +08:00
|
|
|
/// If we have zero-extended operands of an unsigned div or rem, we may be able
|
|
|
|
/// to narrow the operation (sink the zext below the math).
|
|
|
|
static Instruction *narrowUDivURem(BinaryOperator &I,
|
|
|
|
InstCombiner::BuilderTy &Builder) {
|
|
|
|
Instruction::BinaryOps Opcode = I.getOpcode();
|
|
|
|
Value *N = I.getOperand(0);
|
|
|
|
Value *D = I.getOperand(1);
|
|
|
|
Type *Ty = I.getType();
|
|
|
|
Value *X, *Y;
|
|
|
|
if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
|
|
|
|
X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
|
|
|
|
// udiv (zext X), (zext Y) --> zext (udiv X, Y)
|
|
|
|
// urem (zext X), (zext Y) --> zext (urem X, Y)
|
|
|
|
Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
|
|
|
|
return new ZExtInst(NarrowOp, Ty);
|
|
|
|
}
|
|
|
|
|
|
|
|
Constant *C;
|
|
|
|
if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
|
|
|
|
(match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
|
|
|
|
// If the constant is the same in the smaller type, use the narrow version.
|
|
|
|
Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
|
|
|
|
if (ConstantExpr::getZExt(TruncC, Ty) != C)
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
// udiv (zext X), C --> zext (udiv X, C')
|
|
|
|
// urem (zext X), C --> zext (urem X, C')
|
|
|
|
// udiv C, (zext X) --> zext (udiv C', X)
|
|
|
|
// urem C, (zext X) --> zext (urem C', X)
|
|
|
|
Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
|
|
|
|
: Builder.CreateBinOp(Opcode, TruncC, X);
|
|
|
|
return new ZExtInst(NarrowOp, Ty);
|
|
|
|
}
|
|
|
|
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2013-07-05 05:17:49 +08:00
|
|
|
Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
|
|
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
|
|
|
2014-05-11 16:46:12 +08:00
|
|
|
if (Value *V = SimplifyVectorOp(I))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2014-05-11 16:46:12 +08:00
|
|
|
|
2017-06-09 11:21:29 +08:00
|
|
|
if (Value *V = SimplifyUDivInst(Op0, Op1, SQ.getWithInstruction(&I)))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2013-07-05 05:17:49 +08:00
|
|
|
|
|
|
|
// Handle the integer div common cases
|
|
|
|
if (Instruction *Common = commonIDivTransforms(I))
|
|
|
|
return Common;
|
|
|
|
|
Revert r185257 (InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms)
I'm reverting this commit because:
1. As discussed during review, it needs to be rewritten (to avoid creating and
then deleting instructions).
2. This is causing optimizer crashes. Specifically, I'm seeing things like
this:
While deleting: i1 %
Use still stuck around after Def is destroyed: <badref> = select i1 <badref>, i32 0, i32 1
opt: /src/llvm-trunk/lib/IR/Value.cpp:79: virtual llvm::Value::~Value(): Assertion `use_empty() && "Uses remain when a value is destroyed!"' failed.
I'd guess that these will go away once we're no longer creating/deleting
instructions here, but just in case, I'm adding a regression test.
Because the code is bring rewritten, I've just XFAIL'd the original regression test. Original commit message:
InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms
Real world code sometimes has the denominator of a 'udiv' be a
'select'. LLVM can handle such cases but only when the 'select'
operands are symmetric in structure (both select operands are a constant
power of two or a left shift, etc.). This falls apart if we are dealt a
'udiv' where the code is not symetric or if the select operands lead us
to more select instructions.
Instead, we should treat the LHS and each select operand as a distinct
divide operation and try to optimize them independently. If we can
to simplify each operation, then we can replace the 'udiv' with, say, a
'lshr' that has a new select with a bunch of new operands for the
select.
llvm-svn: 185415
2013-07-02 13:21:11 +08:00
|
|
|
// (x lshr C1) udiv C2 --> x udiv (C2 << C1)
|
2014-10-14 05:48:30 +08:00
|
|
|
{
|
Revert r185257 (InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms)
I'm reverting this commit because:
1. As discussed during review, it needs to be rewritten (to avoid creating and
then deleting instructions).
2. This is causing optimizer crashes. Specifically, I'm seeing things like
this:
While deleting: i1 %
Use still stuck around after Def is destroyed: <badref> = select i1 <badref>, i32 0, i32 1
opt: /src/llvm-trunk/lib/IR/Value.cpp:79: virtual llvm::Value::~Value(): Assertion `use_empty() && "Uses remain when a value is destroyed!"' failed.
I'd guess that these will go away once we're no longer creating/deleting
instructions here, but just in case, I'm adding a regression test.
Because the code is bring rewritten, I've just XFAIL'd the original regression test. Original commit message:
InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms
Real world code sometimes has the denominator of a 'udiv' be a
'select'. LLVM can handle such cases but only when the 'select'
operands are symmetric in structure (both select operands are a constant
power of two or a left shift, etc.). This falls apart if we are dealt a
'udiv' where the code is not symetric or if the select operands lead us
to more select instructions.
Instead, we should treat the LHS and each select operand as a distinct
divide operation and try to optimize them independently. If we can
to simplify each operation, then we can replace the 'udiv' with, say, a
'lshr' that has a new select with a bunch of new operands for the
select.
llvm-svn: 185415
2013-07-02 13:21:11 +08:00
|
|
|
Value *X;
|
2014-10-14 05:48:30 +08:00
|
|
|
const APInt *C1, *C2;
|
|
|
|
if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) &&
|
|
|
|
match(Op1, m_APInt(C2))) {
|
|
|
|
bool Overflow;
|
|
|
|
APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
|
2014-11-23 02:16:54 +08:00
|
|
|
if (!Overflow) {
|
|
|
|
bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
|
|
|
|
BinaryOperator *BO = BinaryOperator::CreateUDiv(
|
2014-10-14 05:48:30 +08:00
|
|
|
X, ConstantInt::get(X->getType(), C2ShlC1));
|
2014-11-23 02:16:54 +08:00
|
|
|
if (IsExact)
|
|
|
|
BO->setIsExact();
|
|
|
|
return BO;
|
|
|
|
}
|
2014-10-14 05:48:30 +08:00
|
|
|
}
|
Revert r185257 (InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms)
I'm reverting this commit because:
1. As discussed during review, it needs to be rewritten (to avoid creating and
then deleting instructions).
2. This is causing optimizer crashes. Specifically, I'm seeing things like
this:
While deleting: i1 %
Use still stuck around after Def is destroyed: <badref> = select i1 <badref>, i32 0, i32 1
opt: /src/llvm-trunk/lib/IR/Value.cpp:79: virtual llvm::Value::~Value(): Assertion `use_empty() && "Uses remain when a value is destroyed!"' failed.
I'd guess that these will go away once we're no longer creating/deleting
instructions here, but just in case, I'm adding a regression test.
Because the code is bring rewritten, I've just XFAIL'd the original regression test. Original commit message:
InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms
Real world code sometimes has the denominator of a 'udiv' be a
'select'. LLVM can handle such cases but only when the 'select'
operands are symmetric in structure (both select operands are a constant
power of two or a left shift, etc.). This falls apart if we are dealt a
'udiv' where the code is not symetric or if the select operands lead us
to more select instructions.
Instead, we should treat the LHS and each select operand as a distinct
divide operation and try to optimize them independently. If we can
to simplify each operation, then we can replace the 'udiv' with, say, a
'lshr' that has a new select with a bunch of new operands for the
select.
llvm-svn: 185415
2013-07-02 13:21:11 +08:00
|
|
|
}
|
|
|
|
|
2017-08-25 06:54:01 +08:00
|
|
|
if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
|
|
|
|
return NarrowDiv;
|
2011-05-01 02:16:07 +08:00
|
|
|
|
2013-07-05 05:17:49 +08:00
|
|
|
// (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
|
|
|
|
SmallVector<UDivFoldAction, 6> UDivActions;
|
|
|
|
if (visitUDivOperand(Op0, Op1, I, UDivActions))
|
|
|
|
for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
|
|
|
|
FoldUDivOperandCb Action = UDivActions[i].FoldAction;
|
|
|
|
Value *ActionOp1 = UDivActions[i].OperandToFold;
|
|
|
|
Instruction *Inst;
|
|
|
|
if (Action)
|
|
|
|
Inst = Action(Op0, ActionOp1, I, *this);
|
|
|
|
else {
|
|
|
|
// This action joins two actions together. The RHS of this action is
|
|
|
|
// simply the last action we processed, we saved the LHS action index in
|
|
|
|
// the joining action.
|
|
|
|
size_t SelectRHSIdx = i - 1;
|
|
|
|
Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
|
|
|
|
size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
|
|
|
|
Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
|
|
|
|
Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
|
|
|
|
SelectLHS, SelectRHS);
|
|
|
|
}
|
|
|
|
|
|
|
|
// If this is the last action to process, return it to the InstCombiner.
|
|
|
|
// Otherwise, we insert it before the UDiv and record it so that we may
|
|
|
|
// use it as part of a joining action (i.e., a SelectInst).
|
|
|
|
if (e - i != 1) {
|
|
|
|
Inst->insertBefore(&I);
|
|
|
|
UDivActions[i].FoldResult = Inst;
|
|
|
|
} else
|
|
|
|
return Inst;
|
|
|
|
}
|
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
|
|
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
|
|
|
2014-05-11 16:46:12 +08:00
|
|
|
if (Value *V = SimplifyVectorOp(I))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2014-05-11 16:46:12 +08:00
|
|
|
|
2017-06-09 11:21:29 +08:00
|
|
|
if (Value *V = SimplifySDivInst(Op0, Op1, SQ.getWithInstruction(&I)))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2011-01-29 00:51:11 +08:00
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
// Handle the integer div common cases
|
|
|
|
if (Instruction *Common = commonIDivTransforms(I))
|
|
|
|
return Common;
|
|
|
|
|
2016-06-28 01:25:57 +08:00
|
|
|
const APInt *Op1C;
|
2016-06-28 02:38:40 +08:00
|
|
|
if (match(Op1, m_APInt(Op1C))) {
|
|
|
|
// sdiv X, -1 == -X
|
|
|
|
if (Op1C->isAllOnesValue())
|
|
|
|
return BinaryOperator::CreateNeg(Op0);
|
|
|
|
|
|
|
|
// sdiv exact X, C --> ashr exact X, log2(C)
|
|
|
|
if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) {
|
|
|
|
Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2());
|
|
|
|
return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
|
|
|
|
}
|
2016-06-28 06:27:11 +08:00
|
|
|
|
|
|
|
// If the dividend is sign-extended and the constant divisor is small enough
|
|
|
|
// to fit in the source type, shrink the division to the narrower type:
|
|
|
|
// (sext X) sdiv C --> sext (X sdiv C)
|
|
|
|
Value *Op0Src;
|
|
|
|
if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
|
|
|
|
Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
|
|
|
|
|
|
|
|
// In the general case, we need to make sure that the dividend is not the
|
|
|
|
// minimum signed value because dividing that by -1 is UB. But here, we
|
|
|
|
// know that the -1 divisor case is already handled above.
|
|
|
|
|
|
|
|
Constant *NarrowDivisor =
|
|
|
|
ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
|
2017-07-08 07:16:26 +08:00
|
|
|
Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
|
2016-06-28 06:27:11 +08:00
|
|
|
return new SExtInst(NarrowOp, Op0->getType());
|
|
|
|
}
|
2014-01-19 23:24:22 +08:00
|
|
|
}
|
2010-01-05 14:09:35 +08:00
|
|
|
|
2014-01-19 23:24:22 +08:00
|
|
|
if (Constant *RHS = dyn_cast<Constant>(Op1)) {
|
2014-07-02 14:42:13 +08:00
|
|
|
// X/INT_MIN -> X == INT_MIN
|
|
|
|
if (RHS->isMinSignedValue())
|
2017-07-08 07:16:26 +08:00
|
|
|
return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType());
|
2014-07-02 14:42:13 +08:00
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
// -X/C --> X/-C provided the negation doesn't overflow.
|
2014-11-23 04:00:34 +08:00
|
|
|
Value *X;
|
|
|
|
if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
|
|
|
|
auto *BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS));
|
|
|
|
BO->setIsExact(I.isExact());
|
|
|
|
return BO;
|
|
|
|
}
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// If the sign bits of both operands are zero (i.e. we can prove they are
|
|
|
|
// unsigned inputs), turn this into a udiv.
|
2017-04-21 00:56:25 +08:00
|
|
|
APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
|
2017-04-17 09:51:19 +08:00
|
|
|
if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
|
|
|
|
if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
|
|
|
|
// X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
|
|
|
|
auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
|
|
|
|
BO->setIsExact(I.isExact());
|
|
|
|
return BO;
|
|
|
|
}
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2017-05-26 05:51:12 +08:00
|
|
|
if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
|
2017-04-17 09:51:19 +08:00
|
|
|
// X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
|
|
|
|
// Safe because the only negative value (1 << Y) can take on is
|
|
|
|
// INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
|
|
|
|
// the sign bit set.
|
|
|
|
auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
|
|
|
|
BO->setIsExact(I.isExact());
|
|
|
|
return BO;
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
}
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
2018-02-21 07:51:16 +08:00
|
|
|
/// Remove negation and try to convert division into multiplication.
|
2018-02-21 00:08:15 +08:00
|
|
|
static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
|
|
|
|
Constant *C;
|
|
|
|
if (!match(I.getOperand(1), m_Constant(C)))
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2014-01-19 21:36:27 +08:00
|
|
|
|
2018-02-21 07:51:16 +08:00
|
|
|
// -X / C --> X / -C
|
|
|
|
Value *X;
|
|
|
|
if (match(I.getOperand(0), m_FNeg(m_Value(X))))
|
2018-02-22 06:18:55 +08:00
|
|
|
return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
|
2018-02-21 07:51:16 +08:00
|
|
|
|
2018-02-21 00:08:15 +08:00
|
|
|
// If the constant divisor has an exact inverse, this is always safe. If not,
|
|
|
|
// then we can still create a reciprocal if fast-math-flags allow it and the
|
|
|
|
// constant is a regular number (not zero, infinite, or denormal).
|
|
|
|
if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
|
|
|
|
return nullptr;
|
2013-01-15 06:48:41 +08:00
|
|
|
|
2018-02-21 00:08:15 +08:00
|
|
|
// Disallow denormal constants because we don't know what would happen
|
|
|
|
// on all targets.
|
|
|
|
// TODO: Use Intrinsic::canonicalize or let function attributes tell us that
|
|
|
|
// denorms are flushed?
|
|
|
|
auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
|
|
|
|
if (!RecipC->isNormalFP())
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2013-01-15 06:48:41 +08:00
|
|
|
|
2018-02-21 07:51:16 +08:00
|
|
|
// X / C --> X * (1 / C)
|
2018-02-22 06:18:55 +08:00
|
|
|
return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
|
2013-01-15 06:48:41 +08:00
|
|
|
}
|
|
|
|
|
2018-02-21 08:01:45 +08:00
|
|
|
/// Remove negation and try to reassociate constant math.
|
2018-02-20 05:17:58 +08:00
|
|
|
static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
|
2018-02-21 08:01:45 +08:00
|
|
|
Constant *C;
|
|
|
|
if (!match(I.getOperand(0), m_Constant(C)))
|
2018-02-20 05:17:58 +08:00
|
|
|
return nullptr;
|
|
|
|
|
2018-02-21 08:01:45 +08:00
|
|
|
// C / -X --> -C / X
|
2018-02-20 05:17:58 +08:00
|
|
|
Value *X;
|
2018-02-22 06:18:55 +08:00
|
|
|
if (match(I.getOperand(1), m_FNeg(m_Value(X))))
|
|
|
|
return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
|
2018-02-21 08:01:45 +08:00
|
|
|
|
|
|
|
if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
// Try to reassociate C / X expressions where X includes another constant.
|
2018-02-20 05:17:58 +08:00
|
|
|
Constant *C2, *NewC = nullptr;
|
|
|
|
if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
|
2018-02-21 08:01:45 +08:00
|
|
|
// C / (X * C2) --> (C / C2) / X
|
|
|
|
NewC = ConstantExpr::getFDiv(C, C2);
|
2018-02-20 05:17:58 +08:00
|
|
|
} else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
|
2018-02-21 08:01:45 +08:00
|
|
|
// C / (X / C2) --> (C * C2) / X
|
|
|
|
NewC = ConstantExpr::getFMul(C, C2);
|
2018-02-20 05:17:58 +08:00
|
|
|
}
|
|
|
|
// Disallow denormal constants because we don't know what would happen
|
|
|
|
// on all targets.
|
|
|
|
// TODO: Use Intrinsic::canonicalize or let function attributes tell us that
|
|
|
|
// denorms are flushed?
|
|
|
|
if (!NewC || !NewC->isNormalFP())
|
|
|
|
return nullptr;
|
|
|
|
|
2018-02-22 06:18:55 +08:00
|
|
|
return BinaryOperator::CreateFDivFMF(NewC, X, &I);
|
2018-02-20 05:17:58 +08:00
|
|
|
}
|
|
|
|
|
2011-01-30 01:50:27 +08:00
|
|
|
Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
|
|
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
|
|
|
2014-05-11 16:46:12 +08:00
|
|
|
if (Value *V = SimplifyVectorOp(I))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2014-05-11 16:46:12 +08:00
|
|
|
|
2017-06-09 11:21:29 +08:00
|
|
|
if (Value *V = SimplifyFDivInst(Op0, Op1, I.getFastMathFlags(),
|
|
|
|
SQ.getWithInstruction(&I)))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2011-01-30 01:50:27 +08:00
|
|
|
|
2018-02-21 07:51:16 +08:00
|
|
|
if (Instruction *R = foldFDivConstantDivisor(I))
|
|
|
|
return R;
|
2018-02-20 07:09:03 +08:00
|
|
|
|
2018-02-21 07:51:16 +08:00
|
|
|
if (Instruction *R = foldFDivConstantDividend(I))
|
|
|
|
return R;
|
2018-02-15 07:04:17 +08:00
|
|
|
|
2013-07-20 15:13:13 +08:00
|
|
|
if (isa<Constant>(Op0))
|
|
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
|
|
|
|
if (Instruction *R = FoldOpIntoSelect(I, SI))
|
|
|
|
return R;
|
|
|
|
|
2018-02-21 01:14:53 +08:00
|
|
|
if (isa<Constant>(Op1))
|
2013-07-20 15:13:13 +08:00
|
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
|
|
|
|
if (Instruction *R = FoldOpIntoSelect(I, SI))
|
|
|
|
return R;
|
2013-01-15 06:48:41 +08:00
|
|
|
|
2018-02-21 00:52:17 +08:00
|
|
|
if (I.isFast()) {
|
2013-01-15 06:48:41 +08:00
|
|
|
Value *X, *Y;
|
2018-02-17 01:52:32 +08:00
|
|
|
if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
|
|
|
|
(!isa<Constant>(Y) || !isa<Constant>(Op1))) {
|
|
|
|
// (X / Y) / Z => X / (Y * Z)
|
|
|
|
Value *YZ = Builder.CreateFMul(Y, Op1);
|
|
|
|
if (auto *YZInst = dyn_cast<Instruction>(YZ)) {
|
|
|
|
FastMathFlags FMFIntersect = I.getFastMathFlags();
|
|
|
|
FMFIntersect &= cast<Instruction>(Op0)->getFastMathFlags();
|
|
|
|
YZInst->setFastMathFlags(FMFIntersect);
|
2013-01-15 06:48:41 +08:00
|
|
|
}
|
2018-02-22 06:18:55 +08:00
|
|
|
return BinaryOperator::CreateFDivFMF(X, YZ, &I);
|
2013-01-15 06:48:41 +08:00
|
|
|
}
|
2018-02-17 01:52:32 +08:00
|
|
|
if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
|
|
|
|
(!isa<Constant>(Y) || !isa<Constant>(Op0))) {
|
|
|
|
// Z / (X / Y) => (Y * Z) / X
|
|
|
|
Value *YZ = Builder.CreateFMul(Y, Op0);
|
|
|
|
if (auto *YZInst = dyn_cast<Instruction>(YZ)) {
|
|
|
|
FastMathFlags FMFIntersect = I.getFastMathFlags();
|
|
|
|
FMFIntersect &= cast<Instruction>(Op1)->getFastMathFlags();
|
|
|
|
YZInst->setFastMathFlags(FMFIntersect);
|
|
|
|
}
|
2018-02-22 06:18:55 +08:00
|
|
|
return BinaryOperator::CreateFDivFMF(YZ, X, &I);
|
2011-03-30 23:42:35 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-02-15 23:07:12 +08:00
|
|
|
if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
|
2018-02-17 00:13:20 +08:00
|
|
|
// sin(X) / cos(X) -> tan(X)
|
|
|
|
// cos(X) / sin(X) -> 1/tan(X) (cotangent)
|
|
|
|
Value *X;
|
|
|
|
bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
|
|
|
|
match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
|
|
|
|
bool IsCot =
|
|
|
|
!IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
|
|
|
|
match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
|
|
|
|
|
|
|
|
if ((IsTan || IsCot) && hasUnaryFloatFn(&TLI, I.getType(), LibFunc_tan,
|
|
|
|
LibFunc_tanf, LibFunc_tanl)) {
|
|
|
|
IRBuilder<> B(&I);
|
|
|
|
IRBuilder<>::FastMathFlagGuard FMFGuard(B);
|
|
|
|
B.setFastMathFlags(I.getFastMathFlags());
|
|
|
|
AttributeList Attrs = CallSite(Op0).getCalledFunction()->getAttributes();
|
|
|
|
Value *Res = emitUnaryFloatFnCall(X, TLI.getName(LibFunc_tan), B, Attrs);
|
|
|
|
if (IsCot)
|
|
|
|
Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
|
|
|
|
return replaceInstUsesWith(I, Res);
|
2018-01-11 14:33:00 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-02-13 02:38:35 +08:00
|
|
|
// -X / -Y -> X / Y
|
|
|
|
Value *X, *Y;
|
|
|
|
if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) {
|
|
|
|
I.setOperand(0, X);
|
|
|
|
I.setOperand(1, Y);
|
2017-01-11 07:08:54 +08:00
|
|
|
return &I;
|
|
|
|
}
|
|
|
|
|
2018-02-13 03:39:21 +08:00
|
|
|
// X / (X * Y) --> 1.0 / Y
|
|
|
|
// Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
|
|
|
|
// We can ignore the possibility that X is infinity because INF/INF is NaN.
|
|
|
|
if (I.hasNoNaNs() && I.hasAllowReassoc() &&
|
|
|
|
match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
|
|
|
|
I.setOperand(0, ConstantFP::get(I.getType(), 1.0));
|
|
|
|
I.setOperand(1, Y);
|
|
|
|
return &I;
|
|
|
|
}
|
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2011-01-30 01:50:27 +08:00
|
|
|
}
|
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
/// This function implements the transforms common to both integer remainder
|
|
|
|
/// instructions (urem and srem). It is called by the visitors to those integer
|
|
|
|
/// remainder instructions.
|
|
|
|
/// @brief Common integer remainder transforms
|
|
|
|
Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
|
|
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
|
|
|
Carve out a place in instcombine to put transformations which work knowing that their
result is non-zero. Implement an example optimization (PR9814), which allows us to
transform:
A / ((1 << B) >>u 2)
into:
A >>u (B-2)
which we compile into:
_divu3: ## @divu3
leal -2(%rsi), %ecx
shrl %cl, %edi
movl %edi, %eax
ret
instead of:
_divu3: ## @divu3
movb %sil, %cl
movl $1, %esi
shll %cl, %esi
shrl $2, %esi
movl %edi, %eax
xorl %edx, %edx
divl %esi, %eax
ret
llvm-svn: 131860
2011-05-23 02:18:41 +08:00
|
|
|
// The RHS is known non-zero.
|
2015-03-10 10:37:25 +08:00
|
|
|
if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
|
Carve out a place in instcombine to put transformations which work knowing that their
result is non-zero. Implement an example optimization (PR9814), which allows us to
transform:
A / ((1 << B) >>u 2)
into:
A >>u (B-2)
which we compile into:
_divu3: ## @divu3
leal -2(%rsi), %ecx
shrl %cl, %edi
movl %edi, %eax
ret
instead of:
_divu3: ## @divu3
movb %sil, %cl
movl $1, %esi
shll %cl, %esi
shrl $2, %esi
movl %edi, %eax
xorl %edx, %edx
divl %esi, %eax
ret
llvm-svn: 131860
2011-05-23 02:18:41 +08:00
|
|
|
I.setOperand(1, V);
|
|
|
|
return &I;
|
|
|
|
}
|
|
|
|
|
2011-05-03 00:27:02 +08:00
|
|
|
// Handle cases involving: rem X, (select Cond, Y, Z)
|
2017-10-07 07:20:16 +08:00
|
|
|
if (simplifyDivRemOfSelectWithZeroOp(I))
|
2011-05-03 00:27:02 +08:00
|
|
|
return &I;
|
2010-01-05 14:09:35 +08:00
|
|
|
|
2014-01-19 23:24:22 +08:00
|
|
|
if (isa<Constant>(Op1)) {
|
2010-01-05 14:09:35 +08:00
|
|
|
if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
|
|
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
|
|
|
|
if (Instruction *R = FoldOpIntoSelect(I, SI))
|
|
|
|
return R;
|
2017-04-15 03:20:12 +08:00
|
|
|
} else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
|
2016-06-06 05:17:04 +08:00
|
|
|
const APInt *Op1Int;
|
|
|
|
if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
|
|
|
|
(I.getOpcode() == Instruction::URem ||
|
|
|
|
!Op1Int->isMinSignedValue())) {
|
2017-04-15 03:20:12 +08:00
|
|
|
// foldOpIntoPhi will speculate instructions to the end of the PHI's
|
2016-06-06 05:17:04 +08:00
|
|
|
// predecessor blocks, so do this only if we know the srem or urem
|
|
|
|
// will not fault.
|
2017-04-15 03:20:12 +08:00
|
|
|
if (Instruction *NV = foldOpIntoPhi(I, PN))
|
2016-06-06 05:17:04 +08:00
|
|
|
return NV;
|
|
|
|
}
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// See if we can fold away this rem instruction.
|
|
|
|
if (SimplifyDemandedInstructionBits(I))
|
|
|
|
return &I;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
Instruction *InstCombiner::visitURem(BinaryOperator &I) {
|
|
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
|
|
|
2014-05-11 16:46:12 +08:00
|
|
|
if (Value *V = SimplifyVectorOp(I))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2014-05-11 16:46:12 +08:00
|
|
|
|
2017-06-09 11:21:29 +08:00
|
|
|
if (Value *V = SimplifyURemInst(Op0, Op1, SQ.getWithInstruction(&I)))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2011-05-03 00:27:02 +08:00
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
if (Instruction *common = commonIRemTransforms(I))
|
|
|
|
return common;
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2017-08-25 06:54:01 +08:00
|
|
|
if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
|
|
|
|
return NarrowRem;
|
2013-05-12 08:07:05 +08:00
|
|
|
|
2013-05-11 17:01:28 +08:00
|
|
|
// X urem Y -> X and Y-1, where Y is a power of 2,
|
2017-05-26 05:51:12 +08:00
|
|
|
if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
|
2011-02-10 13:36:31 +08:00
|
|
|
Constant *N1 = Constant::getAllOnesValue(I.getType());
|
2017-07-08 07:16:26 +08:00
|
|
|
Value *Add = Builder.CreateAdd(Op1, N1);
|
2011-02-10 13:36:31 +08:00
|
|
|
return BinaryOperator::CreateAnd(Op0, Add);
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
2013-07-13 09:16:47 +08:00
|
|
|
// 1 urem X -> zext(X != 1)
|
|
|
|
if (match(Op0, m_One())) {
|
2017-07-08 07:16:26 +08:00
|
|
|
Value *Cmp = Builder.CreateICmpNE(Op1, Op0);
|
|
|
|
Value *Ext = Builder.CreateZExt(Cmp, I.getType());
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Ext);
|
2013-07-13 09:16:47 +08:00
|
|
|
}
|
|
|
|
|
2016-09-23 06:36:26 +08:00
|
|
|
// X urem C -> X < C ? X : X - C, where C >= signbit.
|
2018-02-09 02:36:01 +08:00
|
|
|
if (match(Op1, m_Negative())) {
|
2017-07-08 07:16:26 +08:00
|
|
|
Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
|
|
|
|
Value *Sub = Builder.CreateSub(Op0, Op1);
|
2016-09-23 06:36:26 +08:00
|
|
|
return SelectInst::Create(Cmp, Op0, Sub);
|
|
|
|
}
|
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
|
|
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
|
|
|
2014-05-11 16:46:12 +08:00
|
|
|
if (Value *V = SimplifyVectorOp(I))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2014-05-11 16:46:12 +08:00
|
|
|
|
2017-06-09 11:21:29 +08:00
|
|
|
if (Value *V = SimplifySRemInst(Op0, Op1, SQ.getWithInstruction(&I)))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2011-05-03 00:27:02 +08:00
|
|
|
|
2010-01-05 14:09:35 +08:00
|
|
|
// Handle the integer rem common cases
|
|
|
|
if (Instruction *Common = commonIRemTransforms(I))
|
|
|
|
return Common;
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2014-10-14 06:37:51 +08:00
|
|
|
{
|
|
|
|
const APInt *Y;
|
|
|
|
// X % -Y -> X % Y
|
2018-02-09 03:00:45 +08:00
|
|
|
if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) {
|
2010-01-05 14:09:35 +08:00
|
|
|
Worklist.AddValue(I.getOperand(1));
|
2014-10-14 06:37:51 +08:00
|
|
|
I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
|
2010-01-05 14:09:35 +08:00
|
|
|
return &I;
|
|
|
|
}
|
2014-10-14 06:37:51 +08:00
|
|
|
}
|
2010-01-05 14:09:35 +08:00
|
|
|
|
|
|
|
// If the sign bits of both operands are zero (i.e. we can prove they are
|
|
|
|
// unsigned inputs), turn this into a urem.
|
2017-04-21 00:56:25 +08:00
|
|
|
APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
|
2017-04-17 09:51:24 +08:00
|
|
|
if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
|
|
|
|
MaskedValueIsZero(Op0, Mask, 0, &I)) {
|
|
|
|
// X srem Y -> X urem Y, iff X and Y don't have sign bit set
|
|
|
|
return BinaryOperator::CreateURem(Op0, Op1, I.getName());
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// If it's a constant vector, flip any negative values positive.
|
2012-01-27 11:08:05 +08:00
|
|
|
if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
|
|
|
|
Constant *C = cast<Constant>(Op1);
|
|
|
|
unsigned VWidth = C->getType()->getVectorNumElements();
|
2010-01-05 14:09:35 +08:00
|
|
|
|
|
|
|
bool hasNegative = false;
|
2012-01-27 11:08:05 +08:00
|
|
|
bool hasMissing = false;
|
|
|
|
for (unsigned i = 0; i != VWidth; ++i) {
|
|
|
|
Constant *Elt = C->getAggregateElement(i);
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!Elt) {
|
2012-01-27 11:08:05 +08:00
|
|
|
hasMissing = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
|
2011-07-15 14:08:15 +08:00
|
|
|
if (RHS->isNegative())
|
2010-01-05 14:09:35 +08:00
|
|
|
hasNegative = true;
|
2012-01-27 11:08:05 +08:00
|
|
|
}
|
2010-01-05 14:09:35 +08:00
|
|
|
|
2012-01-27 11:08:05 +08:00
|
|
|
if (hasNegative && !hasMissing) {
|
2012-01-25 14:02:56 +08:00
|
|
|
SmallVector<Constant *, 16> Elts(VWidth);
|
2010-01-05 14:09:35 +08:00
|
|
|
for (unsigned i = 0; i != VWidth; ++i) {
|
2012-02-07 05:56:39 +08:00
|
|
|
Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
|
2012-01-27 11:08:05 +08:00
|
|
|
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
|
2011-07-15 14:08:15 +08:00
|
|
|
if (RHS->isNegative())
|
2010-01-05 14:09:35 +08:00
|
|
|
Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Constant *NewRHSV = ConstantVector::get(Elts);
|
2012-01-27 11:08:05 +08:00
|
|
|
if (NewRHSV != C) { // Don't loop on -MININT
|
2010-01-05 14:09:35 +08:00
|
|
|
Worklist.AddValue(I.getOperand(1));
|
|
|
|
I.setOperand(1, NewRHSV);
|
|
|
|
return &I;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-05 14:09:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
|
2011-05-03 00:27:02 +08:00
|
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
2010-01-05 14:09:35 +08:00
|
|
|
|
2014-05-11 16:46:12 +08:00
|
|
|
if (Value *V = SimplifyVectorOp(I))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2014-05-11 16:46:12 +08:00
|
|
|
|
2017-06-09 11:21:29 +08:00
|
|
|
if (Value *V = SimplifyFRemInst(Op0, Op1, I.getFastMathFlags(),
|
|
|
|
SQ.getWithInstruction(&I)))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2011-05-03 00:27:02 +08:00
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2011-05-03 00:27:02 +08:00
|
|
|
}
|