llvm-project/polly/lib/ScheduleOptimizer.cpp

445 lines
15 KiB
C++
Raw Normal View History

//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass the isl to calculate a schedule that is optimized for parallelism
// and tileablility. The algorithm used in isl is an optimized version of the
// algorithm described in following paper:
//
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
// Design and Implementation, PLDI 08, pages 101113. ACM, 2008.
//===----------------------------------------------------------------------===//
#include "polly/ScheduleOptimizer.h"
#include "polly/Cloog.h"
#include "polly/LinkAllPasses.h"
#include "polly/CodeGeneration.h"
#include "polly/Support/GICHelper.h"
#include "polly/Dependences.h"
#include "polly/ScopInfo.h"
#include "isl/space.h"
#include "isl/map.h"
#include "isl/constraint.h"
#include "isl/schedule.h"
#include "isl/band.h"
#define DEBUG_TYPE "polly-opt-isl"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
using namespace polly;
namespace polly {
bool DisablePollyTiling;
}
static cl::opt<bool, true>
DisableTiling("polly-no-tiling",
cl::desc("Disable tiling in the scheduler"), cl::Hidden,
cl::location(polly::DisablePollyTiling), cl::init(false));
namespace {
class IslScheduleOptimizer : public ScopPass {
public:
static char ID;
explicit IslScheduleOptimizer() : ScopPass(ID) {}
virtual bool runOnScop(Scop &S);
void printScop(llvm::raw_ostream &OS) const;
void getAnalysisUsage(AnalysisUsage &AU) const;
};
}
char IslScheduleOptimizer::ID = 0;
static int getSingleMap(__isl_take isl_map *map, void *user) {
isl_map **singleMap = (isl_map **) user;
*singleMap = map;
return 0;
}
static void extendScattering(Scop &S, unsigned NewDimensions) {
for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) {
ScopStmt *Stmt = *SI;
if (Stmt->isFinalRead())
continue;
unsigned OldDimensions = Stmt->getNumScattering();
isl_space *Space;
isl_basic_map *ChangeScattering;
Space = isl_space_alloc(Stmt->getIslCtx(), 0, OldDimensions, NewDimensions);
ChangeScattering = isl_basic_map_universe(isl_space_copy(Space));
isl_local_space *LocalSpace = isl_local_space_from_space(Space);
for (unsigned i = 0; i < OldDimensions; i++) {
isl_constraint *c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
ChangeScattering = isl_basic_map_add_constraint(ChangeScattering, c);
}
for (unsigned i = OldDimensions; i < NewDimensions; i++) {
isl_constraint *c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, i, 1);
ChangeScattering = isl_basic_map_add_constraint(ChangeScattering, c);
}
isl_map *ChangeScatteringMap = isl_map_from_basic_map(ChangeScattering);
ChangeScatteringMap = isl_map_align_params(ChangeScatteringMap,
S.getParamSpace());
isl_map *NewScattering = isl_map_apply_range(Stmt->getScattering(),
ChangeScatteringMap);
Stmt->setScattering(NewScattering);
isl_local_space_free(LocalSpace);
}
}
// getTileMap - Create a map that describes a n-dimensonal tiling.
//
// getTileMap creates a map from a n-dimensional scattering space into an
// 2*n-dimensional scattering space. The map describes a rectangular tiling.
//
// Example:
// scheduleDimensions = 2, parameterDimensions = 1, tileSize = 32
//
// tileMap := [p0] -> {[s0, s1] -> [t0, t1, s0, s1]:
// t0 % 32 = 0 and t0 <= s0 < t0 + 32 and
// t1 % 32 = 0 and t1 <= s1 < t1 + 32}
//
// Before tiling:
//
// for (i = 0; i < N; i++)
// for (j = 0; j < M; j++)
// S(i,j)
//
// After tiling:
//
// for (t_i = 0; t_i < N; i+=32)
// for (t_j = 0; t_j < M; j+=32)
// for (i = t_i; i < min(t_i + 32, N); i++) | Unknown that N % 32 = 0
// for (j = t_j; j < t_j + 32; j++) | Known that M % 32 = 0
// S(i,j)
//
static isl_basic_map *getTileMap(isl_ctx *ctx, int scheduleDimensions,
isl_space *SpaceModel, int tileSize = 32) {
// We construct
//
// tileMap := [p0] -> {[s0, s1] -> [t0, t1, p0, p1, a0, a1]:
// s0 = a0 * 32 and s0 = p0 and t0 <= p0 < t0 + 32 and
// s1 = a1 * 32 and s1 = p1 and t1 <= p1 < t1 + 32}
//
// and project out the auxilary dimensions a0 and a1.
isl_space *Space = isl_space_alloc(ctx, 0, scheduleDimensions,
scheduleDimensions * 3);
isl_basic_map *tileMap = isl_basic_map_universe(isl_space_copy(Space));
isl_local_space *LocalSpace = isl_local_space_from_space(Space);
for (int x = 0; x < scheduleDimensions; x++) {
int sX = x;
int tX = x;
int pX = scheduleDimensions + x;
int aX = 2 * scheduleDimensions + x;
isl_constraint *c;
// sX = aX * tileSize;
c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, sX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, aX, -tileSize);
tileMap = isl_basic_map_add_constraint(tileMap, c);
// pX = sX;
c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_in, sX, -1);
tileMap = isl_basic_map_add_constraint(tileMap, c);
// tX <= pX
c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, tX, -1);
tileMap = isl_basic_map_add_constraint(tileMap, c);
// pX <= tX + (tileSize - 1)
c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, tX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, pX, -1);
isl_constraint_set_constant_si(c, tileSize - 1);
tileMap = isl_basic_map_add_constraint(tileMap, c);
}
// Project out auxilary dimensions.
//
// The auxilary dimensions are transformed into existentially quantified ones.
// This reduces the number of visible scattering dimensions and allows Cloog
// to produces better code.
tileMap = isl_basic_map_project_out(tileMap, isl_dim_out,
2 * scheduleDimensions,
scheduleDimensions);
isl_local_space_free(LocalSpace);
return tileMap;
}
// getScheduleForBand - Get the schedule for this band.
//
// In case tiling is enabled, the schedule of the band is tiled.
isl_union_map *getScheduleForBand(isl_band *Band) {
isl_union_map *PartialSchedule;
int Dimensions;
isl_ctx *ctx;
isl_space *Space;
isl_basic_map *TileMap;
isl_union_map *TileUMap;
PartialSchedule = isl_band_get_partial_schedule(Band);
if (DisableTiling)
return PartialSchedule;
ctx = isl_union_map_get_ctx(PartialSchedule);
Space = isl_union_map_get_space(PartialSchedule);
Dimensions = isl_band_n_member(Band);
TileMap = getTileMap(ctx, Dimensions, Space);
TileUMap = isl_union_map_from_map(isl_map_from_basic_map(TileMap));
TileUMap = isl_union_map_align_params(TileUMap, Space);
return isl_union_map_apply_range(PartialSchedule, TileUMap);
}
static isl_map *getPrevectorMap(isl_ctx *ctx, int vectorDimension,
int scheduleDimensions,
int parameterDimensions,
int vectorWidth = 4) {
assert (0 <= vectorDimension && vectorDimension < scheduleDimensions);
isl_space *Space = isl_space_alloc(ctx, parameterDimensions,
scheduleDimensions, scheduleDimensions + 2);
isl_basic_map *tilingMap = isl_basic_map_universe(isl_space_copy(Space));
isl_constraint *c;
isl_local_space *LocalSpace = isl_local_space_from_space(Space);
for (int i = 0; i < vectorDimension; i++) {
c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
isl_constraint_set_coefficient_si(c, isl_dim_out, i, 1);
tilingMap = isl_basic_map_add_constraint(tilingMap, c);
}
for (int i = vectorDimension + 1; i < scheduleDimensions; i++) {
c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
isl_constraint_set_coefficient_si(c, isl_dim_out, i, 1);
tilingMap = isl_basic_map_add_constraint(tilingMap, c);
}
int stepDimension = scheduleDimensions;
int auxilaryDimension = scheduleDimensions + 1;
c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, vectorDimension, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, auxilaryDimension,
-vectorWidth);
tilingMap = isl_basic_map_add_constraint(tilingMap, c);
c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_in, vectorDimension, -1);
isl_constraint_set_coefficient_si(c, isl_dim_out, stepDimension, 1);
tilingMap = isl_basic_map_add_constraint(tilingMap, c);
c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, vectorDimension, -1);
isl_constraint_set_coefficient_si(c, isl_dim_out, stepDimension, 1);
tilingMap = isl_basic_map_add_constraint(tilingMap, c);
c = isl_inequality_alloc(LocalSpace);
isl_constraint_set_coefficient_si(c, isl_dim_out, vectorDimension, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, stepDimension, -1);
isl_constraint_set_constant_si(c, vectorWidth- 1);
tilingMap = isl_basic_map_add_constraint(tilingMap, c);
// Project out auxilary dimensions (introduced to ensure 'ii % tileSize = 0')
//
// The real dimensions are transformed into existentially quantified ones.
// This reduces the number of visible scattering dimensions. Also, Cloog
// produces better code, if auxilary dimensions are existentially quantified.
tilingMap = isl_basic_map_project_out(tilingMap, isl_dim_out,
scheduleDimensions + 1, 1);
return isl_map_from_basic_map(tilingMap);
}
// getScheduleForBandList - Get the scheduling map for a list of bands.
//
// We walk recursively the forest of bands to combine the schedules of the
// individual bands to the overall schedule. In case tiling is requested,
// the individual bands are tiled.
static isl_union_map *getScheduleForBandList(isl_band_list *BandList) {
int NumBands;
isl_union_map *Schedule;
isl_ctx *ctx;
ctx = isl_band_list_get_ctx(BandList);
NumBands = isl_band_list_n_band(BandList);
Schedule = isl_union_map_empty(isl_space_params_alloc(ctx, 0));
for (int i = 0; i < NumBands; i++) {
isl_band *Band;
isl_union_map *PartialSchedule;
int ScheduleDimensions;
isl_space *Space;
Band = isl_band_list_get_band(BandList, i);
PartialSchedule = getScheduleForBand(Band);
ScheduleDimensions = isl_band_n_member(Band);
Space = isl_union_map_get_space(PartialSchedule);
if (isl_band_has_children(Band)) {
isl_band_list *Children;
isl_union_map *SuffixSchedule;
Children = isl_band_get_children(Band);
SuffixSchedule = getScheduleForBandList(Children);
PartialSchedule = isl_union_map_flat_range_product(PartialSchedule,
SuffixSchedule);
isl_band_list_free(Children);
} else if (EnablePollyVector) {
for (int i = ScheduleDimensions - 1 ; i >= 0 ; i--) {
if (isl_band_member_is_zero_distance(Band, i)) {
isl_map *TileMap;
isl_union_map *TileUMap;
TileMap = getPrevectorMap(ctx, ScheduleDimensions + i,
ScheduleDimensions * 2, 0);
TileUMap = isl_union_map_from_map(TileMap);
TileUMap = isl_union_map_align_params(TileUMap,
isl_space_copy(Space));
PartialSchedule = isl_union_map_apply_range(PartialSchedule,
TileUMap);
break;
}
}
}
Schedule = isl_union_map_union(Schedule, PartialSchedule);
isl_band_free(Band);
isl_space_free(Space);
}
return Schedule;
}
static isl_union_map *getScheduleMap(isl_schedule *Schedule) {
isl_band_list *BandList = isl_schedule_get_band_forest(Schedule);
isl_union_map *ScheduleMap = getScheduleForBandList(BandList);
isl_band_list_free(BandList);
return ScheduleMap;
}
bool IslScheduleOptimizer::runOnScop(Scop &S) {
Dependences *D = &getAnalysis<Dependences>();
// Build input data.
int dependencyKinds = Dependences::TYPE_RAW
| Dependences::TYPE_WAR
| Dependences::TYPE_WAW;
isl_union_map *validity = D->getDependences(dependencyKinds);
isl_union_map *proximity = D->getDependences(dependencyKinds);
isl_union_set *domain = NULL;
for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI)
if ((*SI)->isFinalRead())
continue;
else if (!domain)
domain = isl_union_set_from_set((*SI)->getDomain());
else
domain = isl_union_set_union(domain,
isl_union_set_from_set((*SI)->getDomain()));
if (!domain)
return false;
DEBUG(dbgs() << "\n\nCompute schedule from: ");
DEBUG(dbgs() << "Domain := "; isl_union_set_dump(domain); dbgs() << ";\n");
DEBUG(dbgs() << "Proximity := "; isl_union_map_dump(proximity);
dbgs() << ";\n");
DEBUG(dbgs() << "Validity := "; isl_union_map_dump(validity);
dbgs() << ";\n");
isl_schedule *schedule;
schedule = isl_union_set_compute_schedule(domain, validity, proximity);
DEBUG(dbgs() << "Computed schedule: ");
DEBUG(dbgs() << stringFromIslObj(schedule));
DEBUG(dbgs() << "Individual bands: ");
isl_union_map *ScheduleMap = getScheduleMap(schedule);
for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) {
ScopStmt *stmt = *SI;
if (stmt->isFinalRead())
continue;
isl_set *domain = stmt->getDomain();
isl_union_map *stmtBand;
stmtBand = isl_union_map_intersect_domain(isl_union_map_copy(ScheduleMap),
isl_union_set_from_set(domain));
isl_map *stmtSchedule;
isl_union_map_foreach_map(stmtBand, getSingleMap, &stmtSchedule);
stmt->setScattering(stmtSchedule);
isl_union_map_free(stmtBand);
}
isl_union_map_free(ScheduleMap);
isl_schedule_free(schedule);
unsigned maxScatDims = 0;
for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI)
maxScatDims = std::max((*SI)->getNumScattering(), maxScatDims);
extendScattering(S, maxScatDims);
return false;
}
void IslScheduleOptimizer::printScop(raw_ostream &OS) const {
}
void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<Dependences>();
}
INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false)
INITIALIZE_PASS_DEPENDENCY(Dependences)
INITIALIZE_PASS_DEPENDENCY(ScopInfo)
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false)
Pass* polly::createIslScheduleOptimizerPass() {
return new IslScheduleOptimizer();
}