llvm-project/lld/ELF/InputSection.cpp

930 lines
34 KiB
C++
Raw Normal View History

//===- InputSection.cpp ---------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "InputSection.h"
#include "Config.h"
#include "EhFrame.h"
#include "Error.h"
#include "InputFiles.h"
#include "LinkerScript.h"
#include "Memory.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "llvm/Object/Decompressor.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Path.h"
Parallelize uncompress() and splitIntoPieces(). Uncompressing section contents and spliting mergeable section contents into smaller chunks are heavy tasks. They scan entire section contents and do CPU-intensive tasks such as uncompressing zlib-compressed data or computing a hash value for each section piece. Luckily, these tasks are independent to each other, so we can do that in parallel_for_each. The number of input sections is large (as opposed to the number of output sections), so there's a large parallelism here. Actually the current design to call uncompress() and splitIntoPieces() in batch was chosen with doing this in mind. Basically what we need to do here is to replace `for` with `parallel_for_each`. It seems this patch improves latency significantly if linked programs contain debug info (which in turn contain lots of mergeable strings.) For example, the latency to link Clang (debug build) improved by 20% on my machine as shown below. Note that ld.gold took 19.2 seconds to do the same thing. Before: 30801.782712 task-clock (msec) # 3.652 CPUs utilized ( +- 2.59% ) 104,084 context-switches # 0.003 M/sec ( +- 1.02% ) 5,063 cpu-migrations # 0.164 K/sec ( +- 13.66% ) 2,528,130 page-faults # 0.082 M/sec ( +- 0.47% ) 85,317,809,130 cycles # 2.770 GHz ( +- 2.62% ) 67,352,463,373 stalled-cycles-frontend # 78.94% frontend cycles idle ( +- 3.06% ) <not supported> stalled-cycles-backend 44,295,945,493 instructions # 0.52 insns per cycle # 1.52 stalled cycles per insn ( +- 0.44% ) 8,572,384,877 branches # 278.308 M/sec ( +- 0.66% ) 141,806,726 branch-misses # 1.65% of all branches ( +- 0.13% ) 8.433424003 seconds time elapsed ( +- 1.20% ) After: 35523.764575 task-clock (msec) # 5.265 CPUs utilized ( +- 2.67% ) 159,107 context-switches # 0.004 M/sec ( +- 0.48% ) 8,123 cpu-migrations # 0.229 K/sec ( +- 23.34% ) 2,372,483 page-faults # 0.067 M/sec ( +- 0.36% ) 98,395,342,152 cycles # 2.770 GHz ( +- 2.62% ) 79,294,670,125 stalled-cycles-frontend # 80.59% frontend cycles idle ( +- 3.03% ) <not supported> stalled-cycles-backend 46,274,151,813 instructions # 0.47 insns per cycle # 1.71 stalled cycles per insn ( +- 0.47% ) 8,987,621,670 branches # 253.003 M/sec ( +- 0.60% ) 148,900,624 branch-misses # 1.66% of all branches ( +- 0.27% ) 6.747548004 seconds time elapsed ( +- 0.40% ) llvm-svn: 287946
2016-11-26 04:05:08 +08:00
#include <mutex>
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace llvm::sys;
using namespace lld;
2016-02-28 08:25:54 +08:00
using namespace lld::elf;
std::vector<InputSectionBase *> elf::InputSections;
// Returns a string to construct an error message.
std::string lld::toString(const InputSectionBase *Sec) {
return (toString(Sec->File) + ":(" + Sec->Name + ")").str();
}
template <class ELFT>
static ArrayRef<uint8_t> getSectionContents(elf::ObjectFile<ELFT> *File,
const typename ELFT::Shdr *Hdr) {
if (!File || Hdr->sh_type == SHT_NOBITS)
return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size);
return check(File->getObj().getSectionContents(Hdr));
}
InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags,
uint32_t Type, uint64_t Entsize,
uint32_t Link, uint32_t Info,
uint32_t Alignment, ArrayRef<uint8_t> Data,
StringRef Name, Kind SectionKind)
: SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info,
Link),
File(File), Data(Data), Repl(this) {
Live = !Config->GcSections || !(Flags & SHF_ALLOC);
Assigned = false;
NumRelocations = 0;
AreRelocsRela = false;
// The ELF spec states that a value of 0 means the section has
// no alignment constraits.
uint32_t V = std::max<uint64_t>(Alignment, 1);
if (!isPowerOf2_64(V))
fatal(toString(File) + ": section sh_addralign is not a power of 2");
this->Alignment = V;
}
// GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
// March 2017) fail to infer section types for sections starting with
// ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
// SHF_INIT_ARRAY. As a result, the following assembler directive
// creates ".init_array.100" with SHT_PROGBITS, for example.
//
// .section .init_array.100, "aw"
//
// This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
// incorrect inputs as if they were correct from the beginning.
static uint64_t getType(uint64_t Type, StringRef Name) {
if (Type == SHT_PROGBITS && Name.startswith(".init_array."))
return SHT_INIT_ARRAY;
if (Type == SHT_PROGBITS && Name.startswith(".fini_array."))
return SHT_FINI_ARRAY;
return Type;
}
template <class ELFT>
InputSectionBase::InputSectionBase(elf::ObjectFile<ELFT> *File,
const typename ELFT::Shdr *Hdr,
StringRef Name, Kind SectionKind)
: InputSectionBase(File, Hdr->sh_flags & ~SHF_INFO_LINK,
getType(Hdr->sh_type, Name), Hdr->sh_entsize,
Hdr->sh_link, Hdr->sh_info, Hdr->sh_addralign,
getSectionContents(File, Hdr), Name, SectionKind) {
// We reject object files having insanely large alignments even though
// they are allowed by the spec. I think 4GB is a reasonable limitation.
// We might want to relax this in the future.
if (Hdr->sh_addralign > UINT32_MAX)
fatal(toString(File) + ": section sh_addralign is too large");
}
size_t InputSectionBase::getSize() const {
if (auto *S = dyn_cast<SyntheticSection>(this))
return S->getSize();
return Data.size();
}
uint64_t InputSectionBase::getOffsetInFile() const {
const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart();
const uint8_t *SecStart = Data.begin();
return SecStart - FileStart;
}
uint64_t SectionBase::getOffset(uint64_t Offset) const {
switch (kind()) {
case Output: {
auto *OS = cast<OutputSection>(this);
// For output sections we treat offset -1 as the end of the section.
return Offset == uint64_t(-1) ? OS->Size : Offset;
}
case Regular:
return cast<InputSection>(this)->OutSecOff + Offset;
case Synthetic: {
auto *IS = cast<InputSection>(this);
// For synthetic sections we treat offset -1 as the end of the section.
return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset);
}
case EHFrame:
// The file crtbeginT.o has relocations pointing to the start of an empty
// .eh_frame that is known to be the first in the link. It does that to
// identify the start of the output .eh_frame.
return Offset;
case Merge:
const MergeInputSection *MS = cast<MergeInputSection>(this);
if (MS->MergeSec)
return MS->MergeSec->OutSecOff + MS->getOffset(Offset);
return MS->getOffset(Offset);
}
llvm_unreachable("invalid section kind");
}
OutputSection *SectionBase::getOutputSection() {
if (auto *IS = dyn_cast<InputSection>(this))
return IS->OutSec;
if (auto *MS = dyn_cast<MergeInputSection>(this))
return MS->MergeSec ? MS->MergeSec->OutSec : nullptr;
if (auto *EH = dyn_cast<EhInputSection>(this))
return EH->EHSec->OutSec;
return cast<OutputSection>(this);
}
Parallelize uncompress() and splitIntoPieces(). Uncompressing section contents and spliting mergeable section contents into smaller chunks are heavy tasks. They scan entire section contents and do CPU-intensive tasks such as uncompressing zlib-compressed data or computing a hash value for each section piece. Luckily, these tasks are independent to each other, so we can do that in parallel_for_each. The number of input sections is large (as opposed to the number of output sections), so there's a large parallelism here. Actually the current design to call uncompress() and splitIntoPieces() in batch was chosen with doing this in mind. Basically what we need to do here is to replace `for` with `parallel_for_each`. It seems this patch improves latency significantly if linked programs contain debug info (which in turn contain lots of mergeable strings.) For example, the latency to link Clang (debug build) improved by 20% on my machine as shown below. Note that ld.gold took 19.2 seconds to do the same thing. Before: 30801.782712 task-clock (msec) # 3.652 CPUs utilized ( +- 2.59% ) 104,084 context-switches # 0.003 M/sec ( +- 1.02% ) 5,063 cpu-migrations # 0.164 K/sec ( +- 13.66% ) 2,528,130 page-faults # 0.082 M/sec ( +- 0.47% ) 85,317,809,130 cycles # 2.770 GHz ( +- 2.62% ) 67,352,463,373 stalled-cycles-frontend # 78.94% frontend cycles idle ( +- 3.06% ) <not supported> stalled-cycles-backend 44,295,945,493 instructions # 0.52 insns per cycle # 1.52 stalled cycles per insn ( +- 0.44% ) 8,572,384,877 branches # 278.308 M/sec ( +- 0.66% ) 141,806,726 branch-misses # 1.65% of all branches ( +- 0.13% ) 8.433424003 seconds time elapsed ( +- 1.20% ) After: 35523.764575 task-clock (msec) # 5.265 CPUs utilized ( +- 2.67% ) 159,107 context-switches # 0.004 M/sec ( +- 0.48% ) 8,123 cpu-migrations # 0.229 K/sec ( +- 23.34% ) 2,372,483 page-faults # 0.067 M/sec ( +- 0.36% ) 98,395,342,152 cycles # 2.770 GHz ( +- 2.62% ) 79,294,670,125 stalled-cycles-frontend # 80.59% frontend cycles idle ( +- 3.03% ) <not supported> stalled-cycles-backend 46,274,151,813 instructions # 0.47 insns per cycle # 1.71 stalled cycles per insn ( +- 0.47% ) 8,987,621,670 branches # 253.003 M/sec ( +- 0.60% ) 148,900,624 branch-misses # 1.66% of all branches ( +- 0.27% ) 6.747548004 seconds time elapsed ( +- 0.40% ) llvm-svn: 287946
2016-11-26 04:05:08 +08:00
// Uncompress section contents. Note that this function is called
// from parallel_for_each, so it must be thread-safe.
void InputSectionBase::uncompress() {
Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data),
Config->IsLE, Config->Is64));
size_t Size = Dec.getDecompressedSize();
Parallelize uncompress() and splitIntoPieces(). Uncompressing section contents and spliting mergeable section contents into smaller chunks are heavy tasks. They scan entire section contents and do CPU-intensive tasks such as uncompressing zlib-compressed data or computing a hash value for each section piece. Luckily, these tasks are independent to each other, so we can do that in parallel_for_each. The number of input sections is large (as opposed to the number of output sections), so there's a large parallelism here. Actually the current design to call uncompress() and splitIntoPieces() in batch was chosen with doing this in mind. Basically what we need to do here is to replace `for` with `parallel_for_each`. It seems this patch improves latency significantly if linked programs contain debug info (which in turn contain lots of mergeable strings.) For example, the latency to link Clang (debug build) improved by 20% on my machine as shown below. Note that ld.gold took 19.2 seconds to do the same thing. Before: 30801.782712 task-clock (msec) # 3.652 CPUs utilized ( +- 2.59% ) 104,084 context-switches # 0.003 M/sec ( +- 1.02% ) 5,063 cpu-migrations # 0.164 K/sec ( +- 13.66% ) 2,528,130 page-faults # 0.082 M/sec ( +- 0.47% ) 85,317,809,130 cycles # 2.770 GHz ( +- 2.62% ) 67,352,463,373 stalled-cycles-frontend # 78.94% frontend cycles idle ( +- 3.06% ) <not supported> stalled-cycles-backend 44,295,945,493 instructions # 0.52 insns per cycle # 1.52 stalled cycles per insn ( +- 0.44% ) 8,572,384,877 branches # 278.308 M/sec ( +- 0.66% ) 141,806,726 branch-misses # 1.65% of all branches ( +- 0.13% ) 8.433424003 seconds time elapsed ( +- 1.20% ) After: 35523.764575 task-clock (msec) # 5.265 CPUs utilized ( +- 2.67% ) 159,107 context-switches # 0.004 M/sec ( +- 0.48% ) 8,123 cpu-migrations # 0.229 K/sec ( +- 23.34% ) 2,372,483 page-faults # 0.067 M/sec ( +- 0.36% ) 98,395,342,152 cycles # 2.770 GHz ( +- 2.62% ) 79,294,670,125 stalled-cycles-frontend # 80.59% frontend cycles idle ( +- 3.03% ) <not supported> stalled-cycles-backend 46,274,151,813 instructions # 0.47 insns per cycle # 1.71 stalled cycles per insn ( +- 0.47% ) 8,987,621,670 branches # 253.003 M/sec ( +- 0.60% ) 148,900,624 branch-misses # 1.66% of all branches ( +- 0.27% ) 6.747548004 seconds time elapsed ( +- 0.40% ) llvm-svn: 287946
2016-11-26 04:05:08 +08:00
char *OutputBuf;
{
static std::mutex Mu;
std::lock_guard<std::mutex> Lock(Mu);
OutputBuf = BAlloc.Allocate<char>(Size);
}
if (Error E = Dec.decompress({OutputBuf, Size}))
fatal(toString(this) +
": decompress failed: " + llvm::toString(std::move(E)));
Data = ArrayRef<uint8_t>((uint8_t *)OutputBuf, Size);
}
uint64_t SectionBase::getOffset(const DefinedRegular &Sym) const {
return getOffset(Sym.Value);
}
InputSectionBase *InputSectionBase::getLinkOrderDep() const {
if ((Flags & SHF_LINK_ORDER) && Link != 0)
return File->getSections()[Link];
return nullptr;
}
// Returns a source location string. Used to construct an error message.
template <class ELFT>
std::string InputSectionBase::getLocation(uint64_t Offset) {
// We don't have file for synthetic sections.
if (getFile<ELFT>() == nullptr)
return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")")
.str();
// First check if we can get desired values from debugging information.
std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset);
if (!LineInfo.empty())
return LineInfo;
// File->SourceFile contains STT_FILE symbol that contains a
// source file name. If it's missing, we use an object file name.
std::string SrcFile = getFile<ELFT>()->SourceFile;
if (SrcFile.empty())
SrcFile = toString(File);
// Find a function symbol that encloses a given location.
for (SymbolBody *B : getFile<ELFT>()->getSymbols())
if (auto *D = dyn_cast<DefinedRegular>(B))
if (D->Section == this && D->Type == STT_FUNC)
if (D->Value <= Offset && Offset < D->Value + D->Size)
return SrcFile + ":(function " + toString(*D) + ")";
// If there's no symbol, print out the offset in the section.
return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str();
}
// Returns a source location string. This function is intended to be
// used for constructing an error message. The returned message looks
// like this:
//
// foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
//
// Returns an empty string if there's no way to get line info.
template <class ELFT> std::string InputSectionBase::getSrcMsg(uint64_t Offset) {
// Synthetic sections don't have input files.
elf::ObjectFile<ELFT> *File = getFile<ELFT>();
if (!File)
return "";
Optional<DILineInfo> Info = File->getDILineInfo(this, Offset);
// File->SourceFile contains STT_FILE symbol, and that is a last resort.
if (!Info)
return File->SourceFile;
std::string Path = Info->FileName;
std::string Filename = path::filename(Path);
std::string Lineno = ":" + std::to_string(Info->Line);
if (Filename == Path)
return Filename + Lineno;
return Filename + Lineno + " (" + Path + Lineno + ")";
}
// Returns a filename string along with an optional section name. This
// function is intended to be used for constructing an error
// message. The returned message looks like this:
//
// path/to/foo.o:(function bar)
//
// or
//
// path/to/foo.o:(function bar) in archive path/to/bar.a
template <class ELFT> std::string InputSectionBase::getObjMsg(uint64_t Off) {
// Synthetic sections don't have input files.
elf::ObjectFile<ELFT> *File = getFile<ELFT>();
std::string Filename = File ? File->getName() : "(internal)";
std::string Archive;
if (!File->ArchiveName.empty())
Archive = (" in archive " + File->ArchiveName).str();
// Find a symbol that encloses a given location.
for (SymbolBody *B : getFile<ELFT>()->getSymbols())
if (auto *D = dyn_cast<DefinedRegular>(B))
if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size)
return Filename + ":(" + toString(*D) + ")" + Archive;
// If there's no symbol, print out the offset in the section.
return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive)
.str();
}
InputSectionBase InputSectionBase::Discarded;
InputSection::InputSection(uint64_t Flags, uint32_t Type, uint32_t Alignment,
ArrayRef<uint8_t> Data, StringRef Name, Kind K)
: InputSectionBase(nullptr, Flags, Type,
/*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data,
Name, K) {}
template <class ELFT>
InputSection::InputSection(elf::ObjectFile<ELFT> *F,
const typename ELFT::Shdr *Header, StringRef Name)
: InputSectionBase(F, Header, Name, InputSectionBase::Regular) {}
bool InputSection::classof(const SectionBase *S) {
return S->kind() == SectionBase::Regular ||
S->kind() == SectionBase::Synthetic;
}
bool InputSectionBase::classof(const SectionBase *S) {
return S->kind() != Output;
}
InputSectionBase *InputSection::getRelocatedSection() {
assert(this->Type == SHT_RELA || this->Type == SHT_REL);
ArrayRef<InputSectionBase *> Sections = this->File->getSections();
return Sections[this->Info];
}
// This is used for -r and --emit-relocs. We can't use memcpy to copy
// relocations because we need to update symbol table offset and section index
// for each relocation. So we copy relocations one by one.
template <class ELFT, class RelTy>
void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
InputSectionBase *RelocatedSection = getRelocatedSection();
// Loop is slow and have complexity O(N*M), where N - amount of
// relocations and M - amount of symbols in symbol table.
// That happens because getSymbolIndex(...) call below performs
// simple linear search.
for (const RelTy &Rel : Rels) {
uint32_t Type = Rel.getType(Config->IsMips64EL);
SymbolBody &Body = this->getFile<ELFT>()->getRelocTargetSym(Rel);
auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf);
Buf += sizeof(RelTy);
if (Config->IsRela)
P->r_addend = getAddend<ELFT>(Rel);
// Output section VA is zero for -r, so r_offset is an offset within the
// section, but for --emit-relocs it is an virtual address.
P->r_offset = RelocatedSection->OutSec->Addr +
RelocatedSection->getOffset(Rel.r_offset);
P->setSymbolAndType(In<ELFT>::SymTab->getSymbolIndex(&Body), Type,
Config->IsMips64EL);
if (Body.Type == STT_SECTION) {
// We combine multiple section symbols into only one per
// section. This means we have to update the addend. That is
// trivial for Elf_Rela, but for Elf_Rel we have to write to the
// section data. We do that by adding to the Relocation vector.
// .eh_frame is horribly special and can reference discarded sections. To
// avoid having to parse and recreate .eh_frame, we just replace any
// relocation in it pointing to discarded sections with R_*_NONE, which
// hopefully creates a frame that is ignored at runtime.
SectionBase *Section = cast<DefinedRegular>(Body).Section;
if (Section == &InputSection::Discarded) {
P->setSymbolAndType(0, 0, false);
continue;
}
if (Config->IsRela) {
P->r_addend += Body.getVA() - Section->getOutputSection()->Addr;
} else if (Config->Relocatable) {
const uint8_t *BufLoc = RelocatedSection->Data.begin() + Rel.r_offset;
RelocatedSection->Relocations.push_back(
{R_ABS, Type, Rel.r_offset, Target->getImplicitAddend(BufLoc, Type),
&Body});
}
}
}
}
2016-11-14 18:14:18 +08:00
static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A,
uint32_t P) {
switch (Type) {
case R_ARM_THM_JUMP11:
return P + 2;
case R_ARM_CALL:
case R_ARM_JUMP24:
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_PREL31:
case R_ARM_THM_JUMP19:
case R_ARM_THM_JUMP24:
return P + 4;
case R_ARM_THM_CALL:
// We don't want an interworking BLX to ARM
return P + 5;
default:
return A;
}
}
2016-11-14 18:14:18 +08:00
static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
uint64_t P) {
switch (Type) {
case R_AARCH64_CALL26:
case R_AARCH64_CONDBR19:
case R_AARCH64_JUMP26:
case R_AARCH64_TSTBR14:
return P + 4;
default:
return A;
}
}
template <class ELFT>
static typename ELFT::uint
getRelocTargetVA(uint32_t Type, int64_t A, typename ELFT::uint P,
const SymbolBody &Body, RelExpr Expr) {
switch (Expr) {
2017-03-26 12:10:43 +08:00
case R_ABS:
case R_RELAX_GOT_PC_NOPIC:
return Body.getVA(A);
case R_GOT:
case R_RELAX_TLS_GD_TO_IE_ABS:
return Body.getGotVA<ELFT>() + A;
case R_GOTONLY_PC:
return In<ELFT>::Got->getVA() + A - P;
case R_GOTONLY_PC_FROM_END:
return In<ELFT>::Got->getVA() + A - P + In<ELFT>::Got->getSize();
case R_GOTREL:
return Body.getVA(A) - In<ELFT>::Got->getVA();
case R_GOTREL_FROM_END:
return Body.getVA(A) - In<ELFT>::Got->getVA() - In<ELFT>::Got->getSize();
case R_GOT_FROM_END:
2017-03-26 12:10:43 +08:00
case R_RELAX_TLS_GD_TO_IE_END:
return Body.getGotOffset() + A - In<ELFT>::Got->getSize();
2017-03-26 12:10:43 +08:00
case R_GOT_OFF:
return Body.getGotOffset() + A;
case R_GOT_PAGE_PC:
2017-03-26 12:10:43 +08:00
case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P);
case R_GOT_PC:
2017-03-26 12:10:43 +08:00
case R_RELAX_TLS_GD_TO_IE:
return Body.getGotVA<ELFT>() + A - P;
2017-03-26 12:10:43 +08:00
case R_HINT:
case R_NONE:
case R_TLSDESC_CALL:
llvm_unreachable("cannot relocate hint relocs");
case R_MIPS_GOTREL:
return Body.getVA(A) - In<ELFT>::MipsGot->getGp();
case R_MIPS_GOT_GP:
return In<ELFT>::MipsGot->getGp() + A;
case R_MIPS_GOT_GP_PC: {
// R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
// is _gp_disp symbol. In that case we should use the following
// formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
uint64_t V = In<ELFT>::MipsGot->getGp() + A - P;
if (Type == R_MIPS_LO16)
V += 4;
return V;
}
case R_MIPS_GOT_LOCAL_PAGE:
// If relocation against MIPS local symbol requires GOT entry, this entry
// should be initialized by 'page address'. This address is high 16-bits
// of sum the symbol's value and the addend.
return In<ELFT>::MipsGot->getVA() +
In<ELFT>::MipsGot->getPageEntryOffset(Body, A) -
In<ELFT>::MipsGot->getGp();
case R_MIPS_GOT_OFF:
case R_MIPS_GOT_OFF32:
// In case of MIPS if a GOT relocation has non-zero addend this addend
// should be applied to the GOT entry content not to the GOT entry offset.
// That is why we use separate expression type.
return In<ELFT>::MipsGot->getVA() +
In<ELFT>::MipsGot->getBodyEntryOffset(Body, A) -
In<ELFT>::MipsGot->getGp();
case R_MIPS_TLSGD:
return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() +
In<ELFT>::MipsGot->getGlobalDynOffset(Body) -
In<ELFT>::MipsGot->getGp();
case R_MIPS_TLSLD:
return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() +
In<ELFT>::MipsGot->getTlsIndexOff() - In<ELFT>::MipsGot->getGp();
2017-03-26 12:10:43 +08:00
case R_PAGE_PC:
case R_PLT_PAGE_PC:
if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak())
return getAArch64Page(A);
return getAArch64Page(Body.getVA(A)) - getAArch64Page(P);
case R_PC:
if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) {
// On ARM and AArch64 a branch to an undefined weak resolves to the
// next instruction, otherwise the place.
if (Config->EMachine == EM_ARM)
return getARMUndefinedRelativeWeakVA(Type, A, P);
if (Config->EMachine == EM_AARCH64)
return getAArch64UndefinedRelativeWeakVA(Type, A, P);
}
return Body.getVA(A) - P;
case R_PLT:
return Body.getPltVA() + A;
case R_PLT_PC:
case R_PPC_PLT_OPD:
return Body.getPltVA() + A - P;
case R_PPC_OPD: {
uint64_t SymVA = Body.getVA(A);
// If we have an undefined weak symbol, we might get here with a symbol
// address of zero. That could overflow, but the code must be unreachable,
// so don't bother doing anything at all.
if (!SymVA)
return 0;
if (Out::Opd) {
// If this is a local call, and we currently have the address of a
// function-descriptor, get the underlying code address instead.
uint64_t OpdStart = Out::Opd->Addr;
uint64_t OpdEnd = OpdStart + Out::Opd->Size;
bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd;
if (InOpd)
SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]);
}
return SymVA - P;
}
2017-03-26 12:10:43 +08:00
case R_PPC_TOC:
return getPPC64TocBase() + A;
case R_RELAX_GOT_PC:
return Body.getVA(A) - P;
2017-03-26 12:10:43 +08:00
case R_RELAX_TLS_GD_TO_LE:
case R_RELAX_TLS_IE_TO_LE:
case R_RELAX_TLS_LD_TO_LE:
case R_TLS:
// A weak undefined TLS symbol resolves to the base of the TLS
// block, i.e. gets a value of zero. If we pass --gc-sections to
// lld and .tbss is not referenced, it gets reclaimed and we don't
// create a TLS program header. Therefore, we resolve this
// statically to zero.
if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) &&
Body.symbol()->isWeak())
return 0;
if (Target->TcbSize)
return Body.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align);
return Body.getVA(A) - Out::TlsPhdr->p_memsz;
case R_RELAX_TLS_GD_TO_LE_NEG:
case R_NEG_TLS:
return Out::TlsPhdr->p_memsz - Body.getVA(A);
case R_SIZE:
return Body.getSize<ELFT>() + A;
case R_TLSDESC:
return In<ELFT>::Got->getGlobalDynAddr(Body) + A;
case R_TLSDESC_PAGE:
return getAArch64Page(In<ELFT>::Got->getGlobalDynAddr(Body) + A) -
getAArch64Page(P);
case R_TLSGD:
return In<ELFT>::Got->getGlobalDynOffset(Body) + A -
In<ELFT>::Got->getSize();
case R_TLSGD_PC:
return In<ELFT>::Got->getGlobalDynAddr(Body) + A - P;
case R_TLSLD:
return In<ELFT>::Got->getTlsIndexOff() + A - In<ELFT>::Got->getSize();
case R_TLSLD_PC:
return In<ELFT>::Got->getTlsIndexVA() + A - P;
}
llvm_unreachable("Invalid expression");
}
// This function applies relocations to sections without SHF_ALLOC bit.
// Such sections are never mapped to memory at runtime. Debug sections are
// an example. Relocations in non-alloc sections are much easier to
// handle than in allocated sections because it will never need complex
// treatement such as GOT or PLT (because at runtime no one refers them).
// So, we handle relocations for non-alloc sections directly in this
// function as a performance optimization.
template <class ELFT, class RelTy>
void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
for (const RelTy &Rel : Rels) {
uint32_t Type = Rel.getType(Config->IsMips64EL);
uint64_t Offset = getOffset(Rel.r_offset);
uint8_t *BufLoc = Buf + Offset;
int64_t Addend = getAddend<ELFT>(Rel);
if (!RelTy::IsRela)
Addend += Target->getImplicitAddend(BufLoc, Type);
SymbolBody &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel);
RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc);
if (Expr == R_NONE)
continue;
if (Expr != R_ABS) {
error(this->getLocation<ELFT>(Offset) + ": has non-ABS reloc");
return;
}
uint64_t AddrLoc = this->OutSec->Addr + Offset;
uint64_t SymVA = 0;
if (!Sym.isTls() || Out::TlsPhdr)
SymVA = SignExtend64<sizeof(typename ELFT::uint) * 8>(
getRelocTargetVA<ELFT>(Type, Addend, AddrLoc, Sym, R_ABS));
Target->relocateOne(BufLoc, Type, SymVA);
}
}
template <class ELFT> elf::ObjectFile<ELFT> *InputSectionBase::getFile() const {
return cast_or_null<elf::ObjectFile<ELFT>>(File);
}
template <class ELFT>
void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) {
// scanReloc function in Writer.cpp constructs Relocations
// vector only for SHF_ALLOC'ed sections. For other sections,
// we handle relocations directly here.
auto *IS = dyn_cast<InputSection>(this);
if (IS && !(IS->Flags & SHF_ALLOC)) {
if (IS->AreRelocsRela)
IS->relocateNonAlloc<ELFT>(Buf, IS->template relas<ELFT>());
else
IS->relocateNonAlloc<ELFT>(Buf, IS->template rels<ELFT>());
return;
}
const unsigned Bits = sizeof(typename ELFT::uint) * 8;
for (const Relocation &Rel : Relocations) {
uint64_t Offset = getOffset(Rel.Offset);
uint8_t *BufLoc = Buf + Offset;
uint32_t Type = Rel.Type;
uint64_t AddrLoc = getOutputSection()->Addr + Offset;
RelExpr Expr = Rel.Expr;
uint64_t TargetVA = SignExtend64<Bits>(
getRelocTargetVA<ELFT>(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr));
2016-05-21 05:14:06 +08:00
switch (Expr) {
case R_RELAX_GOT_PC:
case R_RELAX_GOT_PC_NOPIC:
Target->relaxGot(BufLoc, TargetVA);
break;
2016-05-21 05:14:06 +08:00
case R_RELAX_TLS_IE_TO_LE:
Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
2016-05-21 05:14:06 +08:00
break;
case R_RELAX_TLS_LD_TO_LE:
Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
2016-05-21 05:14:06 +08:00
break;
case R_RELAX_TLS_GD_TO_LE:
case R_RELAX_TLS_GD_TO_LE_NEG:
Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
2016-05-21 05:14:06 +08:00
break;
case R_RELAX_TLS_GD_TO_IE:
case R_RELAX_TLS_GD_TO_IE_ABS:
case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
case R_RELAX_TLS_GD_TO_IE_END:
Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
2016-05-21 05:14:06 +08:00
break;
case R_PPC_PLT_OPD:
// Patch a nop (0x60000000) to a ld.
if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000)
write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1)
// fallthrough
2016-05-21 05:14:06 +08:00
default:
Target->relocateOne(BufLoc, Type, TargetVA);
2016-05-21 05:14:06 +08:00
break;
}
}
}
template <class ELFT> void InputSection::writeTo(uint8_t *Buf) {
if (this->Type == SHT_NOBITS)
return;
if (auto *S = dyn_cast<SyntheticSection>(this)) {
S->writeTo(Buf + OutSecOff);
return;
}
// If -r or --emit-relocs is given, then an InputSection
// may be a relocation section.
if (this->Type == SHT_RELA) {
copyRelocations<ELFT>(Buf + OutSecOff,
this->template getDataAs<typename ELFT::Rela>());
return;
}
if (this->Type == SHT_REL) {
copyRelocations<ELFT>(Buf + OutSecOff,
this->template getDataAs<typename ELFT::Rel>());
return;
}
// Copy section contents from source object file to output file
// and then apply relocations.
memcpy(Buf + OutSecOff, Data.data(), Data.size());
uint8_t *BufEnd = Buf + OutSecOff + Data.size();
this->relocate<ELFT>(Buf, BufEnd);
}
void InputSection::replace(InputSection *Other) {
this->Alignment = std::max(this->Alignment, Other->Alignment);
Other->Repl = this->Repl;
Other->Live = false;
}
template <class ELFT>
EhInputSection::EhInputSection(elf::ObjectFile<ELFT> *F,
const typename ELFT::Shdr *Header,
StringRef Name)
: InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {
// Mark .eh_frame sections as live by default because there are
// usually no relocations that point to .eh_frames. Otherwise,
// the garbage collector would drop all .eh_frame sections.
this->Live = true;
}
bool EhInputSection::classof(const SectionBase *S) {
return S->kind() == InputSectionBase::EHFrame;
}
// Returns the index of the first relocation that points to a region between
// Begin and Begin+Size.
template <class IntTy, class RelTy>
static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
unsigned &RelocI) {
// Start search from RelocI for fast access. That works because the
// relocations are sorted in .eh_frame.
for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
const RelTy &Rel = Rels[RelocI];
if (Rel.r_offset < Begin)
continue;
if (Rel.r_offset < Begin + Size)
return RelocI;
return -1;
}
return -1;
}
// .eh_frame is a sequence of CIE or FDE records.
// This function splits an input section into records and returns them.
template <class ELFT> void EhInputSection::split() {
// Early exit if already split.
if (!this->Pieces.empty())
return;
if (this->NumRelocations) {
if (this->AreRelocsRela)
split<ELFT>(this->relas<ELFT>());
else
split<ELFT>(this->rels<ELFT>());
return;
}
split<ELFT>(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr));
}
template <class ELFT, class RelTy>
void EhInputSection::split(ArrayRef<RelTy> Rels) {
ArrayRef<uint8_t> Data = this->Data;
unsigned RelI = 0;
for (size_t Off = 0, End = Data.size(); Off != End;) {
size_t Size = readEhRecordSize<ELFT>(this, Off);
this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
// The empty record is the end marker.
if (Size == 4)
break;
Off += Size;
}
}
static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) {
// Optimize the common case.
StringRef S((const char *)A.data(), A.size());
if (EntSize == 1)
return S.find(0);
for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
const char *B = S.begin() + I;
if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
return I;
}
return StringRef::npos;
}
// Split SHF_STRINGS section. Such section is a sequence of
// null-terminated strings.
void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) {
size_t Off = 0;
2016-11-26 04:41:45 +08:00
bool IsAlloc = this->Flags & SHF_ALLOC;
while (!Data.empty()) {
size_t End = findNull(Data, EntSize);
if (End == StringRef::npos)
fatal(toString(this) + ": string is not null terminated");
size_t Size = End + EntSize;
Pieces.emplace_back(Off, !IsAlloc);
Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size))));
Data = Data.slice(Size);
Off += Size;
}
}
// Split non-SHF_STRINGS section. Such section is a sequence of
// fixed size records.
void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data,
size_t EntSize) {
size_t Size = Data.size();
assert((Size % EntSize) == 0);
2016-11-26 04:41:45 +08:00
bool IsAlloc = this->Flags & SHF_ALLOC;
for (unsigned I = 0, N = Size; I != N; I += EntSize) {
Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize))));
Pieces.emplace_back(I, !IsAlloc);
}
}
template <class ELFT>
MergeInputSection::MergeInputSection(elf::ObjectFile<ELFT> *F,
const typename ELFT::Shdr *Header,
StringRef Name)
: InputSectionBase(F, Header, Name, InputSectionBase::Merge) {}
Parallelize uncompress() and splitIntoPieces(). Uncompressing section contents and spliting mergeable section contents into smaller chunks are heavy tasks. They scan entire section contents and do CPU-intensive tasks such as uncompressing zlib-compressed data or computing a hash value for each section piece. Luckily, these tasks are independent to each other, so we can do that in parallel_for_each. The number of input sections is large (as opposed to the number of output sections), so there's a large parallelism here. Actually the current design to call uncompress() and splitIntoPieces() in batch was chosen with doing this in mind. Basically what we need to do here is to replace `for` with `parallel_for_each`. It seems this patch improves latency significantly if linked programs contain debug info (which in turn contain lots of mergeable strings.) For example, the latency to link Clang (debug build) improved by 20% on my machine as shown below. Note that ld.gold took 19.2 seconds to do the same thing. Before: 30801.782712 task-clock (msec) # 3.652 CPUs utilized ( +- 2.59% ) 104,084 context-switches # 0.003 M/sec ( +- 1.02% ) 5,063 cpu-migrations # 0.164 K/sec ( +- 13.66% ) 2,528,130 page-faults # 0.082 M/sec ( +- 0.47% ) 85,317,809,130 cycles # 2.770 GHz ( +- 2.62% ) 67,352,463,373 stalled-cycles-frontend # 78.94% frontend cycles idle ( +- 3.06% ) <not supported> stalled-cycles-backend 44,295,945,493 instructions # 0.52 insns per cycle # 1.52 stalled cycles per insn ( +- 0.44% ) 8,572,384,877 branches # 278.308 M/sec ( +- 0.66% ) 141,806,726 branch-misses # 1.65% of all branches ( +- 0.13% ) 8.433424003 seconds time elapsed ( +- 1.20% ) After: 35523.764575 task-clock (msec) # 5.265 CPUs utilized ( +- 2.67% ) 159,107 context-switches # 0.004 M/sec ( +- 0.48% ) 8,123 cpu-migrations # 0.229 K/sec ( +- 23.34% ) 2,372,483 page-faults # 0.067 M/sec ( +- 0.36% ) 98,395,342,152 cycles # 2.770 GHz ( +- 2.62% ) 79,294,670,125 stalled-cycles-frontend # 80.59% frontend cycles idle ( +- 3.03% ) <not supported> stalled-cycles-backend 46,274,151,813 instructions # 0.47 insns per cycle # 1.71 stalled cycles per insn ( +- 0.47% ) 8,987,621,670 branches # 253.003 M/sec ( +- 0.60% ) 148,900,624 branch-misses # 1.66% of all branches ( +- 0.27% ) 6.747548004 seconds time elapsed ( +- 0.40% ) llvm-svn: 287946
2016-11-26 04:05:08 +08:00
// This function is called after we obtain a complete list of input sections
// that need to be linked. This is responsible to split section contents
// into small chunks for further processing.
//
// Note that this function is called from parallel_for_each. This must be
// thread-safe (i.e. no memory allocation from the pools).
void MergeInputSection::splitIntoPieces() {
ArrayRef<uint8_t> Data = this->Data;
uint64_t EntSize = this->Entsize;
if (this->Flags & SHF_STRINGS)
splitStrings(Data, EntSize);
else
splitNonStrings(Data, EntSize);
if (Config->GcSections && (this->Flags & SHF_ALLOC))
for (uint64_t Off : LiveOffsets)
this->getSectionPiece(Off)->Live = true;
}
bool MergeInputSection::classof(const SectionBase *S) {
return S->kind() == InputSectionBase::Merge;
}
Avoid doing binary search. MergedInputSection::getOffset is the busiest function in LLD if string merging is enabled and input files have lots of mergeable sections. It is usually the case when creating executable with debug info, so it is pretty common. The reason why it is slow is because it has to do faily complex computations. For non-mergeable sections, section contents are contiguous in output, so in order to compute an output offset, we only have to add the output section's base address to an input offset. But for mergeable strings, section contents are split for merging, so they are not contigous. We've got to do some lookups. We used to do binary search on the list of section pieces. It is slow because I think it's hostile to branch prediction. This patch replaces it with hash table lookup. Seems it's working pretty well. Below is "perf stat -r10" output when linking clang with debug info. In this case this patch speeds up about 4%. Before: 6584.153205 task-clock (msec) # 1.001 CPUs utilized ( +- 0.09% ) 238 context-switches # 0.036 K/sec ( +- 6.59% ) 0 cpu-migrations # 0.000 K/sec ( +- 50.92% ) 1,067,675 page-faults # 0.162 M/sec ( +- 0.15% ) 18,369,931,470 cycles # 2.790 GHz ( +- 0.09% ) 9,640,680,143 stalled-cycles-frontend # 52.48% frontend cycles idle ( +- 0.18% ) <not supported> stalled-cycles-backend 21,206,747,787 instructions # 1.15 insns per cycle # 0.45 stalled cycles per insn ( +- 0.04% ) 3,817,398,032 branches # 579.786 M/sec ( +- 0.04% ) 132,787,249 branch-misses # 3.48% of all branches ( +- 0.02% ) 6.579106511 seconds time elapsed ( +- 0.09% ) After: 6312.317533 task-clock (msec) # 1.001 CPUs utilized ( +- 0.19% ) 221 context-switches # 0.035 K/sec ( +- 4.11% ) 1 cpu-migrations # 0.000 K/sec ( +- 45.21% ) 1,280,775 page-faults # 0.203 M/sec ( +- 0.37% ) 17,611,539,150 cycles # 2.790 GHz ( +- 0.19% ) 10,285,148,569 stalled-cycles-frontend # 58.40% frontend cycles idle ( +- 0.30% ) <not supported> stalled-cycles-backend 18,794,779,900 instructions # 1.07 insns per cycle # 0.55 stalled cycles per insn ( +- 0.03% ) 3,287,450,865 branches # 520.799 M/sec ( +- 0.03% ) 72,259,605 branch-misses # 2.20% of all branches ( +- 0.01% ) 6.307411828 seconds time elapsed ( +- 0.19% ) Differential Revision: http://reviews.llvm.org/D20645 llvm-svn: 270999
2016-05-27 22:39:13 +08:00
// Do binary search to get a section piece at a given input offset.
SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) {
auto *This = static_cast<const MergeInputSection *>(this);
return const_cast<SectionPiece *>(This->getSectionPiece(Offset));
}
template <class It, class T, class Compare>
static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) {
size_t Size = std::distance(First, Last);
assert(Size != 0);
while (Size != 1) {
size_t H = Size / 2;
const It MI = First + H;
Size -= H;
First = Comp(Value, *MI) ? First : First + H;
}
return Comp(Value, *First) ? First : First + 1;
}
const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const {
uint64_t Size = this->Data.size();
if (Offset >= Size)
fatal(toString(this) + ": entry is past the end of the section");
// Find the element this offset points to.
auto I = fastUpperBound(
Pieces.begin(), Pieces.end(), Offset,
[](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; });
--I;
return &*I;
}
Avoid doing binary search. MergedInputSection::getOffset is the busiest function in LLD if string merging is enabled and input files have lots of mergeable sections. It is usually the case when creating executable with debug info, so it is pretty common. The reason why it is slow is because it has to do faily complex computations. For non-mergeable sections, section contents are contiguous in output, so in order to compute an output offset, we only have to add the output section's base address to an input offset. But for mergeable strings, section contents are split for merging, so they are not contigous. We've got to do some lookups. We used to do binary search on the list of section pieces. It is slow because I think it's hostile to branch prediction. This patch replaces it with hash table lookup. Seems it's working pretty well. Below is "perf stat -r10" output when linking clang with debug info. In this case this patch speeds up about 4%. Before: 6584.153205 task-clock (msec) # 1.001 CPUs utilized ( +- 0.09% ) 238 context-switches # 0.036 K/sec ( +- 6.59% ) 0 cpu-migrations # 0.000 K/sec ( +- 50.92% ) 1,067,675 page-faults # 0.162 M/sec ( +- 0.15% ) 18,369,931,470 cycles # 2.790 GHz ( +- 0.09% ) 9,640,680,143 stalled-cycles-frontend # 52.48% frontend cycles idle ( +- 0.18% ) <not supported> stalled-cycles-backend 21,206,747,787 instructions # 1.15 insns per cycle # 0.45 stalled cycles per insn ( +- 0.04% ) 3,817,398,032 branches # 579.786 M/sec ( +- 0.04% ) 132,787,249 branch-misses # 3.48% of all branches ( +- 0.02% ) 6.579106511 seconds time elapsed ( +- 0.09% ) After: 6312.317533 task-clock (msec) # 1.001 CPUs utilized ( +- 0.19% ) 221 context-switches # 0.035 K/sec ( +- 4.11% ) 1 cpu-migrations # 0.000 K/sec ( +- 45.21% ) 1,280,775 page-faults # 0.203 M/sec ( +- 0.37% ) 17,611,539,150 cycles # 2.790 GHz ( +- 0.19% ) 10,285,148,569 stalled-cycles-frontend # 58.40% frontend cycles idle ( +- 0.30% ) <not supported> stalled-cycles-backend 18,794,779,900 instructions # 1.07 insns per cycle # 0.55 stalled cycles per insn ( +- 0.03% ) 3,287,450,865 branches # 520.799 M/sec ( +- 0.03% ) 72,259,605 branch-misses # 2.20% of all branches ( +- 0.01% ) 6.307411828 seconds time elapsed ( +- 0.19% ) Differential Revision: http://reviews.llvm.org/D20645 llvm-svn: 270999
2016-05-27 22:39:13 +08:00
// Returns the offset in an output section for a given input offset.
// Because contents of a mergeable section is not contiguous in output,
// it is not just an addition to a base output offset.
uint64_t MergeInputSection::getOffset(uint64_t Offset) const {
// Initialize OffsetMap lazily.
std::call_once(InitOffsetMap, [&] {
OffsetMap.reserve(Pieces.size());
for (const SectionPiece &Piece : Pieces)
OffsetMap[Piece.InputOff] = Piece.OutputOff;
});
// Find a string starting at a given offset.
Avoid doing binary search. MergedInputSection::getOffset is the busiest function in LLD if string merging is enabled and input files have lots of mergeable sections. It is usually the case when creating executable with debug info, so it is pretty common. The reason why it is slow is because it has to do faily complex computations. For non-mergeable sections, section contents are contiguous in output, so in order to compute an output offset, we only have to add the output section's base address to an input offset. But for mergeable strings, section contents are split for merging, so they are not contigous. We've got to do some lookups. We used to do binary search on the list of section pieces. It is slow because I think it's hostile to branch prediction. This patch replaces it with hash table lookup. Seems it's working pretty well. Below is "perf stat -r10" output when linking clang with debug info. In this case this patch speeds up about 4%. Before: 6584.153205 task-clock (msec) # 1.001 CPUs utilized ( +- 0.09% ) 238 context-switches # 0.036 K/sec ( +- 6.59% ) 0 cpu-migrations # 0.000 K/sec ( +- 50.92% ) 1,067,675 page-faults # 0.162 M/sec ( +- 0.15% ) 18,369,931,470 cycles # 2.790 GHz ( +- 0.09% ) 9,640,680,143 stalled-cycles-frontend # 52.48% frontend cycles idle ( +- 0.18% ) <not supported> stalled-cycles-backend 21,206,747,787 instructions # 1.15 insns per cycle # 0.45 stalled cycles per insn ( +- 0.04% ) 3,817,398,032 branches # 579.786 M/sec ( +- 0.04% ) 132,787,249 branch-misses # 3.48% of all branches ( +- 0.02% ) 6.579106511 seconds time elapsed ( +- 0.09% ) After: 6312.317533 task-clock (msec) # 1.001 CPUs utilized ( +- 0.19% ) 221 context-switches # 0.035 K/sec ( +- 4.11% ) 1 cpu-migrations # 0.000 K/sec ( +- 45.21% ) 1,280,775 page-faults # 0.203 M/sec ( +- 0.37% ) 17,611,539,150 cycles # 2.790 GHz ( +- 0.19% ) 10,285,148,569 stalled-cycles-frontend # 58.40% frontend cycles idle ( +- 0.30% ) <not supported> stalled-cycles-backend 18,794,779,900 instructions # 1.07 insns per cycle # 0.55 stalled cycles per insn ( +- 0.03% ) 3,287,450,865 branches # 520.799 M/sec ( +- 0.03% ) 72,259,605 branch-misses # 2.20% of all branches ( +- 0.01% ) 6.307411828 seconds time elapsed ( +- 0.19% ) Differential Revision: http://reviews.llvm.org/D20645 llvm-svn: 270999
2016-05-27 22:39:13 +08:00
auto It = OffsetMap.find(Offset);
if (It != OffsetMap.end())
return It->second;
if (!this->Live)
return 0;
Avoid doing binary search. MergedInputSection::getOffset is the busiest function in LLD if string merging is enabled and input files have lots of mergeable sections. It is usually the case when creating executable with debug info, so it is pretty common. The reason why it is slow is because it has to do faily complex computations. For non-mergeable sections, section contents are contiguous in output, so in order to compute an output offset, we only have to add the output section's base address to an input offset. But for mergeable strings, section contents are split for merging, so they are not contigous. We've got to do some lookups. We used to do binary search on the list of section pieces. It is slow because I think it's hostile to branch prediction. This patch replaces it with hash table lookup. Seems it's working pretty well. Below is "perf stat -r10" output when linking clang with debug info. In this case this patch speeds up about 4%. Before: 6584.153205 task-clock (msec) # 1.001 CPUs utilized ( +- 0.09% ) 238 context-switches # 0.036 K/sec ( +- 6.59% ) 0 cpu-migrations # 0.000 K/sec ( +- 50.92% ) 1,067,675 page-faults # 0.162 M/sec ( +- 0.15% ) 18,369,931,470 cycles # 2.790 GHz ( +- 0.09% ) 9,640,680,143 stalled-cycles-frontend # 52.48% frontend cycles idle ( +- 0.18% ) <not supported> stalled-cycles-backend 21,206,747,787 instructions # 1.15 insns per cycle # 0.45 stalled cycles per insn ( +- 0.04% ) 3,817,398,032 branches # 579.786 M/sec ( +- 0.04% ) 132,787,249 branch-misses # 3.48% of all branches ( +- 0.02% ) 6.579106511 seconds time elapsed ( +- 0.09% ) After: 6312.317533 task-clock (msec) # 1.001 CPUs utilized ( +- 0.19% ) 221 context-switches # 0.035 K/sec ( +- 4.11% ) 1 cpu-migrations # 0.000 K/sec ( +- 45.21% ) 1,280,775 page-faults # 0.203 M/sec ( +- 0.37% ) 17,611,539,150 cycles # 2.790 GHz ( +- 0.19% ) 10,285,148,569 stalled-cycles-frontend # 58.40% frontend cycles idle ( +- 0.30% ) <not supported> stalled-cycles-backend 18,794,779,900 instructions # 1.07 insns per cycle # 0.55 stalled cycles per insn ( +- 0.03% ) 3,287,450,865 branches # 520.799 M/sec ( +- 0.03% ) 72,259,605 branch-misses # 2.20% of all branches ( +- 0.01% ) 6.307411828 seconds time elapsed ( +- 0.19% ) Differential Revision: http://reviews.llvm.org/D20645 llvm-svn: 270999
2016-05-27 22:39:13 +08:00
// If Offset is not at beginning of a section piece, it is not in the map.
// In that case we need to search from the original section piece vector.
const SectionPiece &Piece = *this->getSectionPiece(Offset);
if (!Piece.Live)
return 0;
uint64_t Addend = Offset - Piece.InputOff;
2016-05-29 02:40:38 +08:00
return Piece.OutputOff + Addend;
Avoid doing binary search. MergedInputSection::getOffset is the busiest function in LLD if string merging is enabled and input files have lots of mergeable sections. It is usually the case when creating executable with debug info, so it is pretty common. The reason why it is slow is because it has to do faily complex computations. For non-mergeable sections, section contents are contiguous in output, so in order to compute an output offset, we only have to add the output section's base address to an input offset. But for mergeable strings, section contents are split for merging, so they are not contigous. We've got to do some lookups. We used to do binary search on the list of section pieces. It is slow because I think it's hostile to branch prediction. This patch replaces it with hash table lookup. Seems it's working pretty well. Below is "perf stat -r10" output when linking clang with debug info. In this case this patch speeds up about 4%. Before: 6584.153205 task-clock (msec) # 1.001 CPUs utilized ( +- 0.09% ) 238 context-switches # 0.036 K/sec ( +- 6.59% ) 0 cpu-migrations # 0.000 K/sec ( +- 50.92% ) 1,067,675 page-faults # 0.162 M/sec ( +- 0.15% ) 18,369,931,470 cycles # 2.790 GHz ( +- 0.09% ) 9,640,680,143 stalled-cycles-frontend # 52.48% frontend cycles idle ( +- 0.18% ) <not supported> stalled-cycles-backend 21,206,747,787 instructions # 1.15 insns per cycle # 0.45 stalled cycles per insn ( +- 0.04% ) 3,817,398,032 branches # 579.786 M/sec ( +- 0.04% ) 132,787,249 branch-misses # 3.48% of all branches ( +- 0.02% ) 6.579106511 seconds time elapsed ( +- 0.09% ) After: 6312.317533 task-clock (msec) # 1.001 CPUs utilized ( +- 0.19% ) 221 context-switches # 0.035 K/sec ( +- 4.11% ) 1 cpu-migrations # 0.000 K/sec ( +- 45.21% ) 1,280,775 page-faults # 0.203 M/sec ( +- 0.37% ) 17,611,539,150 cycles # 2.790 GHz ( +- 0.19% ) 10,285,148,569 stalled-cycles-frontend # 58.40% frontend cycles idle ( +- 0.30% ) <not supported> stalled-cycles-backend 18,794,779,900 instructions # 1.07 insns per cycle # 0.55 stalled cycles per insn ( +- 0.03% ) 3,287,450,865 branches # 520.799 M/sec ( +- 0.03% ) 72,259,605 branch-misses # 2.20% of all branches ( +- 0.01% ) 6.307411828 seconds time elapsed ( +- 0.19% ) Differential Revision: http://reviews.llvm.org/D20645 llvm-svn: 270999
2016-05-27 22:39:13 +08:00
}
template InputSection::InputSection(elf::ObjectFile<ELF32LE> *,
const ELF32LE::Shdr *, StringRef);
template InputSection::InputSection(elf::ObjectFile<ELF32BE> *,
const ELF32BE::Shdr *, StringRef);
template InputSection::InputSection(elf::ObjectFile<ELF64LE> *,
const ELF64LE::Shdr *, StringRef);
template InputSection::InputSection(elf::ObjectFile<ELF64BE> *,
const ELF64BE::Shdr *, StringRef);
template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
template std::string InputSectionBase::getSrcMsg<ELF32LE>(uint64_t);
template std::string InputSectionBase::getSrcMsg<ELF32BE>(uint64_t);
template std::string InputSectionBase::getSrcMsg<ELF64LE>(uint64_t);
template std::string InputSectionBase::getSrcMsg<ELF64BE>(uint64_t);
template std::string InputSectionBase::getObjMsg<ELF32LE>(uint64_t);
template std::string InputSectionBase::getObjMsg<ELF32BE>(uint64_t);
template std::string InputSectionBase::getObjMsg<ELF64LE>(uint64_t);
template std::string InputSectionBase::getObjMsg<ELF64BE>(uint64_t);
template void InputSection::writeTo<ELF32LE>(uint8_t *);
template void InputSection::writeTo<ELF32BE>(uint8_t *);
template void InputSection::writeTo<ELF64LE>(uint8_t *);
template void InputSection::writeTo<ELF64BE>(uint8_t *);
2016-02-28 08:25:54 +08:00
template elf::ObjectFile<ELF32LE> *InputSectionBase::getFile<ELF32LE>() const;
template elf::ObjectFile<ELF32BE> *InputSectionBase::getFile<ELF32BE>() const;
template elf::ObjectFile<ELF64LE> *InputSectionBase::getFile<ELF64LE>() const;
template elf::ObjectFile<ELF64BE> *InputSectionBase::getFile<ELF64BE>() const;
template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF32LE> *,
const ELF32LE::Shdr *, StringRef);
template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF32BE> *,
const ELF32BE::Shdr *, StringRef);
template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF64LE> *,
const ELF64LE::Shdr *, StringRef);
template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF64BE> *,
const ELF64BE::Shdr *, StringRef);
template EhInputSection::EhInputSection(elf::ObjectFile<ELF32LE> *,
const ELF32LE::Shdr *, StringRef);
template EhInputSection::EhInputSection(elf::ObjectFile<ELF32BE> *,
const ELF32BE::Shdr *, StringRef);
template EhInputSection::EhInputSection(elf::ObjectFile<ELF64LE> *,
const ELF64LE::Shdr *, StringRef);
template EhInputSection::EhInputSection(elf::ObjectFile<ELF64BE> *,
const ELF64BE::Shdr *, StringRef);
template void EhInputSection::split<ELF32LE>();
template void EhInputSection::split<ELF32BE>();
template void EhInputSection::split<ELF64LE>();
template void EhInputSection::split<ELF64BE>();