llvm-project/clang/lib/AST/ItaniumMangle.cpp

3857 lines
130 KiB
C++
Raw Normal View History

//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implements C++ name mangling according to the Itanium C++ ABI,
// which is used in GCC 3.2 and newer (and many compilers that are
// ABI-compatible with GCC):
//
// http://mentorembedded.github.io/cxx-abi/abi.html#mangling
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Mangle.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/ABI.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#define MANGLE_CHECKER 0
#if MANGLE_CHECKER
#include <cxxabi.h>
#endif
using namespace clang;
namespace {
/// \brief Retrieve the declaration context that should be used when mangling
/// the given declaration.
static const DeclContext *getEffectiveDeclContext(const Decl *D) {
// The ABI assumes that lambda closure types that occur within
// default arguments live in the context of the function. However, due to
// the way in which Clang parses and creates function declarations, this is
// not the case: the lambda closure type ends up living in the context
// where the function itself resides, because the function declaration itself
// had not yet been created. Fix the context here.
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
if (RD->isLambda())
if (ParmVarDecl *ContextParam
= dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
return ContextParam->getDeclContext();
}
// Perform the same check for block literals.
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
if (ParmVarDecl *ContextParam
= dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
return ContextParam->getDeclContext();
}
const DeclContext *DC = D->getDeclContext();
if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
return getEffectiveDeclContext(CD);
return DC;
}
static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
return getEffectiveDeclContext(cast<Decl>(DC));
}
static bool isLocalContainerContext(const DeclContext *DC) {
return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
}
static const RecordDecl *GetLocalClassDecl(const Decl *D) {
const DeclContext *DC = getEffectiveDeclContext(D);
while (!DC->isNamespace() && !DC->isTranslationUnit()) {
if (isLocalContainerContext(DC))
return dyn_cast<RecordDecl>(D);
D = cast<Decl>(DC);
DC = getEffectiveDeclContext(D);
}
return 0;
}
static const FunctionDecl *getStructor(const FunctionDecl *fn) {
if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
return ftd->getTemplatedDecl();
return fn;
}
static const NamedDecl *getStructor(const NamedDecl *decl) {
const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
return (fn ? getStructor(fn) : decl);
}
static bool isLambda(const NamedDecl *ND) {
const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
if (!Record)
return false;
return Record->isLambda();
}
static const unsigned UnknownArity = ~0U;
class ItaniumMangleContextImpl : public ItaniumMangleContext {
typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
public:
explicit ItaniumMangleContextImpl(ASTContext &Context,
DiagnosticsEngine &Diags)
: ItaniumMangleContext(Context, Diags) {}
/// @name Mangler Entry Points
/// @{
bool shouldMangleCXXName(const NamedDecl *D) override;
bool shouldMangleStringLiteral(const StringLiteral *) override {
return false;
}
void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
raw_ostream &) override;
void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
const ThisAdjustment &ThisAdjustment,
raw_ostream &) override;
void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
raw_ostream &) override;
void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
const CXXRecordDecl *Type, raw_ostream &) override;
void mangleCXXRTTI(QualType T, raw_ostream &) override;
void mangleCXXRTTIName(QualType T, raw_ostream &) override;
void mangleTypeName(QualType T, raw_ostream &) override;
void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
raw_ostream &) override;
void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
raw_ostream &) override;
void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
void mangleDynamicAtExitDestructor(const VarDecl *D,
raw_ostream &Out) override;
void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
void mangleItaniumThreadLocalWrapper(const VarDecl *D,
raw_ostream &) override;
void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
// Lambda closure types are already numbered.
if (isLambda(ND))
return false;
// Anonymous tags are already numbered.
if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
return false;
}
// Use the canonical number for externally visible decls.
if (ND->isExternallyVisible()) {
unsigned discriminator = getASTContext().getManglingNumber(ND);
if (discriminator == 1)
return false;
disc = discriminator - 2;
return true;
}
// Make up a reasonable number for internal decls.
unsigned &discriminator = Uniquifier[ND];
if (!discriminator) {
const DeclContext *DC = getEffectiveDeclContext(ND);
discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
}
if (discriminator == 1)
return false;
disc = discriminator-2;
return true;
}
/// @}
};
/// CXXNameMangler - Manage the mangling of a single name.
class CXXNameMangler {
ItaniumMangleContextImpl &Context;
raw_ostream &Out;
/// The "structor" is the top-level declaration being mangled, if
/// that's not a template specialization; otherwise it's the pattern
/// for that specialization.
const NamedDecl *Structor;
unsigned StructorType;
/// SeqID - The next subsitution sequence number.
unsigned SeqID;
class FunctionTypeDepthState {
unsigned Bits;
enum { InResultTypeMask = 1 };
public:
FunctionTypeDepthState() : Bits(0) {}
/// The number of function types we're inside.
unsigned getDepth() const {
return Bits >> 1;
}
/// True if we're in the return type of the innermost function type.
bool isInResultType() const {
return Bits & InResultTypeMask;
}
FunctionTypeDepthState push() {
FunctionTypeDepthState tmp = *this;
Bits = (Bits & ~InResultTypeMask) + 2;
return tmp;
}
void enterResultType() {
Bits |= InResultTypeMask;
}
void leaveResultType() {
Bits &= ~InResultTypeMask;
}
void pop(FunctionTypeDepthState saved) {
assert(getDepth() == saved.getDepth() + 1);
Bits = saved.Bits;
}
} FunctionTypeDepth;
llvm::DenseMap<uintptr_t, unsigned> Substitutions;
ASTContext &getASTContext() const { return Context.getASTContext(); }
public:
CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
const NamedDecl *D = 0)
: Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
SeqID(0) {
// These can't be mangled without a ctor type or dtor type.
assert(!D || (!isa<CXXDestructorDecl>(D) &&
!isa<CXXConstructorDecl>(D)));
}
CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
const CXXConstructorDecl *D, CXXCtorType Type)
: Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
SeqID(0) { }
CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
const CXXDestructorDecl *D, CXXDtorType Type)
: Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
SeqID(0) { }
#if MANGLE_CHECKER
~CXXNameMangler() {
if (Out.str()[0] == '\01')
return;
int status = 0;
char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
assert(status == 0 && "Could not demangle mangled name!");
free(result);
}
#endif
raw_ostream &getStream() { return Out; }
void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
void mangleNumber(const llvm::APSInt &I);
void mangleNumber(int64_t Number);
void mangleFloat(const llvm::APFloat &F);
void mangleFunctionEncoding(const FunctionDecl *FD);
void mangleSeqID(unsigned SeqID);
void mangleName(const NamedDecl *ND);
void mangleType(QualType T);
void mangleNameOrStandardSubstitution(const NamedDecl *ND);
private:
bool mangleSubstitution(const NamedDecl *ND);
bool mangleSubstitution(QualType T);
bool mangleSubstitution(TemplateName Template);
bool mangleSubstitution(uintptr_t Ptr);
void mangleExistingSubstitution(QualType type);
void mangleExistingSubstitution(TemplateName name);
bool mangleStandardSubstitution(const NamedDecl *ND);
void addSubstitution(const NamedDecl *ND) {
ND = cast<NamedDecl>(ND->getCanonicalDecl());
addSubstitution(reinterpret_cast<uintptr_t>(ND));
}
void addSubstitution(QualType T);
void addSubstitution(TemplateName Template);
void addSubstitution(uintptr_t Ptr);
void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
NamedDecl *firstQualifierLookup,
bool recursive = false);
void mangleUnresolvedName(NestedNameSpecifier *qualifier,
NamedDecl *firstQualifierLookup,
DeclarationName name,
unsigned KnownArity = UnknownArity);
void mangleName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs);
void mangleUnqualifiedName(const NamedDecl *ND) {
mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
}
void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
unsigned KnownArity);
void mangleUnscopedName(const NamedDecl *ND);
void mangleUnscopedTemplateName(const TemplateDecl *ND);
void mangleUnscopedTemplateName(TemplateName);
void mangleSourceName(const IdentifierInfo *II);
void mangleLocalName(const Decl *D);
void mangleBlockForPrefix(const BlockDecl *Block);
void mangleUnqualifiedBlock(const BlockDecl *Block);
void mangleLambda(const CXXRecordDecl *Lambda);
void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
bool NoFunction=false);
void mangleNestedName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs);
void manglePrefix(NestedNameSpecifier *qualifier);
void manglePrefix(const DeclContext *DC, bool NoFunction=false);
void manglePrefix(QualType type);
void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
void mangleTemplatePrefix(TemplateName Template);
void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
void mangleQualifiers(Qualifiers Quals);
void mangleRefQualifier(RefQualifierKind RefQualifier);
void mangleObjCMethodName(const ObjCMethodDecl *MD);
// Declare manglers for every type class.
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT)
#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
#include "clang/AST/TypeNodes.def"
void mangleType(const TagType*);
void mangleType(TemplateName);
void mangleBareFunctionType(const FunctionType *T,
bool MangleReturnType);
void mangleNeonVectorType(const VectorType *T);
void mangleAArch64NeonVectorType(const VectorType *T);
void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
void mangleMemberExpr(const Expr *base, bool isArrow,
NestedNameSpecifier *qualifier,
NamedDecl *firstQualifierLookup,
DeclarationName name,
unsigned knownArity);
void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
void mangleCXXCtorType(CXXCtorType T);
void mangleCXXDtorType(CXXDtorType T);
void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs);
void mangleTemplateArgs(const TemplateArgumentList &AL);
void mangleTemplateArg(TemplateArgument A);
void mangleTemplateParameter(unsigned Index);
void mangleFunctionParam(const ParmVarDecl *parm);
};
}
bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
if (FD) {
LanguageLinkage L = FD->getLanguageLinkage();
// Overloadable functions need mangling.
if (FD->hasAttr<OverloadableAttr>())
return true;
// "main" is not mangled.
if (FD->isMain())
return false;
// C++ functions and those whose names are not a simple identifier need
// mangling.
if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
return true;
// C functions are not mangled.
if (L == CLanguageLinkage)
return false;
}
// Otherwise, no mangling is done outside C++ mode.
if (!getASTContext().getLangOpts().CPlusPlus)
return false;
const VarDecl *VD = dyn_cast<VarDecl>(D);
if (VD) {
// C variables are not mangled.
if (VD->isExternC())
return false;
// Variables at global scope with non-internal linkage are not mangled
const DeclContext *DC = getEffectiveDeclContext(D);
// Check for extern variable declared locally.
if (DC->isFunctionOrMethod() && D->hasLinkage())
while (!DC->isNamespace() && !DC->isTranslationUnit())
DC = getEffectiveParentContext(DC);
if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
!isa<VarTemplateSpecializationDecl>(D))
return false;
}
return true;
}
void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
// <mangled-name> ::= _Z <encoding>
// ::= <data name>
// ::= <special-name>
Out << Prefix;
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
mangleFunctionEncoding(FD);
else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
mangleName(VD);
else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
mangleName(IFD->getAnonField());
else
mangleName(cast<FieldDecl>(D));
}
void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
// <encoding> ::= <function name> <bare-function-type>
mangleName(FD);
// Don't mangle in the type if this isn't a decl we should typically mangle.
if (!Context.shouldMangleDeclName(FD))
return;
if (FD->hasAttr<EnableIfAttr>()) {
FunctionTypeDepthState Saved = FunctionTypeDepth.push();
Out << "Ua9enable_ifI";
// FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
// it here.
for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
E = FD->getAttrs().rend();
I != E; ++I) {
EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
if (!EIA)
continue;
Out << 'X';
mangleExpression(EIA->getCond());
Out << 'E';
}
Out << 'E';
FunctionTypeDepth.pop(Saved);
}
// Whether the mangling of a function type includes the return type depends on
// the context and the nature of the function. The rules for deciding whether
// the return type is included are:
//
// 1. Template functions (names or types) have return types encoded, with
// the exceptions listed below.
// 2. Function types not appearing as part of a function name mangling,
// e.g. parameters, pointer types, etc., have return type encoded, with the
// exceptions listed below.
// 3. Non-template function names do not have return types encoded.
//
// The exceptions mentioned in (1) and (2) above, for which the return type is
// never included, are
// 1. Constructors.
// 2. Destructors.
// 3. Conversion operator functions, e.g. operator int.
bool MangleReturnType = false;
if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
isa<CXXConversionDecl>(FD)))
MangleReturnType = true;
// Mangle the type of the primary template.
FD = PrimaryTemplate->getTemplatedDecl();
}
mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
MangleReturnType);
}
static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
while (isa<LinkageSpecDecl>(DC)) {
DC = getEffectiveParentContext(DC);
}
return DC;
}
/// isStd - Return whether a given namespace is the 'std' namespace.
static bool isStd(const NamespaceDecl *NS) {
if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
->isTranslationUnit())
return false;
const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
return II && II->isStr("std");
}
// isStdNamespace - Return whether a given decl context is a toplevel 'std'
// namespace.
static bool isStdNamespace(const DeclContext *DC) {
if (!DC->isNamespace())
return false;
return isStd(cast<NamespaceDecl>(DC));
}
static const TemplateDecl *
isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
// Check if we have a function template.
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
TemplateArgs = FD->getTemplateSpecializationArgs();
return TD;
}
}
// Check if we have a class template.
if (const ClassTemplateSpecializationDecl *Spec =
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
TemplateArgs = &Spec->getTemplateArgs();
return Spec->getSpecializedTemplate();
}
// Check if we have a variable template.
if (const VarTemplateSpecializationDecl *Spec =
dyn_cast<VarTemplateSpecializationDecl>(ND)) {
TemplateArgs = &Spec->getTemplateArgs();
return Spec->getSpecializedTemplate();
}
return 0;
}
void CXXNameMangler::mangleName(const NamedDecl *ND) {
// <name> ::= <nested-name>
// ::= <unscoped-name>
// ::= <unscoped-template-name> <template-args>
// ::= <local-name>
//
const DeclContext *DC = getEffectiveDeclContext(ND);
// If this is an extern variable declared locally, the relevant DeclContext
// is that of the containing namespace, or the translation unit.
// FIXME: This is a hack; extern variables declared locally should have
// a proper semantic declaration context!
if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
while (!DC->isNamespace() && !DC->isTranslationUnit())
DC = getEffectiveParentContext(DC);
else if (GetLocalClassDecl(ND)) {
mangleLocalName(ND);
return;
}
DC = IgnoreLinkageSpecDecls(DC);
if (DC->isTranslationUnit() || isStdNamespace(DC)) {
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = 0;
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
mangleUnscopedTemplateName(TD);
mangleTemplateArgs(*TemplateArgs);
return;
}
mangleUnscopedName(ND);
return;
}
if (isLocalContainerContext(DC)) {
mangleLocalName(ND);
return;
}
mangleNestedName(ND, DC);
}
void CXXNameMangler::mangleName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs) {
const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
if (DC->isTranslationUnit() || isStdNamespace(DC)) {
mangleUnscopedTemplateName(TD);
mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
} else {
mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
}
}
void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
// <unscoped-name> ::= <unqualified-name>
// ::= St <unqualified-name> # ::std::
if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
Out << "St";
mangleUnqualifiedName(ND);
}
void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
// <unscoped-template-name> ::= <unscoped-name>
// ::= <substitution>
if (mangleSubstitution(ND))
return;
// <template-template-param> ::= <template-param>
if (const TemplateTemplateParmDecl *TTP
= dyn_cast<TemplateTemplateParmDecl>(ND)) {
mangleTemplateParameter(TTP->getIndex());
return;
}
mangleUnscopedName(ND->getTemplatedDecl());
addSubstitution(ND);
}
void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
// <unscoped-template-name> ::= <unscoped-name>
// ::= <substitution>
if (TemplateDecl *TD = Template.getAsTemplateDecl())
return mangleUnscopedTemplateName(TD);
if (mangleSubstitution(Template))
return;
DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
assert(Dependent && "Not a dependent template name?");
if (const IdentifierInfo *Id = Dependent->getIdentifier())
mangleSourceName(Id);
else
mangleOperatorName(Dependent->getOperator(), UnknownArity);
addSubstitution(Template);
}
void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
// ABI:
// Floating-point literals are encoded using a fixed-length
// lowercase hexadecimal string corresponding to the internal
// representation (IEEE on Itanium), high-order bytes first,
// without leading zeroes. For example: "Lf bf800000 E" is -1.0f
// on Itanium.
// The 'without leading zeroes' thing seems to be an editorial
// mistake; see the discussion on cxx-abi-dev beginning on
// 2012-01-16.
// Our requirements here are just barely weird enough to justify
// using a custom algorithm instead of post-processing APInt::toString().
llvm::APInt valueBits = f.bitcastToAPInt();
unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
assert(numCharacters != 0);
// Allocate a buffer of the right number of characters.
SmallVector<char, 20> buffer;
buffer.set_size(numCharacters);
// Fill the buffer left-to-right.
for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
// The bit-index of the next hex digit.
unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
// Project out 4 bits starting at 'digitIndex'.
llvm::integerPart hexDigit
= valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
hexDigit &= 0xF;
// Map that over to a lowercase hex digit.
static const char charForHex[16] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
};
buffer[stringIndex] = charForHex[hexDigit];
}
Out.write(buffer.data(), numCharacters);
}
void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
if (Value.isSigned() && Value.isNegative()) {
Out << 'n';
Value.abs().print(Out, /*signed*/ false);
} else {
Value.print(Out, /*signed*/ false);
}
}
void CXXNameMangler::mangleNumber(int64_t Number) {
// <number> ::= [n] <non-negative decimal integer>
if (Number < 0) {
Out << 'n';
Number = -Number;
}
Out << Number;
}
void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
// <call-offset> ::= h <nv-offset> _
// ::= v <v-offset> _
// <nv-offset> ::= <offset number> # non-virtual base override
// <v-offset> ::= <offset number> _ <virtual offset number>
// # virtual base override, with vcall offset
if (!Virtual) {
Out << 'h';
mangleNumber(NonVirtual);
Out << '_';
return;
}
Out << 'v';
mangleNumber(NonVirtual);
Out << '_';
mangleNumber(Virtual);
Out << '_';
}
void CXXNameMangler::manglePrefix(QualType type) {
if (const TemplateSpecializationType *TST =
type->getAs<TemplateSpecializationType>()) {
if (!mangleSubstitution(QualType(TST, 0))) {
mangleTemplatePrefix(TST->getTemplateName());
// FIXME: GCC does not appear to mangle the template arguments when
// the template in question is a dependent template name. Should we
// emulate that badness?
mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
addSubstitution(QualType(TST, 0));
}
} else if (const DependentTemplateSpecializationType *DTST
= type->getAs<DependentTemplateSpecializationType>()) {
TemplateName Template
= getASTContext().getDependentTemplateName(DTST->getQualifier(),
DTST->getIdentifier());
mangleTemplatePrefix(Template);
// FIXME: GCC does not appear to mangle the template arguments when
// the template in question is a dependent template name. Should we
// emulate that badness?
mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
} else {
// We use the QualType mangle type variant here because it handles
// substitutions.
mangleType(type);
}
}
/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
///
/// \param firstQualifierLookup - the entity found by unqualified lookup
/// for the first name in the qualifier, if this is for a member expression
/// \param recursive - true if this is being called recursively,
/// i.e. if there is more prefix "to the right".
void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
NamedDecl *firstQualifierLookup,
bool recursive) {
// x, ::x
// <unresolved-name> ::= [gs] <base-unresolved-name>
// T::x / decltype(p)::x
// <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
// T::N::x /decltype(p)::N::x
// <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
// <base-unresolved-name>
// A::x, N::y, A<T>::z; "gs" means leading "::"
// <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
// <base-unresolved-name>
switch (qualifier->getKind()) {
case NestedNameSpecifier::Global:
Out << "gs";
// We want an 'sr' unless this is the entire NNS.
if (recursive)
Out << "sr";
// We never want an 'E' here.
return;
case NestedNameSpecifier::Namespace:
if (qualifier->getPrefix())
mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
/*recursive*/ true);
else
Out << "sr";
mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
break;
case NestedNameSpecifier::NamespaceAlias:
if (qualifier->getPrefix())
mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
/*recursive*/ true);
else
Out << "sr";
mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
const Type *type = qualifier->getAsType();
// We only want to use an unresolved-type encoding if this is one of:
// - a decltype
// - a template type parameter
// - a template template parameter with arguments
// In all of these cases, we should have no prefix.
if (qualifier->getPrefix()) {
mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
/*recursive*/ true);
} else {
// Otherwise, all the cases want this.
Out << "sr";
}
// Only certain other types are valid as prefixes; enumerate them.
switch (type->getTypeClass()) {
case Type::Builtin:
case Type::Complex:
case Type::Adjusted:
case Type::Decayed:
case Type::Pointer:
case Type::BlockPointer:
case Type::LValueReference:
case Type::RValueReference:
case Type::MemberPointer:
case Type::ConstantArray:
case Type::IncompleteArray:
case Type::VariableArray:
case Type::DependentSizedArray:
case Type::DependentSizedExtVector:
case Type::Vector:
case Type::ExtVector:
case Type::FunctionProto:
case Type::FunctionNoProto:
case Type::Enum:
case Type::Paren:
case Type::Elaborated:
case Type::Attributed:
case Type::Auto:
case Type::PackExpansion:
case Type::ObjCObject:
case Type::ObjCInterface:
case Type::ObjCObjectPointer:
case Type::Atomic:
llvm_unreachable("type is illegal as a nested name specifier");
case Type::SubstTemplateTypeParmPack:
// FIXME: not clear how to mangle this!
// template <class T...> class A {
// template <class U...> void foo(decltype(T::foo(U())) x...);
// };
Out << "_SUBSTPACK_";
break;
// <unresolved-type> ::= <template-param>
// ::= <decltype>
// ::= <template-template-param> <template-args>
// (this last is not official yet)
case Type::TypeOfExpr:
case Type::TypeOf:
case Type::Decltype:
case Type::TemplateTypeParm:
case Type::UnaryTransform:
case Type::SubstTemplateTypeParm:
unresolvedType:
assert(!qualifier->getPrefix());
// We only get here recursively if we're followed by identifiers.
if (recursive) Out << 'N';
// This seems to do everything we want. It's not really
// sanctioned for a substituted template parameter, though.
mangleType(QualType(type, 0));
// We never want to print 'E' directly after an unresolved-type,
// so we return directly.
return;
case Type::Typedef:
mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
break;
case Type::UnresolvedUsing:
mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
->getIdentifier());
break;
case Type::Record:
mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
break;
case Type::TemplateSpecialization: {
const TemplateSpecializationType *tst
= cast<TemplateSpecializationType>(type);
TemplateName name = tst->getTemplateName();
switch (name.getKind()) {
case TemplateName::Template:
case TemplateName::QualifiedTemplate: {
TemplateDecl *temp = name.getAsTemplateDecl();
// If the base is a template template parameter, this is an
// unresolved type.
assert(temp && "no template for template specialization type");
if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
mangleSourceName(temp->getIdentifier());
break;
}
case TemplateName::OverloadedTemplate:
case TemplateName::DependentTemplate:
llvm_unreachable("invalid base for a template specialization type");
case TemplateName::SubstTemplateTemplateParm: {
SubstTemplateTemplateParmStorage *subst
= name.getAsSubstTemplateTemplateParm();
mangleExistingSubstitution(subst->getReplacement());
break;
}
case TemplateName::SubstTemplateTemplateParmPack: {
// FIXME: not clear how to mangle this!
// template <template <class U> class T...> class A {
// template <class U...> void foo(decltype(T<U>::foo) x...);
// };
Out << "_SUBSTPACK_";
break;
}
}
mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
break;
}
case Type::InjectedClassName:
mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
->getIdentifier());
break;
case Type::DependentName:
mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
break;
case Type::DependentTemplateSpecialization: {
const DependentTemplateSpecializationType *tst
= cast<DependentTemplateSpecializationType>(type);
mangleSourceName(tst->getIdentifier());
mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
break;
}
}
break;
}
case NestedNameSpecifier::Identifier:
// Member expressions can have these without prefixes.
if (qualifier->getPrefix()) {
mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
/*recursive*/ true);
} else if (firstQualifierLookup) {
// Try to make a proper qualifier out of the lookup result, and
// then just recurse on that.
NestedNameSpecifier *newQualifier;
if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
QualType type = getASTContext().getTypeDeclType(typeDecl);
// Pretend we had a different nested name specifier.
newQualifier = NestedNameSpecifier::Create(getASTContext(),
/*prefix*/ 0,
/*template*/ false,
type.getTypePtr());
} else if (NamespaceDecl *nspace =
dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
newQualifier = NestedNameSpecifier::Create(getASTContext(),
/*prefix*/ 0,
nspace);
} else if (NamespaceAliasDecl *alias =
dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
newQualifier = NestedNameSpecifier::Create(getASTContext(),
/*prefix*/ 0,
alias);
} else {
// No sensible mangling to do here.
newQualifier = 0;
}
if (newQualifier)
return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
} else {
Out << "sr";
}
mangleSourceName(qualifier->getAsIdentifier());
break;
}
// If this was the innermost part of the NNS, and we fell out to
// here, append an 'E'.
if (!recursive)
Out << 'E';
}
/// Mangle an unresolved-name, which is generally used for names which
/// weren't resolved to specific entities.
void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
NamedDecl *firstQualifierLookup,
DeclarationName name,
unsigned knownArity) {
if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
mangleUnqualifiedName(0, name, knownArity);
}
static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
assert(RD->isAnonymousStructOrUnion() &&
"Expected anonymous struct or union!");
for (const auto *I : RD->fields()) {
if (I->getIdentifier())
return I;
if (const RecordType *RT = I->getType()->getAs<RecordType>())
if (const FieldDecl *NamedDataMember =
FindFirstNamedDataMember(RT->getDecl()))
return NamedDataMember;
}
// We didn't find a named data member.
return 0;
}
void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
DeclarationName Name,
unsigned KnownArity) {
// <unqualified-name> ::= <operator-name>
// ::= <ctor-dtor-name>
// ::= <source-name>
switch (Name.getNameKind()) {
case DeclarationName::Identifier: {
if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
// We must avoid conflicts between internally- and externally-
// linked variable and function declaration names in the same TU:
// void test() { extern void foo(); }
// static void foo();
// This naming convention is the same as that followed by GCC,
// though it shouldn't actually matter.
if (ND && ND->getFormalLinkage() == InternalLinkage &&
getEffectiveDeclContext(ND)->isFileContext())
Out << 'L';
mangleSourceName(II);
break;
}
// Otherwise, an anonymous entity. We must have a declaration.
assert(ND && "mangling empty name without declaration");
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
if (NS->isAnonymousNamespace()) {
// This is how gcc mangles these names.
Out << "12_GLOBAL__N_1";
break;
}
}
if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
// We must have an anonymous union or struct declaration.
const RecordDecl *RD =
cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
// Itanium C++ ABI 5.1.2:
//
// For the purposes of mangling, the name of an anonymous union is
// considered to be the name of the first named data member found by a
// pre-order, depth-first, declaration-order walk of the data members of
// the anonymous union. If there is no such data member (i.e., if all of
// the data members in the union are unnamed), then there is no way for
// a program to refer to the anonymous union, and there is therefore no
// need to mangle its name.
const FieldDecl *FD = FindFirstNamedDataMember(RD);
// It's actually possible for various reasons for us to get here
// with an empty anonymous struct / union. Fortunately, it
// doesn't really matter what name we generate.
if (!FD) break;
assert(FD->getIdentifier() && "Data member name isn't an identifier!");
mangleSourceName(FD->getIdentifier());
break;
}
// Class extensions have no name as a category, and it's possible
// for them to be the semantic parent of certain declarations
// (primarily, tag decls defined within declarations). Such
// declarations will always have internal linkage, so the name
// doesn't really matter, but we shouldn't crash on them. For
// safety, just handle all ObjC containers here.
if (isa<ObjCContainerDecl>(ND))
break;
// We must have an anonymous struct.
const TagDecl *TD = cast<TagDecl>(ND);
if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
assert(TD->getDeclContext() == D->getDeclContext() &&
"Typedef should not be in another decl context!");
assert(D->getDeclName().getAsIdentifierInfo() &&
"Typedef was not named!");
mangleSourceName(D->getDeclName().getAsIdentifierInfo());
break;
}
// <unnamed-type-name> ::= <closure-type-name>
//
// <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
// <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
if (Record->isLambda() && Record->getLambdaManglingNumber()) {
mangleLambda(Record);
break;
}
}
if (TD->isExternallyVisible()) {
unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
Out << "Ut";
if (UnnamedMangle > 1)
Out << llvm::utostr(UnnamedMangle - 2);
Out << '_';
break;
}
// Get a unique id for the anonymous struct.
unsigned AnonStructId = Context.getAnonymousStructId(TD);
// Mangle it as a source name in the form
// [n] $_<id>
// where n is the length of the string.
SmallString<8> Str;
Str += "$_";
Str += llvm::utostr(AnonStructId);
Out << Str.size();
Out << Str.str();
break;
}
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
llvm_unreachable("Can't mangle Objective-C selector names here!");
case DeclarationName::CXXConstructorName:
if (ND == Structor)
// If the named decl is the C++ constructor we're mangling, use the type
// we were given.
mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
else
// Otherwise, use the complete constructor name. This is relevant if a
// class with a constructor is declared within a constructor.
mangleCXXCtorType(Ctor_Complete);
break;
case DeclarationName::CXXDestructorName:
if (ND == Structor)
// If the named decl is the C++ destructor we're mangling, use the type we
// were given.
mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
else
// Otherwise, use the complete destructor name. This is relevant if a
// class with a destructor is declared within a destructor.
mangleCXXDtorType(Dtor_Complete);
break;
case DeclarationName::CXXConversionFunctionName:
// <operator-name> ::= cv <type> # (cast)
Out << "cv";
mangleType(Name.getCXXNameType());
break;
case DeclarationName::CXXOperatorName: {
unsigned Arity;
if (ND) {
Arity = cast<FunctionDecl>(ND)->getNumParams();
// If we have a C++ member function, we need to include the 'this' pointer.
// FIXME: This does not make sense for operators that are static, but their
// names stay the same regardless of the arity (operator new for instance).
if (isa<CXXMethodDecl>(ND))
Arity++;
} else
Arity = KnownArity;
mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
break;
}
case DeclarationName::CXXLiteralOperatorName:
// FIXME: This mangling is not yet official.
Out << "li";
mangleSourceName(Name.getCXXLiteralIdentifier());
break;
case DeclarationName::CXXUsingDirective:
llvm_unreachable("Can't mangle a using directive name!");
}
}
void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
// <source-name> ::= <positive length number> <identifier>
// <number> ::= [n] <non-negative decimal integer>
// <identifier> ::= <unqualified source code identifier>
Out << II->getLength() << II->getName();
}
void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
const DeclContext *DC,
bool NoFunction) {
// <nested-name>
// ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
// ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
// <template-args> E
Out << 'N';
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
Qualifiers MethodQuals =
Qualifiers::fromCVRMask(Method->getTypeQualifiers());
// We do not consider restrict a distinguishing attribute for overloading
// purposes so we must not mangle it.
MethodQuals.removeRestrict();
mangleQualifiers(MethodQuals);
mangleRefQualifier(Method->getRefQualifier());
}
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = 0;
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
mangleTemplatePrefix(TD, NoFunction);
mangleTemplateArgs(*TemplateArgs);
}
else {
manglePrefix(DC, NoFunction);
mangleUnqualifiedName(ND);
}
Out << 'E';
}
void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs) {
// <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
Out << 'N';
mangleTemplatePrefix(TD);
mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
Out << 'E';
}
void CXXNameMangler::mangleLocalName(const Decl *D) {
// <local-name> := Z <function encoding> E <entity name> [<discriminator>]
// := Z <function encoding> E s [<discriminator>]
// <local-name> := Z <function encoding> E d [ <parameter number> ]
// _ <entity name>
// <discriminator> := _ <non-negative number>
assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
const RecordDecl *RD = GetLocalClassDecl(D);
const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
Out << 'Z';
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
mangleObjCMethodName(MD);
else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
mangleBlockForPrefix(BD);
else
mangleFunctionEncoding(cast<FunctionDecl>(DC));
Out << 'E';
if (RD) {
// The parameter number is omitted for the last parameter, 0 for the
// second-to-last parameter, 1 for the third-to-last parameter, etc. The
// <entity name> will of course contain a <closure-type-name>: Its
// numbering will be local to the particular argument in which it appears
// -- other default arguments do not affect its encoding.
const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
if (CXXRD->isLambda()) {
if (const ParmVarDecl *Parm
= dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
if (const FunctionDecl *Func
= dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
Out << 'd';
unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
if (Num > 1)
mangleNumber(Num - 2);
Out << '_';
}
}
}
// Mangle the name relative to the closest enclosing function.
// equality ok because RD derived from ND above
if (D == RD) {
mangleUnqualifiedName(RD);
} else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
mangleUnqualifiedBlock(BD);
} else {
const NamedDecl *ND = cast<NamedDecl>(D);
mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
}
} else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
// Mangle a block in a default parameter; see above explanation for
// lambdas.
if (const ParmVarDecl *Parm
= dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
if (const FunctionDecl *Func
= dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
Out << 'd';
unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
if (Num > 1)
mangleNumber(Num - 2);
Out << '_';
}
}
mangleUnqualifiedBlock(BD);
} else {
mangleUnqualifiedName(cast<NamedDecl>(D));
}
if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
unsigned disc;
if (Context.getNextDiscriminator(ND, disc)) {
if (disc < 10)
Out << '_' << disc;
else
Out << "__" << disc << '_';
}
}
}
void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
if (GetLocalClassDecl(Block)) {
mangleLocalName(Block);
return;
}
const DeclContext *DC = getEffectiveDeclContext(Block);
if (isLocalContainerContext(DC)) {
mangleLocalName(Block);
return;
}
manglePrefix(getEffectiveDeclContext(Block));
mangleUnqualifiedBlock(Block);
}
void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
if (Decl *Context = Block->getBlockManglingContextDecl()) {
if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
Context->getDeclContext()->isRecord()) {
if (const IdentifierInfo *Name
= cast<NamedDecl>(Context)->getIdentifier()) {
mangleSourceName(Name);
Out << 'M';
}
}
}
// If we have a block mangling number, use it.
unsigned Number = Block->getBlockManglingNumber();
// Otherwise, just make up a number. It doesn't matter what it is because
// the symbol in question isn't externally visible.
if (!Number)
Number = Context.getBlockId(Block, false);
Out << "Ub";
if (Number > 1)
Out << Number - 2;
Out << '_';
}
void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
// If the context of a closure type is an initializer for a class member
// (static or nonstatic), it is encoded in a qualified name with a final
// <prefix> of the form:
//
// <data-member-prefix> := <member source-name> M
//
// Technically, the data-member-prefix is part of the <prefix>. However,
// since a closure type will always be mangled with a prefix, it's easier
// to emit that last part of the prefix here.
if (Decl *Context = Lambda->getLambdaContextDecl()) {
if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
Context->getDeclContext()->isRecord()) {
if (const IdentifierInfo *Name
= cast<NamedDecl>(Context)->getIdentifier()) {
mangleSourceName(Name);
Out << 'M';
}
}
}
Out << "Ul";
const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
getAs<FunctionProtoType>();
mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
Out << "E";
// The number is omitted for the first closure type with a given
// <lambda-sig> in a given context; it is n-2 for the nth closure type
// (in lexical order) with that same <lambda-sig> and context.
//
// The AST keeps track of the number for us.
unsigned Number = Lambda->getLambdaManglingNumber();
assert(Number > 0 && "Lambda should be mangled as an unnamed class");
if (Number > 1)
mangleNumber(Number - 2);
Out << '_';
}
void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
switch (qualifier->getKind()) {
case NestedNameSpecifier::Global:
// nothing
return;
case NestedNameSpecifier::Namespace:
mangleName(qualifier->getAsNamespace());
return;
case NestedNameSpecifier::NamespaceAlias:
mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
return;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
manglePrefix(QualType(qualifier->getAsType(), 0));
return;
case NestedNameSpecifier::Identifier:
// Member expressions can have these without prefixes, but that
// should end up in mangleUnresolvedPrefix instead.
assert(qualifier->getPrefix());
manglePrefix(qualifier->getPrefix());
mangleSourceName(qualifier->getAsIdentifier());
return;
}
llvm_unreachable("unexpected nested name specifier");
}
void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
// <prefix> ::= <prefix> <unqualified-name>
// ::= <template-prefix> <template-args>
// ::= <template-param>
// ::= # empty
// ::= <substitution>
DC = IgnoreLinkageSpecDecls(DC);
if (DC->isTranslationUnit())
return;
if (NoFunction && isLocalContainerContext(DC))
return;
assert(!isLocalContainerContext(DC));
const NamedDecl *ND = cast<NamedDecl>(DC);
if (mangleSubstitution(ND))
return;
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = 0;
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
mangleTemplatePrefix(TD);
mangleTemplateArgs(*TemplateArgs);
} else {
manglePrefix(getEffectiveDeclContext(ND), NoFunction);
mangleUnqualifiedName(ND);
}
addSubstitution(ND);
}
void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
// <template-prefix> ::= <prefix> <template unqualified-name>
// ::= <template-param>
// ::= <substitution>
if (TemplateDecl *TD = Template.getAsTemplateDecl())
return mangleTemplatePrefix(TD);
if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
manglePrefix(Qualified->getQualifier());
if (OverloadedTemplateStorage *Overloaded
= Template.getAsOverloadedTemplate()) {
mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
UnknownArity);
return;
}
DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
assert(Dependent && "Unknown template name kind?");
manglePrefix(Dependent->getQualifier());
mangleUnscopedTemplateName(Template);
}
void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
bool NoFunction) {
// <template-prefix> ::= <prefix> <template unqualified-name>
// ::= <template-param>
// ::= <substitution>
// <template-template-param> ::= <template-param>
// <substitution>
if (mangleSubstitution(ND))
return;
// <template-template-param> ::= <template-param>
if (const TemplateTemplateParmDecl *TTP
= dyn_cast<TemplateTemplateParmDecl>(ND)) {
mangleTemplateParameter(TTP->getIndex());
return;
}
manglePrefix(getEffectiveDeclContext(ND), NoFunction);
mangleUnqualifiedName(ND->getTemplatedDecl());
addSubstitution(ND);
}
/// Mangles a template name under the production <type>. Required for
/// template template arguments.
/// <type> ::= <class-enum-type>
/// ::= <template-param>
/// ::= <substitution>
void CXXNameMangler::mangleType(TemplateName TN) {
if (mangleSubstitution(TN))
return;
TemplateDecl *TD = 0;
switch (TN.getKind()) {
case TemplateName::QualifiedTemplate:
TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
goto HaveDecl;
case TemplateName::Template:
TD = TN.getAsTemplateDecl();
goto HaveDecl;
HaveDecl:
if (isa<TemplateTemplateParmDecl>(TD))
mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
else
mangleName(TD);
break;
case TemplateName::OverloadedTemplate:
llvm_unreachable("can't mangle an overloaded template name as a <type>");
case TemplateName::DependentTemplate: {
const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
assert(Dependent->isIdentifier());
// <class-enum-type> ::= <name>
// <name> ::= <nested-name>
mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
mangleSourceName(Dependent->getIdentifier());
break;
}
case TemplateName::SubstTemplateTemplateParm: {
// Substituted template parameters are mangled as the substituted
// template. This will check for the substitution twice, which is
// fine, but we have to return early so that we don't try to *add*
// the substitution twice.
SubstTemplateTemplateParmStorage *subst
= TN.getAsSubstTemplateTemplateParm();
mangleType(subst->getReplacement());
return;
}
case TemplateName::SubstTemplateTemplateParmPack: {
// FIXME: not clear how to mangle this!
// template <template <class> class T...> class A {
// template <template <class> class U...> void foo(B<T,U> x...);
// };
Out << "_SUBSTPACK_";
break;
}
}
addSubstitution(TN);
}
void
CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
switch (OO) {
// <operator-name> ::= nw # new
case OO_New: Out << "nw"; break;
// ::= na # new[]
case OO_Array_New: Out << "na"; break;
// ::= dl # delete
case OO_Delete: Out << "dl"; break;
// ::= da # delete[]
case OO_Array_Delete: Out << "da"; break;
// ::= ps # + (unary)
// ::= pl # + (binary or unknown)
case OO_Plus:
Out << (Arity == 1? "ps" : "pl"); break;
// ::= ng # - (unary)
// ::= mi # - (binary or unknown)
case OO_Minus:
Out << (Arity == 1? "ng" : "mi"); break;
// ::= ad # & (unary)
// ::= an # & (binary or unknown)
case OO_Amp:
Out << (Arity == 1? "ad" : "an"); break;
// ::= de # * (unary)
// ::= ml # * (binary or unknown)
case OO_Star:
// Use binary when unknown.
Out << (Arity == 1? "de" : "ml"); break;
// ::= co # ~
case OO_Tilde: Out << "co"; break;
// ::= dv # /
case OO_Slash: Out << "dv"; break;
// ::= rm # %
case OO_Percent: Out << "rm"; break;
// ::= or # |
case OO_Pipe: Out << "or"; break;
// ::= eo # ^
case OO_Caret: Out << "eo"; break;
// ::= aS # =
case OO_Equal: Out << "aS"; break;
// ::= pL # +=
case OO_PlusEqual: Out << "pL"; break;
// ::= mI # -=
case OO_MinusEqual: Out << "mI"; break;
// ::= mL # *=
case OO_StarEqual: Out << "mL"; break;
// ::= dV # /=
case OO_SlashEqual: Out << "dV"; break;
// ::= rM # %=
case OO_PercentEqual: Out << "rM"; break;
// ::= aN # &=
case OO_AmpEqual: Out << "aN"; break;
// ::= oR # |=
case OO_PipeEqual: Out << "oR"; break;
// ::= eO # ^=
case OO_CaretEqual: Out << "eO"; break;
// ::= ls # <<
case OO_LessLess: Out << "ls"; break;
// ::= rs # >>
case OO_GreaterGreater: Out << "rs"; break;
// ::= lS # <<=
case OO_LessLessEqual: Out << "lS"; break;
// ::= rS # >>=
case OO_GreaterGreaterEqual: Out << "rS"; break;
// ::= eq # ==
case OO_EqualEqual: Out << "eq"; break;
// ::= ne # !=
case OO_ExclaimEqual: Out << "ne"; break;
// ::= lt # <
case OO_Less: Out << "lt"; break;
// ::= gt # >
case OO_Greater: Out << "gt"; break;
// ::= le # <=
case OO_LessEqual: Out << "le"; break;
// ::= ge # >=
case OO_GreaterEqual: Out << "ge"; break;
// ::= nt # !
case OO_Exclaim: Out << "nt"; break;
// ::= aa # &&
case OO_AmpAmp: Out << "aa"; break;
// ::= oo # ||
case OO_PipePipe: Out << "oo"; break;
// ::= pp # ++
case OO_PlusPlus: Out << "pp"; break;
// ::= mm # --
case OO_MinusMinus: Out << "mm"; break;
// ::= cm # ,
case OO_Comma: Out << "cm"; break;
// ::= pm # ->*
case OO_ArrowStar: Out << "pm"; break;
// ::= pt # ->
case OO_Arrow: Out << "pt"; break;
// ::= cl # ()
case OO_Call: Out << "cl"; break;
// ::= ix # []
case OO_Subscript: Out << "ix"; break;
// ::= qu # ?
// The conditional operator can't be overloaded, but we still handle it when
// mangling expressions.
case OO_Conditional: Out << "qu"; break;
case OO_None:
case NUM_OVERLOADED_OPERATORS:
llvm_unreachable("Not an overloaded operator");
}
}
void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
// <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
if (Quals.hasRestrict())
Out << 'r';
if (Quals.hasVolatile())
Out << 'V';
if (Quals.hasConst())
Out << 'K';
if (Quals.hasAddressSpace()) {
// Address space extension:
//
// <type> ::= U <target-addrspace>
// <type> ::= U <OpenCL-addrspace>
// <type> ::= U <CUDA-addrspace>
SmallString<64> ASString;
unsigned AS = Quals.getAddressSpace();
if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
// <target-addrspace> ::= "AS" <address-space-number>
unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
ASString = "AS" + llvm::utostr_32(TargetAS);
} else {
switch (AS) {
default: llvm_unreachable("Not a language specific address space");
// <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
case LangAS::opencl_global: ASString = "CLglobal"; break;
case LangAS::opencl_local: ASString = "CLlocal"; break;
case LangAS::opencl_constant: ASString = "CLconstant"; break;
// <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
case LangAS::cuda_device: ASString = "CUdevice"; break;
case LangAS::cuda_constant: ASString = "CUconstant"; break;
case LangAS::cuda_shared: ASString = "CUshared"; break;
}
}
Out << 'U' << ASString.size() << ASString;
}
StringRef LifetimeName;
switch (Quals.getObjCLifetime()) {
// Objective-C ARC Extension:
//
// <type> ::= U "__strong"
// <type> ::= U "__weak"
// <type> ::= U "__autoreleasing"
case Qualifiers::OCL_None:
break;
case Qualifiers::OCL_Weak:
LifetimeName = "__weak";
break;
case Qualifiers::OCL_Strong:
LifetimeName = "__strong";
break;
case Qualifiers::OCL_Autoreleasing:
LifetimeName = "__autoreleasing";
break;
case Qualifiers::OCL_ExplicitNone:
// The __unsafe_unretained qualifier is *not* mangled, so that
// __unsafe_unretained types in ARC produce the same manglings as the
// equivalent (but, naturally, unqualified) types in non-ARC, providing
// better ABI compatibility.
//
// It's safe to do this because unqualified 'id' won't show up
// in any type signatures that need to be mangled.
break;
}
if (!LifetimeName.empty())
Out << 'U' << LifetimeName.size() << LifetimeName;
}
void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
// <ref-qualifier> ::= R # lvalue reference
// ::= O # rvalue-reference
switch (RefQualifier) {
case RQ_None:
break;
case RQ_LValue:
Out << 'R';
break;
case RQ_RValue:
Out << 'O';
break;
}
}
void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
Context.mangleObjCMethodName(MD, Out);
}
void CXXNameMangler::mangleType(QualType T) {
// If our type is instantiation-dependent but not dependent, we mangle
// it as it was written in the source, removing any top-level sugar.
// Otherwise, use the canonical type.
//
// FIXME: This is an approximation of the instantiation-dependent name
// mangling rules, since we should really be using the type as written and
// augmented via semantic analysis (i.e., with implicit conversions and
// default template arguments) for any instantiation-dependent type.
// Unfortunately, that requires several changes to our AST:
// - Instantiation-dependent TemplateSpecializationTypes will need to be
// uniqued, so that we can handle substitutions properly
// - Default template arguments will need to be represented in the
// TemplateSpecializationType, since they need to be mangled even though
// they aren't written.
// - Conversions on non-type template arguments need to be expressed, since
// they can affect the mangling of sizeof/alignof.
if (!T->isInstantiationDependentType() || T->isDependentType())
T = T.getCanonicalType();
else {
// Desugar any types that are purely sugar.
do {
// Don't desugar through template specialization types that aren't
// type aliases. We need to mangle the template arguments as written.
if (const TemplateSpecializationType *TST
= dyn_cast<TemplateSpecializationType>(T))
if (!TST->isTypeAlias())
break;
QualType Desugared
= T.getSingleStepDesugaredType(Context.getASTContext());
if (Desugared == T)
break;
T = Desugared;
} while (true);
}
SplitQualType split = T.split();
Qualifiers quals = split.Quals;
const Type *ty = split.Ty;
bool isSubstitutable = quals || !isa<BuiltinType>(T);
if (isSubstitutable && mangleSubstitution(T))
return;
// If we're mangling a qualified array type, push the qualifiers to
// the element type.
if (quals && isa<ArrayType>(T)) {
ty = Context.getASTContext().getAsArrayType(T);
quals = Qualifiers();
// Note that we don't update T: we want to add the
// substitution at the original type.
}
if (quals) {
mangleQualifiers(quals);
// Recurse: even if the qualified type isn't yet substitutable,
// the unqualified type might be.
mangleType(QualType(ty, 0));
} else {
switch (ty->getTypeClass()) {
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT) \
case Type::CLASS: \
llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
return;
#define TYPE(CLASS, PARENT) \
case Type::CLASS: \
mangleType(static_cast<const CLASS##Type*>(ty)); \
break;
#include "clang/AST/TypeNodes.def"
}
}
// Add the substitution.
if (isSubstitutable)
addSubstitution(T);
}
void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
if (!mangleStandardSubstitution(ND))
mangleName(ND);
}
void CXXNameMangler::mangleType(const BuiltinType *T) {
// <type> ::= <builtin-type>
// <builtin-type> ::= v # void
// ::= w # wchar_t
// ::= b # bool
// ::= c # char
// ::= a # signed char
// ::= h # unsigned char
// ::= s # short
// ::= t # unsigned short
// ::= i # int
// ::= j # unsigned int
// ::= l # long
// ::= m # unsigned long
// ::= x # long long, __int64
// ::= y # unsigned long long, __int64
// ::= n # __int128
// ::= o # unsigned __int128
// ::= f # float
// ::= d # double
// ::= e # long double, __float80
// UNSUPPORTED: ::= g # __float128
// UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
// UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
// UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
// ::= Dh # IEEE 754r half-precision floating point (16 bits)
// ::= Di # char32_t
// ::= Ds # char16_t
// ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
// ::= u <source-name> # vendor extended type
switch (T->getKind()) {
case BuiltinType::Void: Out << 'v'; break;
case BuiltinType::Bool: Out << 'b'; break;
case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
case BuiltinType::UChar: Out << 'h'; break;
case BuiltinType::UShort: Out << 't'; break;
case BuiltinType::UInt: Out << 'j'; break;
case BuiltinType::ULong: Out << 'm'; break;
case BuiltinType::ULongLong: Out << 'y'; break;
case BuiltinType::UInt128: Out << 'o'; break;
case BuiltinType::SChar: Out << 'a'; break;
case BuiltinType::WChar_S:
case BuiltinType::WChar_U: Out << 'w'; break;
case BuiltinType::Char16: Out << "Ds"; break;
case BuiltinType::Char32: Out << "Di"; break;
case BuiltinType::Short: Out << 's'; break;
case BuiltinType::Int: Out << 'i'; break;
case BuiltinType::Long: Out << 'l'; break;
case BuiltinType::LongLong: Out << 'x'; break;
case BuiltinType::Int128: Out << 'n'; break;
case BuiltinType::Half: Out << "Dh"; break;
case BuiltinType::Float: Out << 'f'; break;
case BuiltinType::Double: Out << 'd'; break;
case BuiltinType::LongDouble: Out << 'e'; break;
case BuiltinType::NullPtr: Out << "Dn"; break;
#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) \
case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
case BuiltinType::Dependent:
llvm_unreachable("mangling a placeholder type");
case BuiltinType::ObjCId: Out << "11objc_object"; break;
case BuiltinType::ObjCClass: Out << "10objc_class"; break;
case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
}
}
// <type> ::= <function-type>
// <function-type> ::= [<CV-qualifiers>] F [Y]
// <bare-function-type> [<ref-qualifier>] E
void CXXNameMangler::mangleType(const FunctionProtoType *T) {
// Mangle CV-qualifiers, if present. These are 'this' qualifiers,
// e.g. "const" in "int (A::*)() const".
mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
Out << 'F';
// FIXME: We don't have enough information in the AST to produce the 'Y'
// encoding for extern "C" function types.
mangleBareFunctionType(T, /*MangleReturnType=*/true);
// Mangle the ref-qualifier, if present.
mangleRefQualifier(T->getRefQualifier());
Out << 'E';
}
void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
llvm_unreachable("Can't mangle K&R function prototypes");
}
void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
bool MangleReturnType) {
// We should never be mangling something without a prototype.
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
// Record that we're in a function type. See mangleFunctionParam
// for details on what we're trying to achieve here.
FunctionTypeDepthState saved = FunctionTypeDepth.push();
// <bare-function-type> ::= <signature type>+
if (MangleReturnType) {
FunctionTypeDepth.enterResultType();
mangleType(Proto->getReturnType());
FunctionTypeDepth.leaveResultType();
}
if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
// <builtin-type> ::= v # void
Out << 'v';
FunctionTypeDepth.pop(saved);
return;
}
for (const auto &Arg : Proto->param_types())
mangleType(Context.getASTContext().getSignatureParameterType(Arg));
FunctionTypeDepth.pop(saved);
// <builtin-type> ::= z # ellipsis
if (Proto->isVariadic())
Out << 'z';
}
// <type> ::= <class-enum-type>
// <class-enum-type> ::= <name>
void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
mangleName(T->getDecl());
}
// <type> ::= <class-enum-type>
// <class-enum-type> ::= <name>
void CXXNameMangler::mangleType(const EnumType *T) {
mangleType(static_cast<const TagType*>(T));
}
void CXXNameMangler::mangleType(const RecordType *T) {
mangleType(static_cast<const TagType*>(T));
}
void CXXNameMangler::mangleType(const TagType *T) {
mangleName(T->getDecl());
}
// <type> ::= <array-type>
// <array-type> ::= A <positive dimension number> _ <element type>
// ::= A [<dimension expression>] _ <element type>
void CXXNameMangler::mangleType(const ConstantArrayType *T) {
Out << 'A' << T->getSize() << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const VariableArrayType *T) {
Out << 'A';
// decayed vla types (size 0) will just be skipped.
if (T->getSizeExpr())
mangleExpression(T->getSizeExpr());
Out << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
Out << 'A';
mangleExpression(T->getSizeExpr());
Out << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
Out << "A_";
mangleType(T->getElementType());
}
// <type> ::= <pointer-to-member-type>
// <pointer-to-member-type> ::= M <class type> <member type>
void CXXNameMangler::mangleType(const MemberPointerType *T) {
Out << 'M';
mangleType(QualType(T->getClass(), 0));
QualType PointeeType = T->getPointeeType();
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
mangleType(FPT);
// Itanium C++ ABI 5.1.8:
//
// The type of a non-static member function is considered to be different,
// for the purposes of substitution, from the type of a namespace-scope or
// static member function whose type appears similar. The types of two
// non-static member functions are considered to be different, for the
// purposes of substitution, if the functions are members of different
// classes. In other words, for the purposes of substitution, the class of
// which the function is a member is considered part of the type of
// function.
// Given that we already substitute member function pointers as a
// whole, the net effect of this rule is just to unconditionally
// suppress substitution on the function type in a member pointer.
// We increment the SeqID here to emulate adding an entry to the
// substitution table.
++SeqID;
} else
mangleType(PointeeType);
}
// <type> ::= <template-param>
void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
mangleTemplateParameter(T->getIndex());
}
// <type> ::= <template-param>
void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
// FIXME: not clear how to mangle this!
// template <class T...> class A {
// template <class U...> void foo(T(*)(U) x...);
// };
Out << "_SUBSTPACK_";
}
// <type> ::= P <type> # pointer-to
void CXXNameMangler::mangleType(const PointerType *T) {
Out << 'P';
mangleType(T->getPointeeType());
}
void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
Out << 'P';
mangleType(T->getPointeeType());
}
// <type> ::= R <type> # reference-to
void CXXNameMangler::mangleType(const LValueReferenceType *T) {
Out << 'R';
mangleType(T->getPointeeType());
}
// <type> ::= O <type> # rvalue reference-to (C++0x)
void CXXNameMangler::mangleType(const RValueReferenceType *T) {
Out << 'O';
mangleType(T->getPointeeType());
}
// <type> ::= C <type> # complex pair (C 2000)
void CXXNameMangler::mangleType(const ComplexType *T) {
Out << 'C';
mangleType(T->getElementType());
}
// ARM's ABI for Neon vector types specifies that they should be mangled as
// if they are structs (to match ARM's initial implementation). The
// vector type must be one of the special types predefined by ARM.
void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
QualType EltType = T->getElementType();
assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
const char *EltName = 0;
if (T->getVectorKind() == VectorType::NeonPolyVector) {
switch (cast<BuiltinType>(EltType)->getKind()) {
case BuiltinType::SChar:
case BuiltinType::UChar:
EltName = "poly8_t";
break;
case BuiltinType::Short:
case BuiltinType::UShort:
EltName = "poly16_t";
break;
case BuiltinType::ULongLong:
EltName = "poly64_t";
break;
default: llvm_unreachable("unexpected Neon polynomial vector element type");
}
} else {
switch (cast<BuiltinType>(EltType)->getKind()) {
case BuiltinType::SChar: EltName = "int8_t"; break;
case BuiltinType::UChar: EltName = "uint8_t"; break;
case BuiltinType::Short: EltName = "int16_t"; break;
case BuiltinType::UShort: EltName = "uint16_t"; break;
case BuiltinType::Int: EltName = "int32_t"; break;
case BuiltinType::UInt: EltName = "uint32_t"; break;
case BuiltinType::LongLong: EltName = "int64_t"; break;
case BuiltinType::ULongLong: EltName = "uint64_t"; break;
case BuiltinType::Double: EltName = "float64_t"; break;
case BuiltinType::Float: EltName = "float32_t"; break;
case BuiltinType::Half: EltName = "float16_t";break;
default:
llvm_unreachable("unexpected Neon vector element type");
}
}
const char *BaseName = 0;
unsigned BitSize = (T->getNumElements() *
getASTContext().getTypeSize(EltType));
if (BitSize == 64)
BaseName = "__simd64_";
else {
assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
BaseName = "__simd128_";
}
Out << strlen(BaseName) + strlen(EltName);
Out << BaseName << EltName;
}
static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
switch (EltType->getKind()) {
case BuiltinType::SChar:
return "Int8";
case BuiltinType::Short:
return "Int16";
case BuiltinType::Int:
return "Int32";
case BuiltinType::Long:
case BuiltinType::LongLong:
return "Int64";
case BuiltinType::UChar:
return "Uint8";
case BuiltinType::UShort:
return "Uint16";
case BuiltinType::UInt:
return "Uint32";
case BuiltinType::ULong:
case BuiltinType::ULongLong:
return "Uint64";
case BuiltinType::Half:
return "Float16";
case BuiltinType::Float:
return "Float32";
case BuiltinType::Double:
return "Float64";
default:
llvm_unreachable("Unexpected vector element base type");
}
}
// AArch64's ABI for Neon vector types specifies that they should be mangled as
// the equivalent internal name. The vector type must be one of the special
// types predefined by ARM.
void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
QualType EltType = T->getElementType();
assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
unsigned BitSize =
(T->getNumElements() * getASTContext().getTypeSize(EltType));
(void)BitSize; // Silence warning.
assert((BitSize == 64 || BitSize == 128) &&
"Neon vector type not 64 or 128 bits");
StringRef EltName;
if (T->getVectorKind() == VectorType::NeonPolyVector) {
switch (cast<BuiltinType>(EltType)->getKind()) {
case BuiltinType::UChar:
EltName = "Poly8";
break;
case BuiltinType::UShort:
EltName = "Poly16";
break;
case BuiltinType::ULong:
EltName = "Poly64";
break;
default:
llvm_unreachable("unexpected Neon polynomial vector element type");
}
} else
EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
std::string TypeName =
("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
Out << TypeName.length() << TypeName;
}
// GNU extension: vector types
// <type> ::= <vector-type>
// <vector-type> ::= Dv <positive dimension number> _
// <extended element type>
// ::= Dv [<dimension expression>] _ <element type>
// <extended element type> ::= <element type>
// ::= p # AltiVec vector pixel
// ::= b # Altivec vector bool
void CXXNameMangler::mangleType(const VectorType *T) {
if ((T->getVectorKind() == VectorType::NeonVector ||
T->getVectorKind() == VectorType::NeonPolyVector)) {
llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
llvm::Triple::ArchType Arch =
getASTContext().getTargetInfo().getTriple().getArch();
if (Arch == llvm::Triple::aarch64 ||
Arch == llvm::Triple::aarch64_be ||
Arch == llvm::Triple::arm64_be ||
(Arch == llvm::Triple::arm64 && !Target.isOSDarwin()))
mangleAArch64NeonVectorType(T);
else
mangleNeonVectorType(T);
return;
}
Out << "Dv" << T->getNumElements() << '_';
if (T->getVectorKind() == VectorType::AltiVecPixel)
Out << 'p';
else if (T->getVectorKind() == VectorType::AltiVecBool)
Out << 'b';
else
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const ExtVectorType *T) {
mangleType(static_cast<const VectorType*>(T));
}
void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
Out << "Dv";
mangleExpression(T->getSizeExpr());
Out << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const PackExpansionType *T) {
// <type> ::= Dp <type> # pack expansion (C++0x)
Out << "Dp";
mangleType(T->getPattern());
}
void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
mangleSourceName(T->getDecl()->getIdentifier());
}
void CXXNameMangler::mangleType(const ObjCObjectType *T) {
if (!T->qual_empty()) {
// Mangle protocol qualifiers.
SmallString<64> QualStr;
llvm::raw_svector_ostream QualOS(QualStr);
QualOS << "objcproto";
for (const auto *I : T->quals()) {
StringRef name = I->getName();
QualOS << name.size() << name;
}
QualOS.flush();
Out << 'U' << QualStr.size() << QualStr;
}
mangleType(T->getBaseType());
}
void CXXNameMangler::mangleType(const BlockPointerType *T) {
Out << "U13block_pointer";
mangleType(T->getPointeeType());
}
void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
// Mangle injected class name types as if the user had written the
// specialization out fully. It may not actually be possible to see
// this mangling, though.
mangleType(T->getInjectedSpecializationType());
}
void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
mangleName(TD, T->getArgs(), T->getNumArgs());
} else {
if (mangleSubstitution(QualType(T, 0)))
return;
mangleTemplatePrefix(T->getTemplateName());
// FIXME: GCC does not appear to mangle the template arguments when
// the template in question is a dependent template name. Should we
// emulate that badness?
mangleTemplateArgs(T->getArgs(), T->getNumArgs());
addSubstitution(QualType(T, 0));
}
}
void CXXNameMangler::mangleType(const DependentNameType *T) {
// Proposal by cxx-abi-dev, 2014-03-26
// <class-enum-type> ::= <name> # non-dependent or dependent type name or
// # dependent elaborated type specifier using
// # 'typename'
// ::= Ts <name> # dependent elaborated type specifier using
// # 'struct' or 'class'
// ::= Tu <name> # dependent elaborated type specifier using
// # 'union'
// ::= Te <name> # dependent elaborated type specifier using
// # 'enum'
switch (T->getKeyword()) {
case ETK_Typename:
break;
case ETK_Struct:
case ETK_Class:
case ETK_Interface:
Out << "Ts";
break;
case ETK_Union:
Out << "Tu";
break;
case ETK_Enum:
Out << "Te";
break;
default:
llvm_unreachable("unexpected keyword for dependent type name");
}
// Typename types are always nested
Out << 'N';
manglePrefix(T->getQualifier());
mangleSourceName(T->getIdentifier());
Out << 'E';
}
void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
// Dependently-scoped template types are nested if they have a prefix.
Out << 'N';
// TODO: avoid making this TemplateName.
TemplateName Prefix =
getASTContext().getDependentTemplateName(T->getQualifier(),
T->getIdentifier());
mangleTemplatePrefix(Prefix);
// FIXME: GCC does not appear to mangle the template arguments when
// the template in question is a dependent template name. Should we
// emulate that badness?
mangleTemplateArgs(T->getArgs(), T->getNumArgs());
Out << 'E';
}
void CXXNameMangler::mangleType(const TypeOfType *T) {
// FIXME: this is pretty unsatisfactory, but there isn't an obvious
// "extension with parameters" mangling.
Out << "u6typeof";
}
void CXXNameMangler::mangleType(const TypeOfExprType *T) {
// FIXME: this is pretty unsatisfactory, but there isn't an obvious
// "extension with parameters" mangling.
Out << "u6typeof";
}
void CXXNameMangler::mangleType(const DecltypeType *T) {
Expr *E = T->getUnderlyingExpr();
// type ::= Dt <expression> E # decltype of an id-expression
// # or class member access
// ::= DT <expression> E # decltype of an expression
// This purports to be an exhaustive list of id-expressions and
// class member accesses. Note that we do not ignore parentheses;
// parentheses change the semantics of decltype for these
// expressions (and cause the mangler to use the other form).
if (isa<DeclRefExpr>(E) ||
isa<MemberExpr>(E) ||
isa<UnresolvedLookupExpr>(E) ||
isa<DependentScopeDeclRefExpr>(E) ||
isa<CXXDependentScopeMemberExpr>(E) ||
isa<UnresolvedMemberExpr>(E))
Out << "Dt";
else
Out << "DT";
mangleExpression(E);
Out << 'E';
}
void CXXNameMangler::mangleType(const UnaryTransformType *T) {
// If this is dependent, we need to record that. If not, we simply
// mangle it as the underlying type since they are equivalent.
if (T->isDependentType()) {
Out << 'U';
switch (T->getUTTKind()) {
case UnaryTransformType::EnumUnderlyingType:
Out << "3eut";
break;
}
}
mangleType(T->getUnderlyingType());
}
void CXXNameMangler::mangleType(const AutoType *T) {
QualType D = T->getDeducedType();
// <builtin-type> ::= Da # dependent auto
if (D.isNull())
Out << (T->isDecltypeAuto() ? "Dc" : "Da");
else
mangleType(D);
}
void CXXNameMangler::mangleType(const AtomicType *T) {
// <type> ::= U <source-name> <type> # vendor extended type qualifier
// (Until there's a standardized mangling...)
Out << "U7_Atomic";
mangleType(T->getValueType());
}
void CXXNameMangler::mangleIntegerLiteral(QualType T,
const llvm::APSInt &Value) {
// <expr-primary> ::= L <type> <value number> E # integer literal
Out << 'L';
mangleType(T);
if (T->isBooleanType()) {
// Boolean values are encoded as 0/1.
Out << (Value.getBoolValue() ? '1' : '0');
} else {
mangleNumber(Value);
}
Out << 'E';
}
/// Mangles a member expression.
void CXXNameMangler::mangleMemberExpr(const Expr *base,
bool isArrow,
NestedNameSpecifier *qualifier,
NamedDecl *firstQualifierLookup,
DeclarationName member,
unsigned arity) {
// <expression> ::= dt <expression> <unresolved-name>
// ::= pt <expression> <unresolved-name>
if (base) {
if (base->isImplicitCXXThis()) {
// Note: GCC mangles member expressions to the implicit 'this' as
// *this., whereas we represent them as this->. The Itanium C++ ABI
// does not specify anything here, so we follow GCC.
Out << "dtdefpT";
} else {
Out << (isArrow ? "pt" : "dt");
mangleExpression(base);
}
}
mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
}
/// Look at the callee of the given call expression and determine if
/// it's a parenthesized id-expression which would have triggered ADL
/// otherwise.
static bool isParenthesizedADLCallee(const CallExpr *call) {
const Expr *callee = call->getCallee();
const Expr *fn = callee->IgnoreParens();
// Must be parenthesized. IgnoreParens() skips __extension__ nodes,
// too, but for those to appear in the callee, it would have to be
// parenthesized.
if (callee == fn) return false;
// Must be an unresolved lookup.
const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
if (!lookup) return false;
assert(!lookup->requiresADL());
// Must be an unqualified lookup.
if (lookup->getQualifier()) return false;
// Must not have found a class member. Note that if one is a class
// member, they're all class members.
if (lookup->getNumDecls() > 0 &&
(*lookup->decls_begin())->isCXXClassMember())
return false;
// Otherwise, ADL would have been triggered.
return true;
}
void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
// <expression> ::= <unary operator-name> <expression>
// ::= <binary operator-name> <expression> <expression>
// ::= <trinary operator-name> <expression> <expression> <expression>
// ::= cv <type> expression # conversion with one argument
// ::= cv <type> _ <expression>* E # conversion with a different number of arguments
// ::= st <type> # sizeof (a type)
// ::= at <type> # alignof (a type)
// ::= <template-param>
// ::= <function-param>
// ::= sr <type> <unqualified-name> # dependent name
// ::= sr <type> <unqualified-name> <template-args> # dependent template-id
// ::= ds <expression> <expression> # expr.*expr
// ::= sZ <template-param> # size of a parameter pack
// ::= sZ <function-param> # size of a function parameter pack
// ::= <expr-primary>
// <expr-primary> ::= L <type> <value number> E # integer literal
// ::= L <type <value float> E # floating literal
// ::= L <mangled-name> E # external name
// ::= fpT # 'this' expression
QualType ImplicitlyConvertedToType;
recurse:
switch (E->getStmtClass()) {
case Expr::NoStmtClass:
#define ABSTRACT_STMT(Type)
#define EXPR(Type, Base)
#define STMT(Type, Base) \
case Expr::Type##Class:
#include "clang/AST/StmtNodes.inc"
// fallthrough
// These all can only appear in local or variable-initialization
// contexts and so should never appear in a mangling.
case Expr::AddrLabelExprClass:
case Expr::DesignatedInitExprClass:
case Expr::ImplicitValueInitExprClass:
case Expr::ParenListExprClass:
case Expr::LambdaExprClass:
case Expr::MSPropertyRefExprClass:
llvm_unreachable("unexpected statement kind");
// FIXME: invent manglings for all these.
case Expr::BlockExprClass:
case Expr::CXXPseudoDestructorExprClass:
case Expr::ChooseExprClass:
case Expr::CompoundLiteralExprClass:
case Expr::ExtVectorElementExprClass:
case Expr::GenericSelectionExprClass:
case Expr::ObjCEncodeExprClass:
case Expr::ObjCIsaExprClass:
case Expr::ObjCIvarRefExprClass:
case Expr::ObjCMessageExprClass:
case Expr::ObjCPropertyRefExprClass:
case Expr::ObjCProtocolExprClass:
case Expr::ObjCSelectorExprClass:
case Expr::ObjCStringLiteralClass:
case Expr::ObjCBoxedExprClass:
case Expr::ObjCArrayLiteralClass:
case Expr::ObjCDictionaryLiteralClass:
case Expr::ObjCSubscriptRefExprClass:
case Expr::ObjCIndirectCopyRestoreExprClass:
case Expr::OffsetOfExprClass:
case Expr::PredefinedExprClass:
case Expr::ShuffleVectorExprClass:
case Expr::ConvertVectorExprClass:
case Expr::StmtExprClass:
case Expr::TypeTraitExprClass:
case Expr::ArrayTypeTraitExprClass:
case Expr::ExpressionTraitExprClass:
case Expr::VAArgExprClass:
case Expr::CXXUuidofExprClass:
case Expr::CUDAKernelCallExprClass:
case Expr::AsTypeExprClass:
case Expr::PseudoObjectExprClass:
case Expr::AtomicExprClass:
{
// As bad as this diagnostic is, it's better than crashing.
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot yet mangle expression type %0");
Diags.Report(E->getExprLoc(), DiagID)
<< E->getStmtClassName() << E->getSourceRange();
break;
}
// Even gcc-4.5 doesn't mangle this.
case Expr::BinaryConditionalOperatorClass: {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID =
Diags.getCustomDiagID(DiagnosticsEngine::Error,
"?: operator with omitted middle operand cannot be mangled");
Diags.Report(E->getExprLoc(), DiagID)
<< E->getStmtClassName() << E->getSourceRange();
break;
}
// These are used for internal purposes and cannot be meaningfully mangled.
case Expr::OpaqueValueExprClass:
llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
case Expr::InitListExprClass: {
// Proposal by Jason Merrill, 2012-01-03
Out << "il";
const InitListExpr *InitList = cast<InitListExpr>(E);
for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
mangleExpression(InitList->getInit(i));
Out << "E";
break;
}
case Expr::CXXDefaultArgExprClass:
mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
break;
case Expr::CXXDefaultInitExprClass:
mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
break;
case Expr::CXXStdInitializerListExprClass:
mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
break;
case Expr::SubstNonTypeTemplateParmExprClass:
mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
Arity);
break;
case Expr::UserDefinedLiteralClass:
// We follow g++'s approach of mangling a UDL as a call to the literal
// operator.
case Expr::CXXMemberCallExprClass: // fallthrough
case Expr::CallExprClass: {
const CallExpr *CE = cast<CallExpr>(E);
// <expression> ::= cp <simple-id> <expression>* E
// We use this mangling only when the call would use ADL except
// for being parenthesized. Per discussion with David
// Vandervoorde, 2011.04.25.
if (isParenthesizedADLCallee(CE)) {
Out << "cp";
// The callee here is a parenthesized UnresolvedLookupExpr with
// no qualifier and should always get mangled as a <simple-id>
// anyway.
// <expression> ::= cl <expression>* E
} else {
Out << "cl";
}
mangleExpression(CE->getCallee(), CE->getNumArgs());
for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
mangleExpression(CE->getArg(I));
Out << 'E';
break;
}
case Expr::CXXNewExprClass: {
const CXXNewExpr *New = cast<CXXNewExpr>(E);
if (New->isGlobalNew()) Out << "gs";
Out << (New->isArray() ? "na" : "nw");
for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
E = New->placement_arg_end(); I != E; ++I)
mangleExpression(*I);
Out << '_';
mangleType(New->getAllocatedType());
if (New->hasInitializer()) {
// Proposal by Jason Merrill, 2012-01-03
if (New->getInitializationStyle() == CXXNewExpr::ListInit)
Out << "il";
else
Out << "pi";
const Expr *Init = New->getInitializer();
if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
// Directly inline the initializers.
for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
E = CCE->arg_end();
I != E; ++I)
mangleExpression(*I);
} else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
mangleExpression(PLE->getExpr(i));
} else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
isa<InitListExpr>(Init)) {
// Only take InitListExprs apart for list-initialization.
const InitListExpr *InitList = cast<InitListExpr>(Init);
for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
mangleExpression(InitList->getInit(i));
} else
mangleExpression(Init);
}
Out << 'E';
break;
}
case Expr::MemberExprClass: {
const MemberExpr *ME = cast<MemberExpr>(E);
mangleMemberExpr(ME->getBase(), ME->isArrow(),
ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
Arity);
break;
}
case Expr::UnresolvedMemberExprClass: {
const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
mangleMemberExpr(ME->getBase(), ME->isArrow(),
ME->getQualifier(), 0, ME->getMemberName(),
Arity);
if (ME->hasExplicitTemplateArgs())
mangleTemplateArgs(ME->getExplicitTemplateArgs());
break;
}
case Expr::CXXDependentScopeMemberExprClass: {
const CXXDependentScopeMemberExpr *ME
= cast<CXXDependentScopeMemberExpr>(E);
mangleMemberExpr(ME->getBase(), ME->isArrow(),
ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
ME->getMember(), Arity);
if (ME->hasExplicitTemplateArgs())
mangleTemplateArgs(ME->getExplicitTemplateArgs());
break;
}
case Expr::UnresolvedLookupExprClass: {
const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
// All the <unresolved-name> productions end in a
// base-unresolved-name, where <template-args> are just tacked
// onto the end.
if (ULE->hasExplicitTemplateArgs())
mangleTemplateArgs(ULE->getExplicitTemplateArgs());
break;
}
case Expr::CXXUnresolvedConstructExprClass: {
const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
unsigned N = CE->arg_size();
Out << "cv";
mangleType(CE->getType());
if (N != 1) Out << '_';
for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
if (N != 1) Out << 'E';
break;
}
case Expr::CXXTemporaryObjectExprClass:
case Expr::CXXConstructExprClass: {
const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
unsigned N = CE->getNumArgs();
// Proposal by Jason Merrill, 2012-01-03
if (CE->isListInitialization())
Out << "tl";
else
Out << "cv";
mangleType(CE->getType());
if (N != 1) Out << '_';
for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
if (N != 1) Out << 'E';
break;
}
case Expr::CXXScalarValueInitExprClass:
Out <<"cv";
mangleType(E->getType());
Out <<"_E";
break;
case Expr::CXXNoexceptExprClass:
Out << "nx";
mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
break;
case Expr::UnaryExprOrTypeTraitExprClass: {
const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
if (!SAE->isInstantiationDependent()) {
// Itanium C++ ABI:
// If the operand of a sizeof or alignof operator is not
// instantiation-dependent it is encoded as an integer literal
// reflecting the result of the operator.
//
// If the result of the operator is implicitly converted to a known
// integer type, that type is used for the literal; otherwise, the type
// of std::size_t or std::ptrdiff_t is used.
QualType T = (ImplicitlyConvertedToType.isNull() ||
!ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
: ImplicitlyConvertedToType;
llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
mangleIntegerLiteral(T, V);
break;
}
switch(SAE->getKind()) {
case UETT_SizeOf:
Out << 's';
break;
case UETT_AlignOf:
Out << 'a';
break;
case UETT_VecStep:
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot yet mangle vec_step expression");
Diags.Report(DiagID);
return;
}
if (SAE->isArgumentType()) {
Out << 't';
mangleType(SAE->getArgumentType());
} else {
Out << 'z';
mangleExpression(SAE->getArgumentExpr());
}
break;
}
case Expr::CXXThrowExprClass: {
const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
// <expression> ::= tw <expression> # throw expression
// ::= tr # rethrow
if (TE->getSubExpr()) {
Out << "tw";
mangleExpression(TE->getSubExpr());
} else {
Out << "tr";
}
break;
}
case Expr::CXXTypeidExprClass: {
const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
// <expression> ::= ti <type> # typeid (type)
// ::= te <expression> # typeid (expression)
if (TIE->isTypeOperand()) {
Out << "ti";
mangleType(TIE->getTypeOperand(Context.getASTContext()));
} else {
Out << "te";
mangleExpression(TIE->getExprOperand());
}
break;
}
case Expr::CXXDeleteExprClass: {
const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
// <expression> ::= [gs] dl <expression> # [::] delete expr
// ::= [gs] da <expression> # [::] delete [] expr
if (DE->isGlobalDelete()) Out << "gs";
Out << (DE->isArrayForm() ? "da" : "dl");
mangleExpression(DE->getArgument());
break;
}
case Expr::UnaryOperatorClass: {
const UnaryOperator *UO = cast<UnaryOperator>(E);
mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
/*Arity=*/1);
mangleExpression(UO->getSubExpr());
break;
}
case Expr::ArraySubscriptExprClass: {
const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
// Array subscript is treated as a syntactically weird form of
// binary operator.
Out << "ix";
mangleExpression(AE->getLHS());
mangleExpression(AE->getRHS());
break;
}
case Expr::CompoundAssignOperatorClass: // fallthrough
case Expr::BinaryOperatorClass: {
const BinaryOperator *BO = cast<BinaryOperator>(E);
if (BO->getOpcode() == BO_PtrMemD)
Out << "ds";
else
mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
/*Arity=*/2);
mangleExpression(BO->getLHS());
mangleExpression(BO->getRHS());
break;
}
case Expr::ConditionalOperatorClass: {
const ConditionalOperator *CO = cast<ConditionalOperator>(E);
mangleOperatorName(OO_Conditional, /*Arity=*/3);
mangleExpression(CO->getCond());
mangleExpression(CO->getLHS(), Arity);
mangleExpression(CO->getRHS(), Arity);
break;
}
case Expr::ImplicitCastExprClass: {
ImplicitlyConvertedToType = E->getType();
E = cast<ImplicitCastExpr>(E)->getSubExpr();
goto recurse;
}
case Expr::ObjCBridgedCastExprClass: {
// Mangle ownership casts as a vendor extended operator __bridge,
// __bridge_transfer, or __bridge_retain.
StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
Out << "v1U" << Kind.size() << Kind;
}
// Fall through to mangle the cast itself.
case Expr::CStyleCastExprClass:
case Expr::CXXStaticCastExprClass:
case Expr::CXXDynamicCastExprClass:
case Expr::CXXReinterpretCastExprClass:
case Expr::CXXConstCastExprClass:
case Expr::CXXFunctionalCastExprClass: {
const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
Out << "cv";
mangleType(ECE->getType());
mangleExpression(ECE->getSubExpr());
break;
}
case Expr::CXXOperatorCallExprClass: {
const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
unsigned NumArgs = CE->getNumArgs();
mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
// Mangle the arguments.
for (unsigned i = 0; i != NumArgs; ++i)
mangleExpression(CE->getArg(i));
break;
}
case Expr::ParenExprClass:
mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
break;
case Expr::DeclRefExprClass: {
const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
switch (D->getKind()) {
default:
// <expr-primary> ::= L <mangled-name> E # external name
Out << 'L';
mangle(D, "_Z");
Out << 'E';
break;
case Decl::ParmVar:
mangleFunctionParam(cast<ParmVarDecl>(D));
break;
case Decl::EnumConstant: {
const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
mangleIntegerLiteral(ED->getType(), ED->getInitVal());
break;
}
case Decl::NonTypeTemplateParm: {
const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
mangleTemplateParameter(PD->getIndex());
break;
}
}
break;
}
case Expr::SubstNonTypeTemplateParmPackExprClass:
// FIXME: not clear how to mangle this!
// template <unsigned N...> class A {
// template <class U...> void foo(U (&x)[N]...);
// };
Out << "_SUBSTPACK_";
break;
case Expr::FunctionParmPackExprClass: {
// FIXME: not clear how to mangle this!
const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
Out << "v110_SUBSTPACK";
mangleFunctionParam(FPPE->getParameterPack());
break;
}
case Expr::DependentScopeDeclRefExprClass: {
const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
// All the <unresolved-name> productions end in a
// base-unresolved-name, where <template-args> are just tacked
// onto the end.
if (DRE->hasExplicitTemplateArgs())
mangleTemplateArgs(DRE->getExplicitTemplateArgs());
break;
}
case Expr::CXXBindTemporaryExprClass:
mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
break;
case Expr::ExprWithCleanupsClass:
mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
break;
case Expr::FloatingLiteralClass: {
const FloatingLiteral *FL = cast<FloatingLiteral>(E);
Out << 'L';
mangleType(FL->getType());
mangleFloat(FL->getValue());
Out << 'E';
break;
}
case Expr::CharacterLiteralClass:
Out << 'L';
mangleType(E->getType());
Out << cast<CharacterLiteral>(E)->getValue();
Out << 'E';
break;
// FIXME. __objc_yes/__objc_no are mangled same as true/false
case Expr::ObjCBoolLiteralExprClass:
Out << "Lb";
Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
Out << 'E';
break;
case Expr::CXXBoolLiteralExprClass:
Out << "Lb";
Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
Out << 'E';
break;
case Expr::IntegerLiteralClass: {
llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
if (E->getType()->isSignedIntegerType())
Value.setIsSigned(true);
mangleIntegerLiteral(E->getType(), Value);
break;
}
case Expr::ImaginaryLiteralClass: {
const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
// Mangle as if a complex literal.
// Proposal from David Vandevoorde, 2010.06.30.
Out << 'L';
mangleType(E->getType());
if (const FloatingLiteral *Imag =
dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
// Mangle a floating-point zero of the appropriate type.
mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
Out << '_';
mangleFloat(Imag->getValue());
} else {
Out << "0_";
llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
if (IE->getSubExpr()->getType()->isSignedIntegerType())
Value.setIsSigned(true);
mangleNumber(Value);
}
Out << 'E';
break;
}
case Expr::StringLiteralClass: {
// Revised proposal from David Vandervoorde, 2010.07.15.
Out << 'L';
assert(isa<ConstantArrayType>(E->getType()));
mangleType(E->getType());
Out << 'E';
break;
}
case Expr::GNUNullExprClass:
// FIXME: should this really be mangled the same as nullptr?
// fallthrough
case Expr::CXXNullPtrLiteralExprClass: {
Out << "LDnE";
break;
}
case Expr::PackExpansionExprClass:
Out << "sp";
mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
break;
case Expr::SizeOfPackExprClass: {
Out << "sZ";
const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
mangleTemplateParameter(TTP->getIndex());
else if (const NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(Pack))
mangleTemplateParameter(NTTP->getIndex());
else if (const TemplateTemplateParmDecl *TempTP
= dyn_cast<TemplateTemplateParmDecl>(Pack))
mangleTemplateParameter(TempTP->getIndex());
else
mangleFunctionParam(cast<ParmVarDecl>(Pack));
break;
}
case Expr::MaterializeTemporaryExprClass: {
mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
break;
}
case Expr::CXXThisExprClass:
Out << "fpT";
break;
}
}
/// Mangle an expression which refers to a parameter variable.
///
/// <expression> ::= <function-param>
/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
/// <function-param> ::= fp <top-level CV-qualifiers>
/// <parameter-2 non-negative number> _ # L == 0, I > 0
/// <function-param> ::= fL <L-1 non-negative number>
/// p <top-level CV-qualifiers> _ # L > 0, I == 0
/// <function-param> ::= fL <L-1 non-negative number>
/// p <top-level CV-qualifiers>
/// <I-1 non-negative number> _ # L > 0, I > 0
///
/// L is the nesting depth of the parameter, defined as 1 if the
/// parameter comes from the innermost function prototype scope
/// enclosing the current context, 2 if from the next enclosing
/// function prototype scope, and so on, with one special case: if
/// we've processed the full parameter clause for the innermost
/// function type, then L is one less. This definition conveniently
/// makes it irrelevant whether a function's result type was written
/// trailing or leading, but is otherwise overly complicated; the
/// numbering was first designed without considering references to
/// parameter in locations other than return types, and then the
/// mangling had to be generalized without changing the existing
/// manglings.
///
/// I is the zero-based index of the parameter within its parameter
/// declaration clause. Note that the original ABI document describes
/// this using 1-based ordinals.
void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
unsigned parmDepth = parm->getFunctionScopeDepth();
unsigned parmIndex = parm->getFunctionScopeIndex();
// Compute 'L'.
// parmDepth does not include the declaring function prototype.
// FunctionTypeDepth does account for that.
assert(parmDepth < FunctionTypeDepth.getDepth());
unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
if (FunctionTypeDepth.isInResultType())
nestingDepth--;
if (nestingDepth == 0) {
Out << "fp";
} else {
Out << "fL" << (nestingDepth - 1) << 'p';
}
// Top-level qualifiers. We don't have to worry about arrays here,
// because parameters declared as arrays should already have been
// transformed to have pointer type. FIXME: apparently these don't
// get mangled if used as an rvalue of a known non-class type?
assert(!parm->getType()->isArrayType()
&& "parameter's type is still an array type?");
mangleQualifiers(parm->getType().getQualifiers());
// Parameter index.
if (parmIndex != 0) {
Out << (parmIndex - 1);
}
Out << '_';
}
void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
// <ctor-dtor-name> ::= C1 # complete object constructor
// ::= C2 # base object constructor
// ::= C3 # complete object allocating constructor
//
switch (T) {
case Ctor_Complete:
Out << "C1";
break;
case Ctor_Base:
Out << "C2";
break;
case Ctor_CompleteAllocating:
Out << "C3";
break;
}
}
void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
// <ctor-dtor-name> ::= D0 # deleting destructor
// ::= D1 # complete object destructor
// ::= D2 # base object destructor
//
switch (T) {
case Dtor_Deleting:
Out << "D0";
break;
case Dtor_Complete:
Out << "D1";
break;
case Dtor_Base:
Out << "D2";
break;
}
}
void CXXNameMangler::mangleTemplateArgs(
const ASTTemplateArgumentListInfo &TemplateArgs) {
// <template-args> ::= I <template-arg>+ E
Out << 'I';
for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
Out << 'E';
}
void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
// <template-args> ::= I <template-arg>+ E
Out << 'I';
for (unsigned i = 0, e = AL.size(); i != e; ++i)
mangleTemplateArg(AL[i]);
Out << 'E';
}
void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs) {
// <template-args> ::= I <template-arg>+ E
Out << 'I';
for (unsigned i = 0; i != NumTemplateArgs; ++i)
mangleTemplateArg(TemplateArgs[i]);
Out << 'E';
}
void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
// <template-arg> ::= <type> # type or template
// ::= X <expression> E # expression
// ::= <expr-primary> # simple expressions
// ::= J <template-arg>* E # argument pack
if (!A.isInstantiationDependent() || A.isDependent())
A = Context.getASTContext().getCanonicalTemplateArgument(A);
switch (A.getKind()) {
case TemplateArgument::Null:
llvm_unreachable("Cannot mangle NULL template argument");
case TemplateArgument::Type:
mangleType(A.getAsType());
break;
case TemplateArgument::Template:
// This is mangled as <type>.
mangleType(A.getAsTemplate());
break;
case TemplateArgument::TemplateExpansion:
// <type> ::= Dp <type> # pack expansion (C++0x)
Out << "Dp";
mangleType(A.getAsTemplateOrTemplatePattern());
break;
case TemplateArgument::Expression: {
// It's possible to end up with a DeclRefExpr here in certain
// dependent cases, in which case we should mangle as a
// declaration.
const Expr *E = A.getAsExpr()->IgnoreParens();
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
const ValueDecl *D = DRE->getDecl();
if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
Out << "L";
mangle(D, "_Z");
Out << 'E';
break;
}
}
Out << 'X';
mangleExpression(E);
Out << 'E';
break;
}
case TemplateArgument::Integral:
mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
break;
case TemplateArgument::Declaration: {
// <expr-primary> ::= L <mangled-name> E # external name
// Clang produces AST's where pointer-to-member-function expressions
// and pointer-to-function expressions are represented as a declaration not
// an expression. We compensate for it here to produce the correct mangling.
ValueDecl *D = A.getAsDecl();
bool compensateMangling = !A.isDeclForReferenceParam();
if (compensateMangling) {
Out << 'X';
mangleOperatorName(OO_Amp, 1);
}
Out << 'L';
// References to external entities use the mangled name; if the name would
// not normally be manged then mangle it as unqualified.
//
// FIXME: The ABI specifies that external names here should have _Z, but
// gcc leaves this off.
if (compensateMangling)
mangle(D, "_Z");
else
mangle(D, "Z");
Out << 'E';
if (compensateMangling)
Out << 'E';
break;
}
case TemplateArgument::NullPtr: {
// <expr-primary> ::= L <type> 0 E
Out << 'L';
mangleType(A.getNullPtrType());
Out << "0E";
break;
}
case TemplateArgument::Pack: {
// <template-arg> ::= J <template-arg>* E
Out << 'J';
for (TemplateArgument::pack_iterator PA = A.pack_begin(),
PAEnd = A.pack_end();
PA != PAEnd; ++PA)
mangleTemplateArg(*PA);
Out << 'E';
}
}
}
void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
// <template-param> ::= T_ # first template parameter
// ::= T <parameter-2 non-negative number> _
if (Index == 0)
Out << "T_";
else
Out << 'T' << (Index - 1) << '_';
}
void CXXNameMangler::mangleSeqID(unsigned SeqID) {
if (SeqID == 1)
Out << '0';
else if (SeqID > 1) {
SeqID--;
// <seq-id> is encoded in base-36, using digits and upper case letters.
char Buffer[7]; // log(2**32) / log(36) ~= 7
llvm::MutableArrayRef<char> BufferRef(Buffer);
llvm::MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
for (; SeqID != 0; SeqID /= 36) {
unsigned C = SeqID % 36;
*I++ = (C < 10 ? '0' + C : 'A' + C - 10);
}
Out.write(I.base(), I - BufferRef.rbegin());
}
Out << '_';
}
void CXXNameMangler::mangleExistingSubstitution(QualType type) {
bool result = mangleSubstitution(type);
assert(result && "no existing substitution for type");
(void) result;
}
void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
bool result = mangleSubstitution(tname);
assert(result && "no existing substitution for template name");
(void) result;
}
// <substitution> ::= S <seq-id> _
// ::= S_
bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
// Try one of the standard substitutions first.
if (mangleStandardSubstitution(ND))
return true;
ND = cast<NamedDecl>(ND->getCanonicalDecl());
return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
}
/// \brief Determine whether the given type has any qualifiers that are
/// relevant for substitutions.
static bool hasMangledSubstitutionQualifiers(QualType T) {
Qualifiers Qs = T.getQualifiers();
return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
}
bool CXXNameMangler::mangleSubstitution(QualType T) {
if (!hasMangledSubstitutionQualifiers(T)) {
if (const RecordType *RT = T->getAs<RecordType>())
return mangleSubstitution(RT->getDecl());
}
uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
return mangleSubstitution(TypePtr);
}
bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
if (TemplateDecl *TD = Template.getAsTemplateDecl())
return mangleSubstitution(TD);
Template = Context.getASTContext().getCanonicalTemplateName(Template);
return mangleSubstitution(
reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
}
bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
if (I == Substitutions.end())
return false;
unsigned SeqID = I->second;
Out << 'S';
mangleSeqID(SeqID);
return true;
}
static bool isCharType(QualType T) {
if (T.isNull())
return false;
return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
T->isSpecificBuiltinType(BuiltinType::Char_U);
}
/// isCharSpecialization - Returns whether a given type is a template
/// specialization of a given name with a single argument of type char.
static bool isCharSpecialization(QualType T, const char *Name) {
if (T.isNull())
return false;
const RecordType *RT = T->getAs<RecordType>();
if (!RT)
return false;
const ClassTemplateSpecializationDecl *SD =
dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
if (!SD)
return false;
if (!isStdNamespace(getEffectiveDeclContext(SD)))
return false;
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
if (TemplateArgs.size() != 1)
return false;
if (!isCharType(TemplateArgs[0].getAsType()))
return false;
return SD->getIdentifier()->getName() == Name;
}
template <std::size_t StrLen>
static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
const char (&Str)[StrLen]) {
if (!SD->getIdentifier()->isStr(Str))
return false;
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
if (TemplateArgs.size() != 2)
return false;
if (!isCharType(TemplateArgs[0].getAsType()))
return false;
if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
return false;
return true;
}
bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
// <substitution> ::= St # ::std::
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
if (isStd(NS)) {
Out << "St";
return true;
}
}
if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
if (!isStdNamespace(getEffectiveDeclContext(TD)))
return false;
// <substitution> ::= Sa # ::std::allocator
if (TD->getIdentifier()->isStr("allocator")) {
Out << "Sa";
return true;
}
// <<substitution> ::= Sb # ::std::basic_string
if (TD->getIdentifier()->isStr("basic_string")) {
Out << "Sb";
return true;
}
}
if (const ClassTemplateSpecializationDecl *SD =
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
if (!isStdNamespace(getEffectiveDeclContext(SD)))
return false;
// <substitution> ::= Ss # ::std::basic_string<char,
// ::std::char_traits<char>,
// ::std::allocator<char> >
if (SD->getIdentifier()->isStr("basic_string")) {
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
if (TemplateArgs.size() != 3)
return false;
if (!isCharType(TemplateArgs[0].getAsType()))
return false;
if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
return false;
if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
return false;
Out << "Ss";
return true;
}
// <substitution> ::= Si # ::std::basic_istream<char,
// ::std::char_traits<char> >
if (isStreamCharSpecialization(SD, "basic_istream")) {
Out << "Si";
return true;
}
// <substitution> ::= So # ::std::basic_ostream<char,
// ::std::char_traits<char> >
if (isStreamCharSpecialization(SD, "basic_ostream")) {
Out << "So";
return true;
}
// <substitution> ::= Sd # ::std::basic_iostream<char,
// ::std::char_traits<char> >
if (isStreamCharSpecialization(SD, "basic_iostream")) {
Out << "Sd";
return true;
}
}
return false;
}
void CXXNameMangler::addSubstitution(QualType T) {
if (!hasMangledSubstitutionQualifiers(T)) {
if (const RecordType *RT = T->getAs<RecordType>()) {
addSubstitution(RT->getDecl());
return;
}
}
uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
addSubstitution(TypePtr);
}
void CXXNameMangler::addSubstitution(TemplateName Template) {
if (TemplateDecl *TD = Template.getAsTemplateDecl())
return addSubstitution(TD);
Template = Context.getASTContext().getCanonicalTemplateName(Template);
addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
}
void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
assert(!Substitutions.count(Ptr) && "Substitution already exists!");
Substitutions[Ptr] = SeqID++;
}
//
/// \brief Mangles the name of the declaration D and emits that name to the
/// given output stream.
///
/// If the declaration D requires a mangled name, this routine will emit that
/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
/// and this routine will return false. In this case, the caller should just
/// emit the identifier of the declaration (\c D->getIdentifier()) as its
/// name.
void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
raw_ostream &Out) {
assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
"Invalid mangleName() call, argument is not a variable or function!");
assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
"Invalid mangleName() call on 'structor decl!");
PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
getASTContext().getSourceManager(),
"Mangling declaration");
CXXNameMangler Mangler(*this, Out, D);
return Mangler.mangle(D);
}
void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
CXXCtorType Type,
raw_ostream &Out) {
CXXNameMangler Mangler(*this, Out, D, Type);
Mangler.mangle(D);
}
void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
CXXDtorType Type,
raw_ostream &Out) {
CXXNameMangler Mangler(*this, Out, D, Type);
Mangler.mangle(D);
}
void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
const ThunkInfo &Thunk,
raw_ostream &Out) {
// <special-name> ::= T <call-offset> <base encoding>
// # base is the nominal target function of thunk
// <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
// # base is the nominal target function of thunk
// # first call-offset is 'this' adjustment
// # second call-offset is result adjustment
assert(!isa<CXXDestructorDecl>(MD) &&
"Use mangleCXXDtor for destructor decls!");
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZT";
if (!Thunk.Return.isEmpty())
Mangler.getStream() << 'c';
// Mangle the 'this' pointer adjustment.
Mangler.mangleCallOffset(Thunk.This.NonVirtual,
Thunk.This.Virtual.Itanium.VCallOffsetOffset);
// Mangle the return pointer adjustment if there is one.
if (!Thunk.Return.isEmpty())
Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
Mangler.mangleFunctionEncoding(MD);
}
void ItaniumMangleContextImpl::mangleCXXDtorThunk(
const CXXDestructorDecl *DD, CXXDtorType Type,
const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
// <special-name> ::= T <call-offset> <base encoding>
// # base is the nominal target function of thunk
CXXNameMangler Mangler(*this, Out, DD, Type);
Mangler.getStream() << "_ZT";
// Mangle the 'this' pointer adjustment.
Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
Mangler.mangleFunctionEncoding(DD);
}
/// mangleGuardVariable - Returns the mangled name for a guard variable
/// for the passed in VarDecl.
void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
raw_ostream &Out) {
// <special-name> ::= GV <object name> # Guard variable for one-time
// # initialization
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZGV";
Mangler.mangleName(D);
}
void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
raw_ostream &Out) {
// These symbols are internal in the Itanium ABI, so the names don't matter.
// Clang has traditionally used this symbol and allowed LLVM to adjust it to
// avoid duplicate symbols.
Out << "__cxx_global_var_init";
}
void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
raw_ostream &Out) {
// Prefix the mangling of D with __dtor_.
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "__dtor_";
if (shouldMangleDeclName(D))
Mangler.mangle(D);
else
Mangler.getStream() << D->getName();
}
void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
raw_ostream &Out) {
// <special-name> ::= TH <object name>
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZTH";
Mangler.mangleName(D);
}
void
ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
raw_ostream &Out) {
// <special-name> ::= TW <object name>
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZTW";
Mangler.mangleName(D);
}
void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
unsigned ManglingNumber,
raw_ostream &Out) {
// We match the GCC mangling here.
// <special-name> ::= GR <object name>
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZGR";
Mangler.mangleName(D);
assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
Mangler.mangleSeqID(ManglingNumber - 1);
}
void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
raw_ostream &Out) {
// <special-name> ::= TV <type> # virtual table
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZTV";
Mangler.mangleNameOrStandardSubstitution(RD);
}
void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
raw_ostream &Out) {
// <special-name> ::= TT <type> # VTT structure
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZTT";
Mangler.mangleNameOrStandardSubstitution(RD);
}
void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
int64_t Offset,
const CXXRecordDecl *Type,
raw_ostream &Out) {
// <special-name> ::= TC <type> <offset number> _ <base type>
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZTC";
Mangler.mangleNameOrStandardSubstitution(RD);
Mangler.getStream() << Offset;
Mangler.getStream() << '_';
Mangler.mangleNameOrStandardSubstitution(Type);
}
void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
// <special-name> ::= TI <type> # typeinfo structure
assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZTI";
Mangler.mangleType(Ty);
}
void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
raw_ostream &Out) {
// <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZTS";
Mangler.mangleType(Ty);
}
void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
mangleCXXRTTIName(Ty, Out);
}
void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
llvm_unreachable("Can't mangle string literals");
}
ItaniumMangleContext *
ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
return new ItaniumMangleContextImpl(Context, Diags);
}