llvm-project/clang/Sema/SemaDecl.cpp

553 lines
19 KiB
C++
Raw Normal View History

//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for declarations.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Type.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Scope.h"
#include "clang/Lex/IdentifierTable.h"
#include "clang/Basic/LangOptions.h"
#include "llvm/ADT/SmallSet.h"
using namespace llvm;
using namespace clang;
Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) const {
return dyn_cast_or_null<TypedefDecl>(II.getFETokenInfo<Decl>());
}
void Sema::PopScope(SourceLocation Loc, Scope *S) {
for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
I != E; ++I) {
Decl *D = static_cast<Decl*>(*I);
assert(D && "This decl didn't get pushed??");
IdentifierInfo *II = D->getIdentifier();
if (!II) continue;
// Unlink this decl from the identifier. Because the scope contains decls
// in an unordered collection, and because we have multiple identifier
// namespaces (e.g. tag, normal, label),the decl may not be the first entry.
if (II->getFETokenInfo<Decl>() == D) {
// Normal case, no multiple decls in different namespaces.
II->setFETokenInfo(D->getNext());
} else {
// Scan ahead. There are only three namespaces in C, so this loop can
// never execute more than 3 times.
Decl *SomeDecl = II->getFETokenInfo<Decl>();
while (SomeDecl->getNext() != D) {
SomeDecl = SomeDecl->getNext();
assert(SomeDecl && "Didn't find this decl on its identifier's chain!");
}
SomeDecl->setNext(D->getNext());
}
// This will have to be revisited for C++: there we want to nest stuff in
// namespace decls etc. Even for C, we might want a top-level translation
// unit decl or something.
if (!CurFunctionDecl)
continue;
// Chain this decl to the containing function, it now owns the memory for
// the decl.
D->setNext(CurFunctionDecl->getDeclChain());
CurFunctionDecl->setDeclChain(D);
}
}
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
/// no declarator (e.g. "struct foo;") is parsed.
Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
// TODO: emit error on 'int;' or 'const enum foo;'.
// TODO: emit error on 'typedef int;'
// if (!DS.isMissingDeclaratorOk()) Diag(...);
// TODO: Register 'struct foo;' with the type system as an opaque struct.
// TODO: Check that we don't already have 'union foo;' or something else
// that conflicts.
return 0;
}
/// LookupScopedDecl - Look up the inner-most declaration in the specified
/// namespace.
static Decl *LookupScopedDecl(IdentifierInfo *II, Decl::IdentifierNamespace NS){
if (II == 0) return 0;
// Scan up the scope chain looking for a decl that matches this identifier
// that is in the appropriate namespace. This search should not take long, as
// shadowing of names is uncommon, and deep shadowing is extremely uncommon.
for (Decl *D = II->getFETokenInfo<Decl>(); D; D = D->getNext())
if (D->getIdentifierNamespace() == NS)
return D;
return 0;
}
Action::DeclTy *
Sema::ParseDeclarator(Scope *S, Declarator &D, ExprTy *Init,
DeclTy *LastInGroup) {
IdentifierInfo *II = D.getIdentifier();
if (Decl *PrevDecl = LookupScopedDecl(II, Decl::IDNS_Ordinary)) {
// TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
if (S->isDeclScope(PrevDecl)) {
// TODO: This is totally simplistic. It should handle merging functions
// together etc, merging extern int X; int X; ...
Diag(D.getIdentifierLoc(), diag::err_redefinition, II->getName());
Diag(PrevDecl->getLocation(), diag::err_previous_definition);
}
}
Decl *New;
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
New = ParseTypedefDecl(S, D);
if (!New) return 0;
} else if (D.isFunctionDeclarator()) {
TypeRef R = GetTypeForDeclarator(D, S);
if (R.isNull()) return 0;
New = new FunctionDecl(D.getIdentifierLoc(), II, R);
} else {
TypeRef R = GetTypeForDeclarator(D, S);
if (R.isNull()) return 0;
New = new VarDecl(D.getIdentifierLoc(), II, R);
}
// If this has an identifier, add it to the scope stack.
if (II) {
New->setNext(II->getFETokenInfo<Decl>());
II->setFETokenInfo(New);
S->AddDecl(New);
}
// If this is a top-level decl that is chained to some other (e.g. int A,B,C;)
// remember this in the LastInGroupList list.
if (LastInGroup && S->getParent() == 0)
LastInGroupList.push_back((Decl*)LastInGroup);
return New;
}
VarDecl *
Sema::ParseParamDeclarator(DeclaratorChunk &FTI, unsigned ArgNo,
Scope *FnScope) {
const DeclaratorChunk::ParamInfo &PI = FTI.Fun.ArgInfo[ArgNo];
IdentifierInfo *II = PI.Ident;
// TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
// Can this happen for params? We already checked that they don't conflict
// among each other. Here they can only shadow globals, which is ok.
if (Decl *PrevDecl = LookupScopedDecl(II, Decl::IDNS_Ordinary)) {
}
VarDecl *New = new VarDecl(PI.IdentLoc, II,
TypeRef::getFromOpaquePtr(PI.TypeInfo));
// If this has an identifier, add it to the scope stack.
if (II) {
New->setNext(II->getFETokenInfo<Decl>());
II->setFETokenInfo(New);
FnScope->AddDecl(New);
}
return New;
}
Sema::DeclTy *Sema::ParseStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
assert(CurFunctionDecl == 0 && "Function parsing confused");
assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
"Not a function declarator!");
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
// Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
// for a K&R function.
if (!FTI.hasPrototype) {
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
if (FTI.ArgInfo[i].TypeInfo == 0) {
Diag(FTI.ArgInfo[i].IdentLoc, diag::err_param_not_declared,
FTI.ArgInfo[i].Ident->getName());
// Implicitly declare the argument as type 'int' for lack of a better
// type.
FTI.ArgInfo[i].TypeInfo = Context.IntTy.getAsOpaquePtr();
}
}
// Since this is a function definition, act as though we have information
// about the arguments.
FTI.hasPrototype = true;
2006-12-04 15:40:24 +08:00
} else {
// FIXME: Diagnose arguments without names in C.
}
Scope *GlobalScope = FnBodyScope->getParent();
2006-12-04 15:40:24 +08:00
FunctionDecl *FD =
static_cast<FunctionDecl*>(ParseDeclarator(GlobalScope, D, 0, 0));
CurFunctionDecl = FD;
2006-12-04 15:40:24 +08:00
// Create Decl objects for each parameter, adding them to the FunctionDecl.
SmallVector<VarDecl*, 16> Params;
// Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
// no arguments, not a function that takes a single void argument.
if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
FTI.ArgInfo[0].TypeInfo == Context.VoidTy.getAsOpaquePtr()) {
// empty arg list, don't push any params.
} else {
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
Params.push_back(ParseParamDeclarator(D.getTypeObject(0), i,FnBodyScope));
}
2006-12-04 15:40:24 +08:00
FD->setParams(&Params[0], Params.size());
2006-12-04 15:40:24 +08:00
return FD;
}
Sema::DeclTy *Sema::ParseFunctionDefBody(DeclTy *D, StmtTy *Body) {
FunctionDecl *FD = static_cast<FunctionDecl*>(D);
FD->setBody((Stmt*)Body);
assert(FD == CurFunctionDecl && "Function parsing confused");
CurFunctionDecl = 0;
return FD;
}
/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
Decl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
Scope *S) {
if (getLangOptions().C99) // Extension in C99.
Diag(Loc, diag::ext_implicit_function_decl, II.getName());
else // Legal in C90, but warn about it.
Diag(Loc, diag::warn_implicit_function_decl, II.getName());
// FIXME: handle stuff like:
// void foo() { extern float X(); }
// void bar() { X(); } <-- implicit decl for X in another scope.
// Set a Declarator for the implicit definition: int foo();
const char *Dummy;
DeclSpec DS;
bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
assert(!Error && "Error setting up implicit decl!");
Declarator D(DS, Declarator::BlockContext);
D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
D.SetIdentifier(&II, Loc);
Decl *Result = static_cast<Decl*>(ParseDeclarator(S, D, 0, 0));
// Visit this implicit declaration like any other top-level form.
LastInGroupList.push_back(Result);
return Result;
}
Decl *Sema::ParseTypedefDecl(Scope *S, Declarator &D) {
assert(D.getIdentifier() && "Wrong callback for declspec withotu declarator");
TypeRef T = GetTypeForDeclarator(D, S);
if (T.isNull()) return 0;
// Scope manipulation handled by caller.
return new TypedefDecl(D.getIdentifierLoc(), D.getIdentifier(), T);
}
/// ParseTag - This is invoked when we see 'struct foo' or 'struct {'. In the
/// former case, Name will be non-null. In the later case, Name will be null.
/// TagType indicates what kind of tag this is. TK indicates whether this is a
/// reference/declaration/definition of a tag.
Sema::DeclTy *Sema::ParseTag(Scope *S, unsigned TagType, TagKind TK,
SourceLocation KWLoc, IdentifierInfo *Name,
SourceLocation NameLoc) {
// If this is a use of an existing tag, it must have a name.
assert((Name != 0 || TK == TK_Definition) &&
"Nameless record must be a definition!");
Decl::Kind Kind;
switch (TagType) {
default: assert(0 && "Unknown tag type!");
case DeclSpec::TST_struct: Kind = Decl::Struct; break;
case DeclSpec::TST_union: Kind = Decl::Union; break;
//case DeclSpec::TST_class: Kind = Decl::Class; break;
case DeclSpec::TST_enum: Kind = Decl::Enum; break;
}
// If this is a named struct, check to see if there was a previous forward
// declaration or definition.
if (TagDecl *PrevDecl =
dyn_cast_or_null<TagDecl>(LookupScopedDecl(Name, Decl::IDNS_Tag))) {
// If this is a use of a previous tag, or if the tag is already declared in
// the same scope (so that the definition/declaration completes or
// rementions the tag), reuse the decl.
if (TK == TK_Reference || S->isDeclScope(PrevDecl)) {
// Make sure that this wasn't declared as an enum and now used as a struct
// or something similar.
if (PrevDecl->getKind() != Kind) {
Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
Diag(PrevDecl->getLocation(), diag::err_previous_use);
}
// If this is a use or a forward declaration, we're good.
if (TK != TK_Definition)
return PrevDecl;
// Diagnose attempts to redefine a tag.
if (PrevDecl->isDefinition()) {
Diag(NameLoc, diag::err_redefinition, Name->getName());
Diag(PrevDecl->getLocation(), diag::err_previous_definition);
// If this is a redefinition, recover by making this struct be
// anonymous, which will make any later references get the previous
// definition.
Name = 0;
} else {
// Okay, this is definition of a previously declared or referenced tag.
// Move the location of the decl to be the definition site.
PrevDecl->setLocation(NameLoc);
return PrevDecl;
}
}
// If we get here, this is a definition of a new struct type in a nested
// scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
// type.
}
// If there is an identifier, use the location of the identifier as the
// location of the decl, otherwise use the location of the struct/union
// keyword.
SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
// Otherwise, if this is the first time we've seen this tag, create the decl.
TagDecl *New;
switch (Kind) {
default: assert(0 && "Unknown tag kind!");
case Decl::Enum:
New = new EnumDecl(Loc, Name);
// If this is an undefined enum, warn.
if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
break;
case Decl::Union:
case Decl::Struct:
case Decl::Class:
New = new RecordDecl(Kind, Loc, Name);
break;
}
// If this has an identifier, add it to the scope stack.
if (Name) {
New->setNext(Name->getFETokenInfo<Decl>());
Name->setFETokenInfo(New);
S->AddDecl(New);
}
return New;
}
/// ParseField - Each field of a struct/union/class is passed into this in order
/// to create a FieldDecl object for it.
Sema::DeclTy *Sema::ParseField(Scope *S, DeclTy *TagDecl,
SourceLocation DeclStart,
Declarator &D, ExprTy *BitfieldWidth) {
IdentifierInfo *II = D.getIdentifier();
Expr *BitWidth = (Expr*)BitfieldWidth;
SourceLocation Loc = DeclStart;
if (II) Loc = D.getIdentifierLoc();
if (BitWidth) {
// TODO: Validate.
printf("WARNING: BITFIELDS IGNORED!\n");
// 6.7.2.1p3
// 6.7.2.1p4
} else {
// Not a bitfield.
// validate II.
}
TypeRef T = GetTypeForDeclarator(D, S);
if (T.isNull()) return 0;
return new FieldDecl(Loc, II, T);
}
void Sema::ParseRecordBody(SourceLocation RecLoc, DeclTy *RecDecl,
DeclTy **Fields, unsigned NumFields) {
RecordDecl *Record = cast<RecordDecl>(static_cast<Decl*>(RecDecl));
if (Record->isDefinition()) {
// Diagnose code like:
// struct S { struct S {} X; };
// We discover this when we complete the outer S. Reject and ignore the
// outer S.
Diag(Record->getLocation(), diag::err_nested_redefinition,
Record->getKindName());
Diag(RecLoc, diag::err_previous_definition);
return;
}
// Verify that all the fields are okay.
unsigned NumNamedMembers = 0;
SmallVector<Decl*, 32> RecFields;
SmallSet<const IdentifierInfo*, 32> FieldIDs;
for (unsigned i = 0; i != NumFields; ++i) {
FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
if (!FD) continue; // Already issued a diagnostic.
// Get the type for the field.
Type *FDTy = FD->getType()->getCanonicalType();
// C99 6.7.2.1p2 - A field may not be a function type.
if (isa<FunctionType>(FDTy)) {
Diag(FD->getLocation(), diag::err_field_declared_as_function,
FD->getName());
delete FD;
continue;
}
// C99 6.7.2.1p2 - A field may not be an incomplete type except...
if (FDTy->isIncompleteType()) {
if (i != NumFields-1 || // ... that the last member ...
Record->getKind() != Decl::Struct || // ... of a structure ...
!isa<ArrayType>(FDTy)) { //... may have incomplete array type.
Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
delete FD;
continue;
}
if (NumNamedMembers < 1) { //... must have more than named member ...
Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
FD->getName());
delete FD;
continue;
}
// Okay, we have a legal flexible array member at the end of the struct.
Record->setHasFlexibleArrayMember(true);
}
/// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
/// field of another structure or the element of an array.
if (RecordType *FDTTy = dyn_cast<RecordType>(FDTy)) {
if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
// If this is a member of a union, then entire union becomes "flexible".
if (Record->getKind() == Decl::Union) {
Record->setHasFlexibleArrayMember(true);
} else {
// If this is a struct/class and this is not the last element, reject
// it. Note that GCC supports variable sized arrays in the middle of
// structures.
if (i != NumFields-1) {
Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
FD->getName());
delete FD;
continue;
}
// We support flexible arrays at the end of structs in other structs
// as an extension.
Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
FD->getName());
Record->setHasFlexibleArrayMember(true);
}
}
}
// Keep track of the number of named members.
if (IdentifierInfo *II = FD->getIdentifier()) {
// Detect duplicate member names.
if (!FieldIDs.insert(II)) {
Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
// Find the previous decl.
SourceLocation PrevLoc;
for (unsigned i = 0, e = RecFields.size(); ; ++i) {
assert(i != e && "Didn't find previous def!");
if (RecFields[i]->getIdentifier() == II) {
PrevLoc = RecFields[i]->getLocation();
break;
}
}
Diag(PrevLoc, diag::err_previous_definition);
delete FD;
continue;
}
++NumNamedMembers;
}
// Remember good fields.
RecFields.push_back(FD);
}
// Okay, we successfully defined 'Record'.
Record->defineBody(&RecFields[0], RecFields.size());
}
Sema::DeclTy *Sema::ParseEnumConstant(Scope *S, DeclTy *EnumDeclX,
SourceLocation IdLoc, IdentifierInfo *Id,
SourceLocation EqualLoc, ExprTy *Val) {
EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
// Verify that there isn't already something declared with this name in this
// scope.
if (Decl *PrevDecl = LookupScopedDecl(Id, Decl::IDNS_Ordinary)) {
if (S->isDeclScope(PrevDecl)) {
if (isa<EnumConstantDecl>(PrevDecl))
Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
else
Diag(IdLoc, diag::err_redefinition, Id->getName());
Diag(PrevDecl->getLocation(), diag::err_previous_definition);
return 0;
}
}
TypeRef Ty = Context.getTagDeclType(TheEnumDecl);
EnumConstantDecl *New = new EnumConstantDecl(IdLoc, Id, Ty);
// Register this decl in the current scope stack.
New->setNext(Id->getFETokenInfo<Decl>());
Id->setFETokenInfo(New);
S->AddDecl(New);
return New;
}
void Sema::ParseEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
DeclTy **Elements, unsigned NumElements) {
EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
// Verify that all the values are okay.
SmallVector<EnumConstantDecl*, 32> Values;
for (unsigned i = 0; i != NumElements; ++i) {
EnumConstantDecl *ECD =
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
if (!ECD) continue; // Already issued a diagnostic.
Values.push_back(ECD);
}
Enum->defineElements(&Values[0], Values.size());
}