llvm-project/mlir/test/Dialect/Linalg/fusion-tensor.mlir

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

489 lines
20 KiB
MLIR
Raw Normal View History

// RUN: mlir-opt %s -linalg-fusion-for-tensor-ops -split-input-file | FileCheck %s
// CHECK-DAG: [[$MAP0:#[a-zA-Z0-9_]*]] = affine_map<(d0, d1) -> (d0, d1)>
#map0 = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: @add_mul_fusion
func @add_mul_fusion(%arg0: tensor<?x?xf32>, %arg1 : tensor<?x?xf32>, %arg2 : tensor<?x?xf32>) -> tensor<?x?xf32>
{
%0 = linalg.generic {args_in = 2 : i64, args_out = 1 : i64, indexing_maps = [#map0, #map0, #map0], iterator_types = ["parallel", "parallel"]} %arg0, %arg1 {
^bb0(%arg3: f32, %arg4: f32): // no predecessors
%1 = addf %arg3, %arg4 : f32
linalg.yield %1 : f32
}: tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
// CHECK: linalg.generic {args_in = 3 : i64, args_out = 1 : i64
// CHECK-SAME: indexing_maps = {{\[}}[[$MAP0]], [[$MAP0]], [[$MAP0]], [[$MAP0]]{{\]}}
%2 = linalg.generic {args_in = 2 : i64, args_out = 1 : i64, indexing_maps = [#map0, #map0, #map0], iterator_types = ["parallel", "parallel"]} %0, %arg2 {
// CHECK: ^{{[a-zA-Z0-9_]*}}
// CHECK-SAME: [[ARG0:%[a-zA-Z0-9_]*]]
// CHECK-SAME: [[ARG1:%[a-zA-Z0-9_]*]]
// CHECK-SAME: [[ARG2:%[a-zA-Z0-9_]*]]
^bb0(%arg5: f32, %arg6: f32): // no predecessors
// CHECK: [[T1:%[a-zA-Z0-9_]*]] = addf [[ARG0]], [[ARG1]]
// CHECK-NOT: linalg.yield
// CHECK: mulf [[T1]], [[ARG2]]
// CHECK: linalg.yield
%3 = mulf %arg5, %arg6 : f32
linalg.yield %3 : f32
}: tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
return %2 : tensor<?x?xf32>
}
// -----
// CHECK-DAG: [[$MAP0:#[a-zA-Z0-9_]*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-DAG: [[$MAP1:#[a-zA-Z0-9_]*]] = affine_map<(d0, d1) -> (d1, d0)>
#map0 = affine_map<(d0, d1) -> (d0, d1)>
#map1 = affine_map<(d0, d1) -> (d1, d0)>
// CHECK-LABEL: @transpose_add_mul_fusion
func @transpose_add_mul_fusion(%arg0: tensor<?x?xf32>, %arg1 : tensor<?x?xf32>, %arg2 : tensor<?x?xf32>) -> tensor<?x?xf32>
{
%0 = linalg.generic {args_in = 2 : i64, args_out = 1 : i64, indexing_maps = [#map0, #map1, #map0], iterator_types = ["parallel", "parallel"]} %arg0, %arg1 {
^bb0(%arg3: f32, %arg4: f32): // no predecessors
%1 = addf %arg3, %arg4 : f32
linalg.yield %1 : f32
}: tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
// CHECK: linalg.generic {args_in = 3 : i64, args_out = 1 : i64
// CHECK-SAME: indexing_maps = {{\[}}[[$MAP0]], [[$MAP1]], [[$MAP0]], [[$MAP0]]{{\]}}
%2 = linalg.generic {args_in = 2 : i64, args_out = 1 : i64, indexing_maps = [#map0, #map0, #map0], iterator_types = ["parallel", "parallel"]} %0, %arg2 {
^bb0(%arg5: f32, %arg6: f32): // no predecessors
%3 = mulf %arg5, %arg6 : f32
linalg.yield %3 : f32
}: tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
return %2 : tensor<?x?xf32>
}
// -----
// CHECK-DAG: [[$MAP0:#[a-zA-Z0-9_]*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-DAG: [[$MAP1:#[a-zA-Z0-9_]*]] = affine_map<(d0, d1) -> (d1, d0)>
#map0 = affine_map<(d0, d1) -> (d0, d1)>
#map1 = affine_map<(d0, d1) -> (d1, d0)>
// CHECK-LABEL: @add_transpose_mul_fusion
func @add_transpose_mul_fusion(%arg0: tensor<?x?xf32>, %arg1 : tensor<?x?xf32>, %arg2 : tensor<?x?xf32>) -> tensor<?x?xf32>
{
%0 = linalg.generic {args_in = 2 : i64, args_out = 1 : i64, indexing_maps = [#map0, #map1, #map0], iterator_types = ["parallel", "parallel"]} %arg0, %arg1 {
^bb0(%arg3: f32, %arg4: f32): // no predecessors
%1 = addf %arg3, %arg4 : f32
linalg.yield %1 : f32
}: tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
// CHECK: linalg.generic {args_in = 3 : i64, args_out = 1 : i64
// CHECK-SAME: indexing_maps = {{\[}}[[$MAP1]], [[$MAP0]], [[$MAP0]], [[$MAP0]]{{\]}}
%2 = linalg.generic {args_in = 2 : i64, args_out = 1 : i64, indexing_maps = [#map1, #map0, #map0], iterator_types = ["parallel", "parallel"]} %0, %arg2 {
^bb0(%arg5: f32, %arg6: f32): // no predecessors
%3 = mulf %arg5, %arg6 : f32
linalg.yield %3 : f32
}: tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
return %2 : tensor<?x?xf32>
}
// -----
// CHECK-DAG: [[$MAP0:#[a-zA-Z0-9_]*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-DAG: [[$MAP1:#[a-zA-Z0-9_]*]] = affine_map<(d0, d1) -> (d0)>
#map0 = affine_map<(d0, d1) -> (d0, d1)>
#map1 = affine_map<(d0, d1) -> (d0)>
#map2 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @add_broadcast_mul_fusion
func @add_broadcast_mul_fusion(%arg0: tensor<?xf32>, %arg1 : tensor<?xf32>, %arg2 : tensor<?x?xf32>) -> tensor<?x?xf32>
{
%0 = linalg.generic {args_in = 2 : i64, args_out = 1 : i64, indexing_maps = [#map2, #map2, #map2], iterator_types = ["parallel"]} %arg0, %arg1 {
^bb0(%arg3: f32, %arg4: f32): // no predecessors
%1 = addf %arg3, %arg4 : f32
linalg.yield %1 : f32
}: tensor<?xf32>, tensor<?xf32> -> tensor<?xf32>
// CHECK: linalg.generic {args_in = 3 : i64, args_out = 1 : i64
// CHECK-SAME: indexing_maps = {{\[}}[[$MAP1]], [[$MAP1]], [[$MAP0]], [[$MAP0]]
%2 = linalg.generic {args_in = 2 : i64, args_out = 1 : i64, indexing_maps = [#map1, #map0, #map0], iterator_types = ["parallel", "parallel"]} %0, %arg2 {
^bb0(%arg5: f32, %arg6: f32): // no predecessors
%3 = mulf %arg5, %arg6 : f32
linalg.yield %3 : f32
}: tensor<?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
return %2 : tensor<?x?xf32>
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<() -> ()>
#map0 = affine_map<() -> ()>
// CHECK-LABEL: @add_mul_scalar_fusion
func @add_mul_scalar_fusion(%arg0: tensor<f32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<f32>
{
%0 = linalg.generic {args_in = 2 : i64, args_out = 1 : i64, indexing_maps = [#map0, #map0, #map0], iterator_types = []} %arg0, %arg1 {
^bb0(%arg3: f32, %arg4: f32): // no predecessors
%1 = addf %arg3, %arg4 : f32
linalg.yield %1 : f32
}: tensor<f32>, tensor<f32> -> tensor<f32>
// CHECK: linalg.generic {args_in = 3 : i64, args_out = 1 : i64
// CHECK: addf
// CHECK: mulf
%1 = linalg.generic {args_in = 2 : i64, args_out = 1 : i64, indexing_maps = [#map0, #map0, #map0], iterator_types = []} %0, %arg2 {
^bb0(%arg3: f32, %arg4: f32): // no predecessors
%1 = mulf %arg3, %arg4 : f32
linalg.yield %1 : f32
}: tensor<f32>, tensor<f32> -> tensor<f32>
return %1 : tensor<f32>
}
// -----
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 4 + d2, d3)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
#map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func @generic_op_reshape_producer_fusion(%arg0 : tensor<?x?x?xf32>,
%arg1 : tensor<?x?x4x?xf32>) ->
tensor<?x?x4x?xf32>
{
%0 = linalg.tensor_reshape %arg0 [affine_map<(i, j, k, l) -> (i)>,
affine_map<(i, j, k, l) -> (j, k)>,
affine_map<(i, j, k, l) -> (l)>] :
tensor<?x?x?xf32> into tensor<?x?x4x?xf32>
%1 = linalg.generic
{args_in = 2 : i64, args_out = 1 : i64,
indexing_maps = [#map0, #map0, #map0],
iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
%0, %arg1 {
^bb0(%arg3: f32, %arg4: f32): // no predecessors
%1 = mulf %arg3, %arg4 : f32
linalg.yield %1 : f32
}: tensor<?x?x4x?xf32>, tensor<?x?x4x?xf32> -> tensor<?x?x4x?xf32>
return %1 : tensor<?x?x4x?xf32>
}
// CHECK-LABEL: func @generic_op_reshape_producer_fusion
// CHECK: linalg.generic
// CHECK-SAME: args_in = 2
// CHECK-SAME: args_out = 1
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]]
// CHECK-NOT: linalg.generic
// -----
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 20 + d2 * 5 + d3)>
#map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func @generic_op_reshape_consumer_fusion(%arg0 : tensor<?x?x4x5xf32>,
%arg1 : tensor<?x?x4x5xf32>) ->
tensor<?x?xf32>
{
%0 = linalg.generic
{args_in = 2 : i64, args_out = 1 : i64,
indexing_maps = [#map0, #map0, #map0],
iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
%arg0, %arg1 {
^bb0(%arg3: f32, %arg4: f32): // no predecessors
%1 = mulf %arg3, %arg4 : f32
linalg.yield %1 : f32
}: tensor<?x?x4x5xf32>, tensor<?x?x4x5xf32> -> tensor<?x?x4x5xf32>
%1 = linalg.tensor_reshape %0 [affine_map<(i, j, k, l) -> (i)>,
affine_map<(i, j, k, l) -> (j, k, l)>] :
tensor<?x?x4x5xf32> into tensor<?x?xf32>
return %1 : tensor<?x?xf32>
}
// CHECK-LABEL: func @generic_op_reshape_consumer_fusion
// CHECK: linalg.generic
// CHECK-SAME: args_in = 2
// CHECK-SAME: args_out = 1
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP0]], #[[$MAP1]]]
// CHECK-NOT: linalg.generic
// -----
#map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func @generic_op_reshape_consumer_nofusion(%arg0 : tensor<?x?x?x5xf32>,
%arg1 : tensor<?x?x?x5xf32>) ->
tensor<?x?xf32>
{
%0 = linalg.generic
{args_in = 2 : i64, args_out = 1 : i64,
indexing_maps = [#map0, #map0, #map0],
iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
%arg0, %arg1 {
^bb0(%arg3: f32, %arg4: f32): // no predecessors
%1 = mulf %arg3, %arg4 : f32
linalg.yield %1 : f32
}: tensor<?x?x?x5xf32>, tensor<?x?x?x5xf32> -> tensor<?x?x?x5xf32>
%1 = linalg.tensor_reshape %0 [affine_map<(i, j, k, l) -> (i)>,
affine_map<(i, j, k, l) -> (j, k, l)>] :
tensor<?x?x?x5xf32> into tensor<?x?xf32>
return %1 : tensor<?x?xf32>
}
// CHECK-LABEL: func @generic_op_reshape_consumer_nofusion
// CHECK: linalg.tensor_reshape
// -----
#map0 = affine_map<(d0, d1, d2) -> (d0)>
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
func @generic_op_constant_fusion(%arg0 : tensor<5x?x?xf32>) -> tensor<5x?x?xf32>
{
%0 = constant dense<42.0> : tensor<5xf32>
%1 = linalg.generic
{args_in = 2 : i64, args_out = 1 : i64,
indexing_maps = [#map0, #map1, #map1],
iterator_types = ["parallel", "parallel", "parallel"]}
%0, %arg0 {
^bb0(%arg1: f32, %arg2: f32):
%2 = mulf %arg1, %arg2 : f32
linalg.yield %2 : f32
}: tensor<5xf32>, tensor<5x?x?xf32> -> tensor<5x?x?xf32>
return %1 : tensor<5x?x?xf32>
}
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-LABEL: func @generic_op_constant_fusion
// CHECK: %[[CST:.*]] = constant {{.*}} : f32
// CHECK: linalg.generic
// CHECK-SAME: args_in = 1 : i64
// CHECK-SAME: args_out = 1 : i64
// CHECK: ^{{.*}}(%[[ARG1:.*]]: f32)
// CHECK: mulf %[[CST]], %[[ARG1]]
// -----
#map0 = affine_map<(d0, d1, d2) -> ()>
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
func @generic_op_zero_dim_constant_fusion(%arg0 : tensor<5x?x?xf32>)
-> tensor<5x?x?xf32>
{
%0 = constant dense<42.0> : tensor<f32>
%1 = linalg.generic
{args_in = 2 : i64, args_out = 1 : i64,
indexing_maps = [#map0, #map1, #map1],
iterator_types = ["parallel", "parallel", "parallel"]}
%0, %arg0 {
^bb0(%arg1: f32, %arg2: f32):
%2 = mulf %arg1, %arg2 : f32
linalg.yield %2 : f32
}: tensor<f32>, tensor<5x?x?xf32> -> tensor<5x?x?xf32>
return %1 : tensor<5x?x?xf32>
}
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-LABEL: func @generic_op_zero_dim_constant_fusion
// CHECK: %[[CST:.*]] = constant {{.*}} : f32
// CHECK: linalg.generic
// CHECK-SAME: args_in = 1 : i64
// CHECK-SAME: args_out = 1 : i64
// CHECK: ^{{.*}}(%[[ARG1:.*]]: f32)
// CHECK: mulf %[[CST]], %[[ARG1]]
// -----
#map0 = affine_map<(d0, d1) -> (d0, d1)>
func @generic_op_indexed_generic_op_fusion(%arg0: tensor<?x?xi32>,
%arg1: tensor<?x?xi32>) {
%0 = linalg.generic {
args_in = 2 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0, #map0],
iterator_types = ["parallel", "parallel"] } %arg0, %arg1 {
^bb0(%arg2: i32, %arg3: i32): // no predecessors
%10 = addi %arg2, %arg3 : i32
linalg.yield %10 : i32
} : tensor<?x?xi32>, tensor<?x?xi32> -> tensor<?x?xi32>
%1 = linalg.indexed_generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel", "parallel"] } %0 {
^bb0(%arg2: index, %arg3: index, %arg4: i32): // no predecessors
%2 = index_cast %arg2 : index to i32
%3 = index_cast %arg3 : index to i32
%4 = addi %arg4, %2 : i32
%5 = subi %4, %3 : i32
linalg.yield %5 : i32
}: tensor<?x?xi32> -> tensor<?x?xi32>
return
}
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: func @generic_op_indexed_generic_op_fusion
// CHECK-NOT: linalg.generic
// CHECK: linalg.indexed_generic
// CHECK-SAME: args_in = 2
// CHECK-SAME: args_out = 1
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP0]], #[[$MAP0]]]
// CHECK: ^{{[a-zA-Z0-9_]*}}
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]]: index
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]: index
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9_]*]]: i32
// CHECK-SAME: %[[ARG3:[a-zA-Z0-9_]*]]: i32
// CHECK: %[[VAL1:.+]] = addi %[[ARG2]], %[[ARG3]] : i32
// CHECK: %[[ADD_OPERAND:.+]] = index_cast %[[ARG0]] : index to i32
// CHECK: %[[SUB_OPERAND:.+]] = index_cast %[[ARG1]] : index to i32
// CHECK: %[[VAL2:.+]] = addi %[[VAL1]], %[[ADD_OPERAND]] : i32
// CHECK: %[[VAL3:.+]] = subi %[[VAL2]], %[[SUB_OPERAND]] : i32
// CHECK: linalg.yield %[[VAL3]] : i32
// -----
#map0 = affine_map<(d0, d1) -> (d0, d1)>
func @indexed_generic_op_generic_op_fusion(%arg0: tensor<?x?xi32>,
%arg1: tensor<?x?xi32>) {
%0 = linalg.indexed_generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel", "parallel"] } %arg0 {
^bb0(%arg2: index, %arg3: index, %arg4: i32): // no predecessors
%2 = index_cast %arg2 : index to i32
%3 = index_cast %arg3 : index to i32
%4 = addi %arg4, %2 : i32
%5 = subi %4, %3 : i32
linalg.yield %5 : i32
}: tensor<?x?xi32> -> tensor<?x?xi32>
%1 = linalg.generic {
args_in = 2 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0, #map0],
iterator_types = ["parallel", "parallel"] } %0, %arg1 {
^bb0(%arg2: i32, %arg3: i32): // no predecessors
%10 = addi %arg2, %arg3 : i32
linalg.yield %10 : i32
} : tensor<?x?xi32>, tensor<?x?xi32> -> tensor<?x?xi32>
return
}
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: func @indexed_generic_op_generic_op_fusion
// CHECK: linalg.indexed_generic
// CHECK-SAME: args_in = 2
// CHECK-SAME: args_out = 1
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP0]], #[[$MAP0]]]
// CHECK: ^{{[a-zA-Z0-9_]*}}
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]]: index
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]: index
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9_]*]]: i32
// CHECK-SAME: %[[ARG3:[a-zA-Z0-9_]*]]: i32
// CHECK: %[[ADD_OPERAND:.+]] = index_cast %[[ARG0]] : index to i32
// CHECK: %[[SUB_OPERAND:.+]] = index_cast %[[ARG1]] : index to i32
// CHECK: %[[VAL1:.+]] = addi %[[ARG2]], %[[ADD_OPERAND]] : i32
// CHECK: %[[VAL2:.+]] = subi %[[VAL1]], %[[SUB_OPERAND]] : i32
// CHECK: %[[VAL3:.+]] = addi %[[VAL2]], %[[ARG3]] : i32
// CHECK: linalg.yield %[[VAL3]] : i32
// CHECK-NOT: linalg.generic
// -----
// The indices of the first indexed_generic op are swapped after fusion.
#map0 = affine_map<(d0, d1) -> (d1, d0)>
#map1 = affine_map<(d0, d1) -> (d0, d1)>
func @indexed_generic_op_fusion(%arg0: tensor<?x?xi32>) {
%0 = linalg.indexed_generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel", "parallel"] } %arg0 {
^bb0(%arg2: index, %arg3: index, %arg4: i32): // no predecessors
%2 = index_cast %arg2 : index to i32
%3 = index_cast %arg3 : index to i32
%4 = addi %arg4, %2 : i32
%5 = subi %4, %3 : i32
linalg.yield %5 : i32
}: tensor<?x?xi32> -> tensor<?x?xi32>
%1 = linalg.indexed_generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map1, #map1],
iterator_types = ["parallel", "parallel"] } %0 {
^bb0(%arg2: index, %arg3: index, %arg4: i32): // no predecessors
%2 = index_cast %arg2 : index to i32
%3 = index_cast %arg3 : index to i32
%4 = addi %arg4, %2 : i32
%5 = subi %4, %3 : i32
linalg.yield %5 : i32
}: tensor<?x?xi32> -> tensor<?x?xi32>
return
}
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: func @indexed_generic_op_fusion
// CHECK: linalg.indexed_generic
// CHECK-SAME: args_in = 1
// CHECK-SAME: args_out = 1
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP0]]]
// CHECK: ^{{[a-zA-Z0-9_]*}}
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]]: index
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]: index
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9_]*]]: i32
// CHECK: %[[ADD_OPERAND1:.+]] = index_cast %[[ARG1]] : index to i32
// CHECK: %[[SUB_OPERAND1:.+]] = index_cast %[[ARG0]] : index to i32
// CHECK: %[[VAL1:.+]] = addi %[[ARG2]], %[[ADD_OPERAND1]] : i32
// CHECK: %[[VAL2:.+]] = subi %[[VAL1]], %[[SUB_OPERAND1]] : i32
// CHECK: %[[ADD_OPERAND2:.+]] = index_cast %[[ARG0]] : index to i32
// CHECK: %[[SUB_OPERAND2:.+]] = index_cast %[[ARG1]] : index to i32
// CHECK: %[[VAL3:.+]] = addi %[[VAL2]], %[[ADD_OPERAND2]] : i32
// CHECK: %[[VAL4:.+]] = subi %[[VAL3]], %[[SUB_OPERAND2]] : i32
// CHECK: linalg.yield %[[VAL4]] : i32
// CHECK-NOT: linalg.indexed_generic
// -----
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 4 + d2, d3)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
#map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func @indexed_generic_op_reshape_producer_fusion(%arg0 : tensor<?x?x?xi32>)
-> tensor<?x?x4x?xi32> {
%0 = linalg.tensor_reshape %arg0 [affine_map<(i, j, k, l) -> (i)>,
affine_map<(i, j, k, l) -> (j, k)>,
affine_map<(i, j, k, l) -> (l)>] :
tensor<?x?x?xi32> into tensor<?x?x4x?xi32>
%1 = linalg.indexed_generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel", "parallel", "parallel", "parallel"] } %0 {
^bb0(%arg2: index, %arg3: index, %arg4: index, %arg5: index, %arg6: i32): // no predecessors
%2 = index_cast %arg2 : index to i32
%3 = addi %arg6, %2 : i32
linalg.yield %3 : i32
}: tensor<?x?x4x?xi32> -> tensor<?x?x4x?xi32>
return %1 : tensor<?x?x4x?xi32>
}
// CHECK-LABEL: func @indexed_generic_op_reshape_producer_fusion
// CHECK-NOT: linalg.tensor_reshape
// CHECK: linalg.indexed_generic
// CHECK-SAME: args_in = 1
// CHECK-SAME: args_out = 1
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
// CHECK-NOT: linalg.tensor_reshape
// -----
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1 * 20 + d2 * 5 + d3)>
#map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func @indexed_generic_op_reshape_consumer_fusion(%arg0 : tensor<?x?x4x5xi32>)
-> tensor<?x?xi32> {
%0 = linalg.indexed_generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel", "parallel", "parallel", "parallel"] } %arg0 {
^bb0(%arg2: index, %arg3: index, %arg4: index, %arg5: index, %arg6: i32): // no predecessors
%2 = index_cast %arg2 : index to i32
%3 = addi %arg6, %2 : i32
linalg.yield %3 : i32
}: tensor<?x?x4x5xi32> -> tensor<?x?x4x5xi32>
%1 = linalg.tensor_reshape %0 [affine_map<(i, j, k, l) -> (i)>,
affine_map<(i, j, k, l) -> (j, k, l)>] :
tensor<?x?x4x5xi32> into tensor<?x?xi32>
return %1 : tensor<?x?xi32>
}
// CHECK-LABEL: func @indexed_generic_op_reshape_consumer_fusion
// CHECK-NOT: linalg.tensor_reshape
// CHECK: linalg.indexed_generic
// CHECK-SAME: args_in = 1
// CHECK-SAME: args_out = 1
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
// CHECK-NOT: linalg.tensor_reshape