llvm-project/mlir/test/IR/core-ops.mlir

433 lines
15 KiB
MLIR
Raw Normal View History

// RUN: mlir-opt %s | FileCheck %s
// Verify the printed output can be parsed.
// RUN: mlir-opt %s | mlir-opt | FileCheck %s
// Verify the generic form can be parsed.
// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
// CHECK: #map0 = (d0) -> (d0 + 1)
// CHECK: #map1 = ()[s0] -> (s0 + 1)
[MLIR] Add VectorTransferOps This CL implements and uses VectorTransferOps in lieu of the former custom call op. Tests are updated accordingly. VectorTransferOps come in 2 flavors: VectorTransferReadOp and VectorTransferWriteOp. VectorTransferOps can be thought of as a backend-independent pseudo op/library call that needs to be legalized to MLIR (whiteboxed) before it can be lowered to backend-dependent IR. Note that the current implementation does not yet support a real permutation map. Proper support will come in a followup CL. VectorTransferReadOp ==================== VectorTransferReadOp performs a blocking read from a scalar memref location into a super-vector of the same elemental type. This operation is called 'read' by opposition to 'load' because the super-vector granularity is generally not representable with a single hardware register. As a consequence, memory transfers will generally be required when lowering VectorTransferReadOp. A VectorTransferReadOp is thus a mid-level abstraction that supports super-vectorization with non-effecting padding for full-tile only code. A vector transfer read has semantics similar to a vector load, with additional support for: 1. an optional value of the elemental type of the MemRef. This value supports non-effecting padding and is inserted in places where the vector read exceeds the MemRef bounds. If the value is not specified, the access is statically guaranteed to be within bounds; 2. an attribute of type AffineMap to specify a slice of the original MemRef access and its transposition into the super-vector shape. The permutation_map is an unbounded AffineMap that must represent a permutation from the MemRef dim space projected onto the vector dim space. Example: ```mlir %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32> ... %val = `ssa-value` : f32 // let %i, %j, %k, %l be ssa-values of type index %v0 = vector_transfer_read %src, %i, %j, %k, %l {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (memref<?x?x?x?xf32>, index, index, index, index) -> vector<16x32x64xf32> %v1 = vector_transfer_read %src, %i, %j, %k, %l, %val {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (memref<?x?x?x?xf32>, index, index, index, index, f32) -> vector<16x32x64xf32> ``` VectorTransferWriteOp ===================== VectorTransferWriteOp performs a blocking write from a super-vector to a scalar memref of the same elemental type. This operation is called 'write' by opposition to 'store' because the super-vector granularity is generally not representable with a single hardware register. As a consequence, memory transfers will generally be required when lowering VectorTransferWriteOp. A VectorTransferWriteOp is thus a mid-level abstraction that supports super-vectorization with non-effecting padding for full-tile only code. A vector transfer write has semantics similar to a vector store, with additional support for handling out-of-bounds situations. Example: ```mlir %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>. %val = `ssa-value` : vector<16x32x64xf32> // let %i, %j, %k, %l be ssa-values of type index vector_transfer_write %val, %src, %i, %j, %k, %l {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (vector<16x32x64xf32>, memref<?x?x?x?xf32>, index, index, index, index) ``` PiperOrigin-RevId: 223873234
2018-12-04 07:21:27 +08:00
// CHECK-DAG: #[[map_proj_d0d1_d0:map[0-9]+]] = (d0, d1) -> (d0)
// CHECK-DAG: #[[map_proj_d0d1_d1:map[0-9]+]] = (d0, d1) -> (d1)
// CHECK-DAG: #[[map_proj_d0d1_d1d0:map[0-9]+]] = (d0, d1) -> (d1, d0)
// CHECK-LABEL: func @func_with_ops(%arg0: f32) {
func @func_with_ops(f32) {
^bb0(%a : f32):
// CHECK: %0 = "getTensor"() : () -> tensor<4x4x?xf32>
%t = "getTensor"() : () -> tensor<4x4x?xf32>
// CHECK: %1 = dim %0, 2 : tensor<4x4x?xf32>
%t2 = "std.dim"(%t){index = 2} : (tensor<4x4x?xf32>) -> index
// CHECK: %2 = addf %arg0, %arg0 : f32
%x = "std.addf"(%a, %a) : (f32,f32) -> (f32)
// CHECK: return
return
}
// CHECK-LABEL: func @standard_instrs(%arg0: tensor<4x4x?xf32>, %arg1: f32, %arg2: i32, %arg3: index) {
func @standard_instrs(tensor<4x4x?xf32>, f32, i32, index) {
^bb42(%t: tensor<4x4x?xf32>, %f: f32, %i: i32, %idx : index):
// CHECK: %0 = dim %arg0, 2 : tensor<4x4x?xf32>
%a = "std.dim"(%t){index = 2} : (tensor<4x4x?xf32>) -> index
// CHECK: %1 = dim %arg0, 2 : tensor<4x4x?xf32>
%a2 = dim %t, 2 : tensor<4x4x?xf32>
// CHECK: %2 = addf %arg1, %arg1 : f32
%f2 = "std.addf"(%f, %f) : (f32,f32) -> f32
// CHECK: %3 = addf %2, %2 : f32
%f3 = addf %f2, %f2 : f32
// CHECK: %4 = addi %arg2, %arg2 : i32
%i2 = "std.addi"(%i, %i) : (i32,i32) -> i32
// CHECK: %5 = addi %4, %4 : i32
%i3 = addi %i2, %i2 : i32
// CHECK: %{{[0-9]+}} = addi %arg3, %arg3 : index
%idx1 = addi %idx, %idx : index
// CHECK: %{{[0-9]+}} = addi %arg3, %{{[0-9]+}} : index
%idx2 = "std.addi"(%idx, %idx1) : (index, index) -> index
// CHECK: %8 = subf %arg1, %arg1 : f32
%f4 = "std.subf"(%f, %f) : (f32,f32) -> f32
// CHECK: %9 = subf %8, %8 : f32
%f5 = subf %f4, %f4 : f32
// CHECK: %10 = subi %arg2, %arg2 : i32
%i4 = "std.subi"(%i, %i) : (i32,i32) -> i32
// CHECK: %11 = subi %10, %10 : i32
%i5 = subi %i4, %i4 : i32
// CHECK: %12 = mulf %2, %2 : f32
%f6 = mulf %f2, %f2 : f32
// CHECK: %13 = muli %4, %4 : i32
%i6 = muli %i2, %i2 : i32
// CHECK: %c42_i32 = constant 42 : i32
%x = "std.constant"(){value = 42 : i32} : () -> i32
// CHECK: %c42_i32_0 = constant 42 : i32
%7 = constant 42 : i32
// CHECK: %c43 = constant {crazy = "std.foo"} 43 : index
%8 = constant {crazy = "std.foo"} 43: index
// CHECK: %cst = constant 4.300000e+01 : bf16
%9 = constant 43.0 : bf16
// CHECK: %f = constant @func_with_ops : (f32) -> ()
%10 = constant @func_with_ops : (f32) -> ()
// CHECK: %f_1 = constant @affine_apply : () -> ()
%11 = constant @affine_apply : () -> ()
// CHECK: %f_2 = constant @affine_apply : () -> ()
%12 = constant @affine_apply : () -> ()
// CHECK: %cst_3 = constant dense<0> : vector<4xi32>
%13 = constant dense<0> : vector<4 x i32>
// CHECK: %cst_4 = constant dense<0> : tensor<42xi32>
%tci32 = constant dense<0> : tensor<42 x i32>
// CHECK: %cst_5 = constant dense<0> : vector<42xi32>
%vci32 = constant dense<0> : vector<42 x i32>
// CHECK: %{{[0-9]+}} = cmpi "eq", %{{[0-9]+}}, %{{[0-9]+}} : i32
%14 = cmpi "eq", %i3, %i4 : i32
// Predicate 1 means inequality comparison.
// CHECK: %{{[0-9]+}} = cmpi "ne", %{{[0-9]+}}, %{{[0-9]+}} : i32
%15 = "std.cmpi"(%i3, %i4) {predicate = 1} : (i32, i32) -> i1
// CHECK: %{{[0-9]+}} = cmpi "slt", %cst_3, %cst_3 : vector<4xi32>
%16 = cmpi "slt", %13, %13 : vector<4 x i32>
// CHECK: %{{[0-9]+}} = cmpi "ne", %cst_3, %cst_3 : vector<4xi32>
%17 = "std.cmpi"(%13, %13) {predicate = 1} : (vector<4 x i32>, vector<4 x i32>) -> vector<4 x i1>
// CHECK: %{{[0-9]+}} = cmpi "slt", %arg3, %arg3 : index
%18 = cmpi "slt", %idx, %idx : index
// CHECK: %{{[0-9]+}} = cmpi "eq", %cst_4, %cst_4 : tensor<42xi32>
%19 = cmpi "eq", %tci32, %tci32 : tensor<42 x i32>
// CHECK: %{{[0-9]+}} = cmpi "eq", %cst_5, %cst_5 : vector<42xi32>
%20 = cmpi "eq", %vci32, %vci32 : vector<42 x i32>
// CHECK: %{{[0-9]+}} = select %{{[0-9]+}}, %arg3, %arg3 : index
%21 = select %18, %idx, %idx : index
// CHECK: %{{[0-9]+}} = select %{{[0-9]+}}, %cst_4, %cst_4 : tensor<42xi32>
%22 = select %19, %tci32, %tci32 : tensor<42 x i32>
// CHECK: %{{[0-9]+}} = select %{{[0-9]+}}, %cst_5, %cst_5 : vector<42xi32>
%23 = select %20, %vci32, %vci32 : vector<42 x i32>
// CHECK: %{{[0-9]+}} = select %{{[0-9]+}}, %arg3, %arg3 : index
%24 = "std.select"(%18, %idx, %idx) : (i1, index, index) -> index
// CHECK: %{{[0-9]+}} = select %{{[0-9]+}}, %cst_4, %cst_4 : tensor<42xi32>
%25 = "std.select"(%19, %tci32, %tci32) : (tensor<42 x i1>, tensor<42 x i32>, tensor<42 x i32>) -> tensor<42 x i32>
// CHECK: %{{[0-9]+}} = divis %arg2, %arg2 : i32
%26 = divis %i, %i : i32
// CHECK: %{{[0-9]+}} = divis %arg3, %arg3 : index
%27 = divis %idx, %idx : index
// CHECK: %{{[0-9]+}} = divis %cst_5, %cst_5 : vector<42xi32>
%28 = divis %vci32, %vci32 : vector<42 x i32>
// CHECK: %{{[0-9]+}} = divis %cst_4, %cst_4 : tensor<42xi32>
%29 = divis %tci32, %tci32 : tensor<42 x i32>
// CHECK: %{{[0-9]+}} = divis %arg2, %arg2 : i32
%30 = "std.divis"(%i, %i) : (i32, i32) -> i32
// CHECK: %{{[0-9]+}} = diviu %arg2, %arg2 : i32
%31 = diviu %i, %i : i32
// CHECK: %{{[0-9]+}} = diviu %arg3, %arg3 : index
%32 = diviu %idx, %idx : index
// CHECK: %{{[0-9]+}} = diviu %cst_5, %cst_5 : vector<42xi32>
%33 = diviu %vci32, %vci32 : vector<42 x i32>
// CHECK: %{{[0-9]+}} = diviu %cst_4, %cst_4 : tensor<42xi32>
%34 = diviu %tci32, %tci32 : tensor<42 x i32>
// CHECK: %{{[0-9]+}} = diviu %arg2, %arg2 : i32
%35 = "std.diviu"(%i, %i) : (i32, i32) -> i32
// CHECK: %{{[0-9]+}} = remis %arg2, %arg2 : i32
%36 = remis %i, %i : i32
// CHECK: %{{[0-9]+}} = remis %arg3, %arg3 : index
%37 = remis %idx, %idx : index
// CHECK: %{{[0-9]+}} = remis %cst_5, %cst_5 : vector<42xi32>
%38 = remis %vci32, %vci32 : vector<42 x i32>
// CHECK: %{{[0-9]+}} = remis %cst_4, %cst_4 : tensor<42xi32>
%39 = remis %tci32, %tci32 : tensor<42 x i32>
// CHECK: %{{[0-9]+}} = remis %arg2, %arg2 : i32
%40 = "std.remis"(%i, %i) : (i32, i32) -> i32
// CHECK: %{{[0-9]+}} = remiu %arg2, %arg2 : i32
%41 = remiu %i, %i : i32
// CHECK: %{{[0-9]+}} = remiu %arg3, %arg3 : index
%42 = remiu %idx, %idx : index
// CHECK: %{{[0-9]+}} = remiu %cst_5, %cst_5 : vector<42xi32>
%43 = remiu %vci32, %vci32 : vector<42 x i32>
// CHECK: %{{[0-9]+}} = remiu %cst_4, %cst_4 : tensor<42xi32>
%44 = remiu %tci32, %tci32 : tensor<42 x i32>
// CHECK: %{{[0-9]+}} = remiu %arg2, %arg2 : i32
%45 = "std.remiu"(%i, %i) : (i32, i32) -> i32
// CHECK: %{{[0-9]+}} = divf %arg1, %arg1 : f32
%46 = "std.divf"(%f, %f) : (f32,f32) -> f32
// CHECK: %{{[0-9]+}} = divf %arg1, %arg1 : f32
%47 = divf %f, %f : f32
// CHECK: %{{[0-9]+}} = divf %arg0, %arg0 : tensor<4x4x?xf32>
%48 = divf %t, %t : tensor<4x4x?xf32>
// CHECK: %{{[0-9]+}} = remf %arg1, %arg1 : f32
%49 = "std.remf"(%f, %f) : (f32,f32) -> f32
// CHECK: %{{[0-9]+}} = remf %arg1, %arg1 : f32
%50 = remf %f, %f : f32
// CHECK: %{{[0-9]+}} = remf %arg0, %arg0 : tensor<4x4x?xf32>
%51 = remf %t, %t : tensor<4x4x?xf32>
// CHECK: %{{[0-9]+}} = and %arg2, %arg2 : i32
%52 = "std.and"(%i, %i) : (i32,i32) -> i32
// CHECK: %{{[0-9]+}} = and %arg2, %arg2 : i32
%53 = and %i, %i : i32
// CHECK: %{{[0-9]+}} = and %cst_5, %cst_5 : vector<42xi32>
%54 = std.and %vci32, %vci32 : vector<42 x i32>
// CHECK: %{{[0-9]+}} = and %cst_4, %cst_4 : tensor<42xi32>
%55 = and %tci32, %tci32 : tensor<42 x i32>
// CHECK: %{{[0-9]+}} = or %arg2, %arg2 : i32
%56 = "std.or"(%i, %i) : (i32,i32) -> i32
// CHECK: %{{[0-9]+}} = or %arg2, %arg2 : i32
%57 = or %i, %i : i32
// CHECK: %{{[0-9]+}} = or %cst_5, %cst_5 : vector<42xi32>
%58 = std.or %vci32, %vci32 : vector<42 x i32>
// CHECK: %{{[0-9]+}} = or %cst_4, %cst_4 : tensor<42xi32>
%59 = or %tci32, %tci32 : tensor<42 x i32>
// CHECK: %{{[0-9]+}} = xor %arg2, %arg2 : i32
%60 = "std.xor"(%i, %i) : (i32,i32) -> i32
// CHECK: %{{[0-9]+}} = xor %arg2, %arg2 : i32
%61 = xor %i, %i : i32
// CHECK: %{{[0-9]+}} = xor %cst_5, %cst_5 : vector<42xi32>
%62 = std.xor %vci32, %vci32 : vector<42 x i32>
// CHECK: %{{[0-9]+}} = xor %cst_4, %cst_4 : tensor<42xi32>
%63 = xor %tci32, %tci32 : tensor<42 x i32>
%64 = constant dense<0.> : vector<4 x f32>
%tcf32 = constant dense<0.> : tensor<42 x f32>
%vcf32 = constant dense<0.> : vector<4 x f32>
// CHECK: %{{[0-9]+}} = cmpf "ogt", %{{[0-9]+}}, %{{[0-9]+}} : f32
%65 = cmpf "ogt", %f3, %f4 : f32
// Predicate 0 means ordered equality comparison.
// CHECK: %{{[0-9]+}} = cmpf "oeq", %{{[0-9]+}}, %{{[0-9]+}} : f32
%66 = "std.cmpf"(%f3, %f4) {predicate = 1} : (f32, f32) -> i1
// CHECK: %{{[0-9]+}} = cmpf "olt", %cst_8, %cst_8 : vector<4xf32>
%67 = cmpf "olt", %vcf32, %vcf32 : vector<4 x f32>
// CHECK: %{{[0-9]+}} = cmpf "oeq", %cst_8, %cst_8 : vector<4xf32>
%68 = "std.cmpf"(%vcf32, %vcf32) {predicate = 1} : (vector<4 x f32>, vector<4 x f32>) -> vector<4 x i1>
// CHECK: %{{[0-9]+}} = cmpf "oeq", %cst_7, %cst_7 : tensor<42xf32>
%69 = cmpf "oeq", %tcf32, %tcf32 : tensor<42 x f32>
// CHECK: %{{[0-9]+}} = cmpf "oeq", %cst_8, %cst_8 : vector<4xf32>
%70 = cmpf "oeq", %vcf32, %vcf32 : vector<4 x f32>
// CHECK: %{{[0-9]+}} = rank %arg0 : tensor<4x4x?xf32>
%71 = "std.rank"(%t) : (tensor<4x4x?xf32>) -> index
// CHECK: %{{[0-9]+}} = rank %arg0 : tensor<4x4x?xf32>
%72 = rank %t : tensor<4x4x?xf32>
// CHECK: = constant unit
%73 = constant unit
// CHECK: constant true
%74 = constant true
// CHECK: constant false
%75 = constant false
// CHECK: = index_cast {{.*}} : index to i64
%76 = index_cast %idx : index to i64
// CHECK: = index_cast {{.*}} : i32 to index
%77 = index_cast %i : i32 to index
return
}
// CHECK-LABEL: func @affine_apply() {
func @affine_apply() {
%i = "std.constant"() {value = 0: index} : () -> index
%j = "std.constant"() {value = 1: index} : () -> index
// CHECK: affine.apply #map0(%c0)
%a = "affine.apply" (%i) { map = (d0) -> (d0 + 1) } :
(index) -> (index)
// CHECK: affine.apply #map1()[%c0]
%b = affine.apply ()[x] -> (x+1)()[%i]
return
}
// CHECK-LABEL: func @load_store
func @load_store(memref<4x4xi32>, index) {
^bb0(%0: memref<4x4xi32>, %1: index):
// CHECK: %0 = load %arg0[%arg1, %arg1] : memref<4x4xi32>
%2 = "std.load"(%0, %1, %1) : (memref<4x4xi32>, index, index)->i32
// CHECK: %1 = load %arg0[%arg1, %arg1] : memref<4x4xi32>
%3 = load %0[%1, %1] : memref<4x4xi32>
return
}
// CHECK-LABEL: func @return_op(%arg0: i32) -> i32 {
func @return_op(%a : i32) -> i32 {
// CHECK: return %arg0 : i32
"std.return" (%a) : (i32)->()
}
// CHECK-LABEL: func @calls(%arg0: i32) {
func @calls(%arg0: i32) {
// CHECK: %0 = call @return_op(%arg0) : (i32) -> i32
%x = call @return_op(%arg0) : (i32) -> i32
// CHECK: %1 = call @return_op(%0) : (i32) -> i32
%y = call @return_op(%x) : (i32) -> i32
// CHECK: %2 = call @return_op(%0) : (i32) -> i32
%z = "std.call"(%x) {callee = @return_op} : (i32) -> i32
// CHECK: %f = constant @affine_apply : () -> ()
%f = constant @affine_apply : () -> ()
// CHECK: call_indirect %f() : () -> ()
call_indirect %f() : () -> ()
// CHECK: %f_0 = constant @return_op : (i32) -> i32
%f_0 = constant @return_op : (i32) -> i32
// CHECK: %3 = call_indirect %f_0(%arg0) : (i32) -> i32
%2 = call_indirect %f_0(%arg0) : (i32) -> i32
// CHECK: %4 = call_indirect %f_0(%arg0) : (i32) -> i32
%3 = "std.call_indirect"(%f_0, %arg0) : ((i32) -> i32, i32) -> i32
return
}
// CHECK-LABEL: func @extract_element(%arg0: tensor<*xi32>, %arg1: tensor<4x4xf32>) -> i32 {
func @extract_element(%arg0: tensor<*xi32>, %arg1 : tensor<4x4xf32>) -> i32 {
%c0 = "std.constant"() {value = 0: index} : () -> index
// CHECK: %0 = extract_element %arg0[%c0, %c0, %c0, %c0] : tensor<*xi32>
%0 = extract_element %arg0[%c0, %c0, %c0, %c0] : tensor<*xi32>
// CHECK: %1 = extract_element %arg1[%c0, %c0] : tensor<4x4xf32>
%1 = extract_element %arg1[%c0, %c0] : tensor<4x4xf32>
return %0 : i32
}
// CHECK-LABEL: func @tensor_cast(%arg0
func @tensor_cast(%arg0: tensor<*xf32>, %arg1 : tensor<4x4xf32>, %arg2: tensor<?x?xf32>) {
// CHECK: %0 = tensor_cast %arg0 : tensor<*xf32> to tensor<?x?xf32>
%0 = tensor_cast %arg0 : tensor<*xf32> to tensor<?x?xf32>
// CHECK: %1 = tensor_cast %arg1 : tensor<4x4xf32> to tensor<*xf32>
%1 = tensor_cast %arg1 : tensor<4x4xf32> to tensor<*xf32>
// CHECK: %2 = tensor_cast %arg2 : tensor<?x?xf32> to tensor<4x?xf32>
%2 = tensor_cast %arg2 : tensor<?x?xf32> to tensor<4x?xf32>
// CHECK: %3 = tensor_cast %2 : tensor<4x?xf32> to tensor<?x?xf32>
%3 = tensor_cast %2 : tensor<4x?xf32> to tensor<?x?xf32>
return
}
// CHECK-LABEL: func @memref_cast(%arg0
func @memref_cast(%arg0: memref<4xf32>, %arg1 : memref<?xf32>) {
// CHECK: %0 = memref_cast %arg0 : memref<4xf32> to memref<?xf32>
%0 = memref_cast %arg0 : memref<4xf32> to memref<?xf32>
// CHECK: %1 = memref_cast %arg1 : memref<?xf32> to memref<4xf32>
%1 = memref_cast %arg1 : memref<?xf32> to memref<4xf32>
return
}
// CHECK-LABEL: func @test_dimop(%arg0
func @test_dimop(%arg0: tensor<4x4x?xf32>) {
// CHECK: %0 = dim %arg0, 2 : tensor<4x4x?xf32>
%0 = dim %arg0, 2 : tensor<4x4x?xf32>
// use dim as an affine_int to ensure type correctness
%1 = affine.apply (d0) -> (d0)(%0)
return
}
[MLIR] Add VectorTransferOps This CL implements and uses VectorTransferOps in lieu of the former custom call op. Tests are updated accordingly. VectorTransferOps come in 2 flavors: VectorTransferReadOp and VectorTransferWriteOp. VectorTransferOps can be thought of as a backend-independent pseudo op/library call that needs to be legalized to MLIR (whiteboxed) before it can be lowered to backend-dependent IR. Note that the current implementation does not yet support a real permutation map. Proper support will come in a followup CL. VectorTransferReadOp ==================== VectorTransferReadOp performs a blocking read from a scalar memref location into a super-vector of the same elemental type. This operation is called 'read' by opposition to 'load' because the super-vector granularity is generally not representable with a single hardware register. As a consequence, memory transfers will generally be required when lowering VectorTransferReadOp. A VectorTransferReadOp is thus a mid-level abstraction that supports super-vectorization with non-effecting padding for full-tile only code. A vector transfer read has semantics similar to a vector load, with additional support for: 1. an optional value of the elemental type of the MemRef. This value supports non-effecting padding and is inserted in places where the vector read exceeds the MemRef bounds. If the value is not specified, the access is statically guaranteed to be within bounds; 2. an attribute of type AffineMap to specify a slice of the original MemRef access and its transposition into the super-vector shape. The permutation_map is an unbounded AffineMap that must represent a permutation from the MemRef dim space projected onto the vector dim space. Example: ```mlir %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32> ... %val = `ssa-value` : f32 // let %i, %j, %k, %l be ssa-values of type index %v0 = vector_transfer_read %src, %i, %j, %k, %l {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (memref<?x?x?x?xf32>, index, index, index, index) -> vector<16x32x64xf32> %v1 = vector_transfer_read %src, %i, %j, %k, %l, %val {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (memref<?x?x?x?xf32>, index, index, index, index, f32) -> vector<16x32x64xf32> ``` VectorTransferWriteOp ===================== VectorTransferWriteOp performs a blocking write from a super-vector to a scalar memref of the same elemental type. This operation is called 'write' by opposition to 'store' because the super-vector granularity is generally not representable with a single hardware register. As a consequence, memory transfers will generally be required when lowering VectorTransferWriteOp. A VectorTransferWriteOp is thus a mid-level abstraction that supports super-vectorization with non-effecting padding for full-tile only code. A vector transfer write has semantics similar to a vector store, with additional support for handling out-of-bounds situations. Example: ```mlir %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>. %val = `ssa-value` : vector<16x32x64xf32> // let %i, %j, %k, %l be ssa-values of type index vector_transfer_write %val, %src, %i, %j, %k, %l {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (vector<16x32x64xf32>, memref<?x?x?x?xf32>, index, index, index, index) ``` PiperOrigin-RevId: 223873234
2018-12-04 07:21:27 +08:00
// CHECK-LABEL: func @test_vector.transfer_ops(%arg0
func @test_vector.transfer_ops(%arg0: memref<?x?xf32>) {
[MLIR] Add VectorTransferOps This CL implements and uses VectorTransferOps in lieu of the former custom call op. Tests are updated accordingly. VectorTransferOps come in 2 flavors: VectorTransferReadOp and VectorTransferWriteOp. VectorTransferOps can be thought of as a backend-independent pseudo op/library call that needs to be legalized to MLIR (whiteboxed) before it can be lowered to backend-dependent IR. Note that the current implementation does not yet support a real permutation map. Proper support will come in a followup CL. VectorTransferReadOp ==================== VectorTransferReadOp performs a blocking read from a scalar memref location into a super-vector of the same elemental type. This operation is called 'read' by opposition to 'load' because the super-vector granularity is generally not representable with a single hardware register. As a consequence, memory transfers will generally be required when lowering VectorTransferReadOp. A VectorTransferReadOp is thus a mid-level abstraction that supports super-vectorization with non-effecting padding for full-tile only code. A vector transfer read has semantics similar to a vector load, with additional support for: 1. an optional value of the elemental type of the MemRef. This value supports non-effecting padding and is inserted in places where the vector read exceeds the MemRef bounds. If the value is not specified, the access is statically guaranteed to be within bounds; 2. an attribute of type AffineMap to specify a slice of the original MemRef access and its transposition into the super-vector shape. The permutation_map is an unbounded AffineMap that must represent a permutation from the MemRef dim space projected onto the vector dim space. Example: ```mlir %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32> ... %val = `ssa-value` : f32 // let %i, %j, %k, %l be ssa-values of type index %v0 = vector_transfer_read %src, %i, %j, %k, %l {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (memref<?x?x?x?xf32>, index, index, index, index) -> vector<16x32x64xf32> %v1 = vector_transfer_read %src, %i, %j, %k, %l, %val {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (memref<?x?x?x?xf32>, index, index, index, index, f32) -> vector<16x32x64xf32> ``` VectorTransferWriteOp ===================== VectorTransferWriteOp performs a blocking write from a super-vector to a scalar memref of the same elemental type. This operation is called 'write' by opposition to 'store' because the super-vector granularity is generally not representable with a single hardware register. As a consequence, memory transfers will generally be required when lowering VectorTransferWriteOp. A VectorTransferWriteOp is thus a mid-level abstraction that supports super-vectorization with non-effecting padding for full-tile only code. A vector transfer write has semantics similar to a vector store, with additional support for handling out-of-bounds situations. Example: ```mlir %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>. %val = `ssa-value` : vector<16x32x64xf32> // let %i, %j, %k, %l be ssa-values of type index vector_transfer_write %val, %src, %i, %j, %k, %l {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (vector<16x32x64xf32>, memref<?x?x?x?xf32>, index, index, index, index) ``` PiperOrigin-RevId: 223873234
2018-12-04 07:21:27 +08:00
%c3 = constant 3 : index
%cst = constant 3.0 : f32
// CHECK: %0 = vector.transfer_read %arg0[%c3, %c3] {permutation_map = #[[map_proj_d0d1_d0]]} : memref<?x?xf32>, vector<128xf32>
%0 = vector.transfer_read %arg0[%c3, %c3] {permutation_map = (d0, d1)->(d0)} : memref<?x?xf32>, vector<128xf32>
// CHECK: %1 = vector.transfer_read %arg0[%c3, %c3] {permutation_map = #[[map_proj_d0d1_d1d0]]} : memref<?x?xf32>, vector<3x7xf32>
%1 = vector.transfer_read %arg0[%c3, %c3] {permutation_map = (d0, d1)->(d1, d0)} : memref<?x?xf32>, vector<3x7xf32>
// CHECK: %2 = vector.transfer_read %arg0[%c3, %c3], (%cst) {permutation_map = #[[map_proj_d0d1_d0]]} : memref<?x?xf32>, vector<128xf32>
%2 = vector.transfer_read %arg0[%c3, %c3], (%cst) {permutation_map = (d0, d1)->(d0)} : memref<?x?xf32>, vector<128xf32>
// CHECK: %3 = vector.transfer_read %arg0[%c3, %c3], (%cst) {permutation_map = #[[map_proj_d0d1_d1]]} : memref<?x?xf32>, vector<128xf32>
%3 = vector.transfer_read %arg0[%c3, %c3], (%cst) {permutation_map = (d0, d1)->(d1)} : memref<?x?xf32>, vector<128xf32>
[MLIR] Add VectorTransferOps This CL implements and uses VectorTransferOps in lieu of the former custom call op. Tests are updated accordingly. VectorTransferOps come in 2 flavors: VectorTransferReadOp and VectorTransferWriteOp. VectorTransferOps can be thought of as a backend-independent pseudo op/library call that needs to be legalized to MLIR (whiteboxed) before it can be lowered to backend-dependent IR. Note that the current implementation does not yet support a real permutation map. Proper support will come in a followup CL. VectorTransferReadOp ==================== VectorTransferReadOp performs a blocking read from a scalar memref location into a super-vector of the same elemental type. This operation is called 'read' by opposition to 'load' because the super-vector granularity is generally not representable with a single hardware register. As a consequence, memory transfers will generally be required when lowering VectorTransferReadOp. A VectorTransferReadOp is thus a mid-level abstraction that supports super-vectorization with non-effecting padding for full-tile only code. A vector transfer read has semantics similar to a vector load, with additional support for: 1. an optional value of the elemental type of the MemRef. This value supports non-effecting padding and is inserted in places where the vector read exceeds the MemRef bounds. If the value is not specified, the access is statically guaranteed to be within bounds; 2. an attribute of type AffineMap to specify a slice of the original MemRef access and its transposition into the super-vector shape. The permutation_map is an unbounded AffineMap that must represent a permutation from the MemRef dim space projected onto the vector dim space. Example: ```mlir %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32> ... %val = `ssa-value` : f32 // let %i, %j, %k, %l be ssa-values of type index %v0 = vector_transfer_read %src, %i, %j, %k, %l {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (memref<?x?x?x?xf32>, index, index, index, index) -> vector<16x32x64xf32> %v1 = vector_transfer_read %src, %i, %j, %k, %l, %val {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (memref<?x?x?x?xf32>, index, index, index, index, f32) -> vector<16x32x64xf32> ``` VectorTransferWriteOp ===================== VectorTransferWriteOp performs a blocking write from a super-vector to a scalar memref of the same elemental type. This operation is called 'write' by opposition to 'store' because the super-vector granularity is generally not representable with a single hardware register. As a consequence, memory transfers will generally be required when lowering VectorTransferWriteOp. A VectorTransferWriteOp is thus a mid-level abstraction that supports super-vectorization with non-effecting padding for full-tile only code. A vector transfer write has semantics similar to a vector store, with additional support for handling out-of-bounds situations. Example: ```mlir %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>. %val = `ssa-value` : vector<16x32x64xf32> // let %i, %j, %k, %l be ssa-values of type index vector_transfer_write %val, %src, %i, %j, %k, %l {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (vector<16x32x64xf32>, memref<?x?x?x?xf32>, index, index, index, index) ``` PiperOrigin-RevId: 223873234
2018-12-04 07:21:27 +08:00
//
// CHECK: vector.transfer_write %0, %arg0[%c3, %c3] {permutation_map = #[[map_proj_d0d1_d0]]} : vector<128xf32>, memref<?x?xf32>
vector.transfer_write %0, %arg0[%c3, %c3] {permutation_map = (d0, d1)->(d0)} : vector<128xf32>, memref<?x?xf32>
// CHECK: vector.transfer_write %1, %arg0[%c3, %c3] {permutation_map = #[[map_proj_d0d1_d1d0]]} : vector<3x7xf32>, memref<?x?xf32>
vector.transfer_write %1, %arg0[%c3, %c3] {permutation_map = (d0, d1)->(d1, d0)} : vector<3x7xf32>, memref<?x?xf32>
[MLIR] Add VectorTransferOps This CL implements and uses VectorTransferOps in lieu of the former custom call op. Tests are updated accordingly. VectorTransferOps come in 2 flavors: VectorTransferReadOp and VectorTransferWriteOp. VectorTransferOps can be thought of as a backend-independent pseudo op/library call that needs to be legalized to MLIR (whiteboxed) before it can be lowered to backend-dependent IR. Note that the current implementation does not yet support a real permutation map. Proper support will come in a followup CL. VectorTransferReadOp ==================== VectorTransferReadOp performs a blocking read from a scalar memref location into a super-vector of the same elemental type. This operation is called 'read' by opposition to 'load' because the super-vector granularity is generally not representable with a single hardware register. As a consequence, memory transfers will generally be required when lowering VectorTransferReadOp. A VectorTransferReadOp is thus a mid-level abstraction that supports super-vectorization with non-effecting padding for full-tile only code. A vector transfer read has semantics similar to a vector load, with additional support for: 1. an optional value of the elemental type of the MemRef. This value supports non-effecting padding and is inserted in places where the vector read exceeds the MemRef bounds. If the value is not specified, the access is statically guaranteed to be within bounds; 2. an attribute of type AffineMap to specify a slice of the original MemRef access and its transposition into the super-vector shape. The permutation_map is an unbounded AffineMap that must represent a permutation from the MemRef dim space projected onto the vector dim space. Example: ```mlir %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32> ... %val = `ssa-value` : f32 // let %i, %j, %k, %l be ssa-values of type index %v0 = vector_transfer_read %src, %i, %j, %k, %l {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (memref<?x?x?x?xf32>, index, index, index, index) -> vector<16x32x64xf32> %v1 = vector_transfer_read %src, %i, %j, %k, %l, %val {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (memref<?x?x?x?xf32>, index, index, index, index, f32) -> vector<16x32x64xf32> ``` VectorTransferWriteOp ===================== VectorTransferWriteOp performs a blocking write from a super-vector to a scalar memref of the same elemental type. This operation is called 'write' by opposition to 'store' because the super-vector granularity is generally not representable with a single hardware register. As a consequence, memory transfers will generally be required when lowering VectorTransferWriteOp. A VectorTransferWriteOp is thus a mid-level abstraction that supports super-vectorization with non-effecting padding for full-tile only code. A vector transfer write has semantics similar to a vector store, with additional support for handling out-of-bounds situations. Example: ```mlir %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>. %val = `ssa-value` : vector<16x32x64xf32> // let %i, %j, %k, %l be ssa-values of type index vector_transfer_write %val, %src, %i, %j, %k, %l {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} : (vector<16x32x64xf32>, memref<?x?x?x?xf32>, index, index, index, index) ``` PiperOrigin-RevId: 223873234
2018-12-04 07:21:27 +08:00
return
}