llvm-project/lld/ELF/ICF.cpp

357 lines
13 KiB
C++
Raw Normal View History

//===- ICF.cpp ------------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Identical Code Folding is a feature to merge sections not by name (which
// is regular comdat handling) but by contents. If two non-writable sections
// have the same data, relocations, attributes, etc., then the two
// are considered identical and merged by the linker. This optimization
// makes outputs smaller.
//
// ICF is theoretically a problem of reducing graphs by merging as many
// identical subgraphs as possible if we consider sections as vertices and
// relocations as edges. It may sound simple, but it is a bit more
// complicated than you might think. The order of processing sections
// matters because merging two sections can make other sections, whose
// relocations now point to the same section, mergeable. Graphs may contain
// cycles. We need a sophisticated algorithm to do this properly and
// efficiently.
//
// What we do in this file is this. We split sections into groups. Sections
// in the same group are considered identical.
//
// We begin by optimistically putting all sections into a single equivalence
// class. Then we apply a series of checks that split this initial
// equivalence class into more and more refined equivalence classes based on
// the properties by which a section can be distinguished.
//
// We begin by checking that the section contents and flags are the
// same. This only needs to be done once since these properties don't depend
// on the current equivalence class assignment.
//
// Then we split the equivalence classes based on checking that their
// relocations are the same, where relocation targets are compared by their
// equivalence class, not the concrete section. This may need to be done
// multiple times because as the equivalence classes are refined, two
// sections that had a relocation target in the same equivalence class may
// now target different equivalence classes, and hence these two sections
// must be put in different equivalence classes (whereas in the previous
// iteration they were not since the relocation target was the same.)
//
// Our algorithm is smart enough to merge the following mutually-recursive
// functions.
//
// void foo() { bar(); }
// void bar() { foo(); }
//
// This algorithm is so-called "optimistic" algorithm described in
// http://research.google.com/pubs/pub36912.html. (Note that what GNU
// gold implemented is different from the optimistic algorithm.)
//
//===----------------------------------------------------------------------===//
#include "ICF.h"
#include "Config.h"
#include "SymbolTable.h"
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
#include "lld/Core/Parallel.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/ELF.h"
#include <algorithm>
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
#include <mutex>
using namespace lld;
2016-02-28 08:25:54 +08:00
using namespace lld::elf;
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
namespace {
struct Range {
size_t Begin;
size_t End;
};
template <class ELFT> class ICF {
public:
void run();
private:
void segregate(Range *R, bool Constant);
template <class RelTy>
bool constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB);
template <class RelTy>
bool variableEq(const InputSection<ELFT> *A, ArrayRef<RelTy> RelsA,
const InputSection<ELFT> *B, ArrayRef<RelTy> RelsB);
bool equalsConstant(const InputSection<ELFT> *A, const InputSection<ELFT> *B);
bool equalsVariable(const InputSection<ELFT> *A, const InputSection<ELFT> *B);
std::vector<InputSection<ELFT> *> Sections;
std::vector<Range> Ranges;
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
std::mutex Mu;
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
uint32_t NextId = 1;
int Cnt = 0;
};
}
// Returns a hash value for S. Note that the information about
// relocation targets is not included in the hash value.
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
template <class ELFT> static uint32_t getHash(InputSection<ELFT> *S) {
return hash_combine(S->Flags, S->getSize(), S->NumRelocations);
}
// Returns true if section S is subject of ICF.
template <class ELFT> static bool isEligible(InputSection<ELFT> *S) {
// .init and .fini contains instructions that must be executed to
// initialize and finalize the process. They cannot and should not
// be merged.
return S->Live && (S->Flags & SHF_ALLOC) && !(S->Flags & SHF_WRITE) &&
S->Name != ".init" && S->Name != ".fini";
}
// Before calling this function, all sections in range R must have the
// same group ID.
template <class ELFT> void ICF<ELFT>::segregate(Range *R, bool Constant) {
// This loop rearranges sections in range R so that all sections
// that are equal in terms of equals{Constant,Variable} are contiguous
// in Sections vector.
//
// The algorithm is quadratic in the worst case, but that is not an
// issue in practice because the number of the distinct sections in
// [R.Begin, R.End] is usually very small.
while (R->End - R->Begin > 1) {
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
size_t Begin = R->Begin;
size_t End = R->End;
// Divide range R into two. Let Mid be the start index of the
// second group.
auto Bound = std::stable_partition(
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
Sections.begin() + Begin + 1, Sections.begin() + End,
[&](InputSection<ELFT> *S) {
if (Constant)
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
return equalsConstant(Sections[Begin], S);
return equalsVariable(Sections[Begin], S);
});
size_t Mid = Bound - Sections.begin();
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
if (Mid == End)
return;
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
// Now we split [Begin, End) into [Begin, Mid) and [Mid, End).
uint32_t Id;
Range *NewRange;
{
std::lock_guard<std::mutex> Lock(Mu);
Ranges.push_back({Mid, End});
NewRange = &Ranges.back();
Id = NextId++;
}
R->End = Mid;
// Update GroupIds for the new group members.
//
// Note on GroupId[0] and GroupId[1]: we have two storages for
// group IDs. At the beginning of each iteration of the main loop,
// both have the same ID. GroupId[0] contains the current ID, and
// GroupId[1] contains the next ID which will be used in the next
// iteration.
//
// Recall that other threads may be working on other ranges. They
// may be reading group IDs that we are about to update. We cannot
// update group IDs in place because it breaks the invariance that
// all sections in the same group must have the same ID. In other
// words, the following for loop is not an atomic operation, and
// that is observable from other threads.
//
// By writing new IDs to write-only places, we can keep the invariance.
for (size_t I = Mid; I < End; ++I)
Sections[I]->GroupId[(Cnt + 1) % 2] = Id;
R = NewRange;
}
}
// Compare two lists of relocations.
template <class ELFT>
template <class RelTy>
bool ICF<ELFT>::constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB) {
auto Eq = [](const RelTy &A, const RelTy &B) {
return A.r_offset == B.r_offset &&
A.getType(Config->Mips64EL) == B.getType(Config->Mips64EL) &&
getAddend<ELFT>(A) == getAddend<ELFT>(B);
};
return RelsA.size() == RelsB.size() &&
std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
}
// Compare "non-moving" part of two InputSections, namely everything
// except relocation targets.
template <class ELFT>
bool ICF<ELFT>::equalsConstant(const InputSection<ELFT> *A,
const InputSection<ELFT> *B) {
if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags ||
A->getSize() != B->getSize() || A->Data != B->Data)
return false;
if (A->AreRelocsRela)
return constantEq(A->relas(), B->relas());
return constantEq(A->rels(), B->rels());
}
2016-11-21 07:15:54 +08:00
// Compare two lists of relocations. Returns true if all pairs of
// relocations point to the same section in terms of ICF.
template <class ELFT>
template <class RelTy>
bool ICF<ELFT>::variableEq(const InputSection<ELFT> *A, ArrayRef<RelTy> RelsA,
const InputSection<ELFT> *B, ArrayRef<RelTy> RelsB) {
auto Eq = [&](const RelTy &RA, const RelTy &RB) {
SymbolBody &SA = A->getFile()->getRelocTargetSym(RA);
SymbolBody &SB = B->getFile()->getRelocTargetSym(RB);
if (&SA == &SB)
return true;
// Or, the symbols should be pointing to the same section
// in terms of the group ID.
auto *DA = dyn_cast<DefinedRegular<ELFT>>(&SA);
auto *DB = dyn_cast<DefinedRegular<ELFT>>(&SB);
if (!DA || !DB)
return false;
if (DA->Value != DB->Value)
return false;
auto *X = dyn_cast<InputSection<ELFT>>(DA->Section);
auto *Y = dyn_cast<InputSection<ELFT>>(DB->Section);
if (!X || !Y)
return false;
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
if (X->GroupId[Cnt % 2] == 0)
return false;
// Performance hack for single-thread. If no other threads are
// running, we can safely read next GroupIDs as there is no race
// condition. This optimization may reduce the number of
// iterations of the main loop because we can see results of the
// same iteration.
size_t Idx = (Config->Threads ? Cnt : Cnt + 1) % 2;
return X->GroupId[Idx] == Y->GroupId[Idx];
};
return std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
}
// Compare "moving" part of two InputSections, namely relocation targets.
template <class ELFT>
bool ICF<ELFT>::equalsVariable(const InputSection<ELFT> *A,
const InputSection<ELFT> *B) {
if (A->AreRelocsRela)
return variableEq(A, A->relas(), B, B->relas());
return variableEq(A, A->rels(), B, B->rels());
}
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
template <class IterTy, class FuncTy>
static void foreach(IterTy Begin, IterTy End, FuncTy Fn) {
if (Config->Threads)
parallel_for_each(Begin, End, Fn);
else
std::for_each(Begin, End, Fn);
}
// The main function of ICF.
template <class ELFT> void ICF<ELFT>::run() {
// Collect sections to merge.
for (InputSectionBase<ELFT> *Sec : Symtab<ELFT>::X->Sections)
if (auto *S = dyn_cast<InputSection<ELFT>>(Sec))
if (isEligible(S))
Sections.push_back(S);
// Initially, we use hash values as section group IDs. Therefore,
// if two sections have the same ID, they are likely (but not
// guaranteed) to have the same static contents in terms of ICF.
for (InputSection<ELFT> *S : Sections)
// Set MSB to 1 to avoid collisions with non-hash IDs.
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
S->GroupId[0] = S->GroupId[1] = getHash(S) | (1 << 31);
2016-11-21 07:15:54 +08:00
// From now on, sections in Sections are ordered so that sections in
// the same group are consecutive in the vector.
std::stable_sort(Sections.begin(), Sections.end(),
[](InputSection<ELFT> *A, InputSection<ELFT> *B) {
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
if (A->GroupId[0] != B->GroupId[0])
return A->GroupId[0] < B->GroupId[0];
// Within a group, put the highest alignment
// requirement first, so that's the one we'll keep.
return B->Alignment < A->Alignment;
});
// Split sections into groups by ID. And then we are going to
// split groups into more and more smaller groups.
// Note that we do not add single element groups because they
// are already the smallest.
Ranges.reserve(Sections.size());
for (size_t I = 0, E = Sections.size(); I < E - 1;) {
// Let J be the first index whose element has a different ID.
size_t J = I + 1;
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
while (J < E && Sections[I]->GroupId[0] == Sections[J]->GroupId[0])
++J;
if (J - I > 1)
Ranges.push_back({I, J});
I = J;
}
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
// This function copies new GroupIds from former write-only space to
// former read-only space, so that we can flip GroupId[0] and GroupId[1].
// Note that new GroupIds are always be added to end of Ranges.
auto Copy = [&](Range &R) {
for (size_t I = R.Begin; I < R.End; ++I)
Sections[I]->GroupId[Cnt % 2] = Sections[I]->GroupId[(Cnt + 1) % 2];
};
// Compare static contents and assign unique IDs for each static content.
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
auto End = Ranges.end();
foreach(Ranges.begin(), End, [&](Range &R) { segregate(&R, true); });
foreach(End, Ranges.end(), Copy);
++Cnt;
// Split groups by comparing relocations until convergence is obtained.
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
for (;;) {
auto End = Ranges.end();
foreach(Ranges.begin(), End, [&](Range &R) { segregate(&R, false); });
foreach(End, Ranges.end(), Copy);
++Cnt;
Parallelize ICF to make LLD's ICF really fast. ICF is short for Identical Code Folding. It is a size optimization to identify two or more functions that happened to have the same contents to merges them. It usually reduces output size by a few percent. ICF is slow because it is computationally intensive process. I tried to paralellize it before but failed because I couldn't make a parallelized version produce consistent outputs. Although it didn't create broken executables, every invocation of the linker generated slightly different output, and I couldn't figure out why. I think I now understand what was going on, and also came up with a simple algorithm to fix it. So is this patch. The result is very exciting. Chromium for example has 780,662 input sections in which 20,774 are reducible by ICF. LLD previously took 7.980 seconds for ICF. Now it finishes in 1.065 seconds. As a result, LLD can now link a Chromium binary (output size 1.59 GB) in 10.28 seconds on my machine with ICF enabled. Compared to gold which takes 40.94 seconds to do the same thing, this is an amazing number. From here, I'll describe what we are doing for ICF, what was the previous problem, and what I did in this patch. In ICF, two sections are considered identical if they have the same section flags, section data, and relocations. Relocations are tricky, becuase two relocations are considered the same if they have the same relocation type, values, and if they point to the same section _in terms of ICF_. Here is an example. If foo and bar defined below are compiled to the same machine instructions, ICF can (and should) merge the two, although their relocations point to each other. void foo() { bar(); } void bar() { foo(); } This is not an easy problem to solve. What we are doing in LLD is some sort of coloring algorithm. We color non-identical sections using different colors repeatedly, and sections in the same color when the algorithm terminates are considered identical. Here is the details: 1. First, we color all sections using their hash values of section types, section contents, and numbers of relocations. At this moment, relocation targets are not taken into account. We just color sections that apparently differ in different colors. 2. Next, for each color C, we visit sections having color C to see if their relocations are the same. Relocations are considered equal if their targets have the same color. We then recolor sections that have different relocation targets in new colors. 3. If we recolor some section in step 2, relocations that were previously pointing to the same color targets may now be pointing to different colors. Therefore, repeat 2 until a convergence is obtained. Step 2 is a heavy operation. For Chromium, the first iteration of step 2 takes 2.882 seconds, and the second iteration takes 1.038 seconds, and in total it needs 23 iterations. Parallelizing step 1 is easy because we can color each section independently. This patch does that. Parallelizing step 2 is tricky. We could work on each color independently, but we cannot recolor sections in place, because it will break the invariance that two possibly-identical sections must have the same color at any moment. Consider sections S1, S2, S3, S4 in the same color C, where S1 and S2 are identical, S3 and S4 are identical, but S2 and S3 are not. Thread A is about to recolor S1 and S2 in C'. After thread A recolor S1 in C', but before recolor S2 in C', other thread B might observe S1 and S2. Then thread B will conclude that S1 and S2 are different, and it will split thread B's sections into smaller groups wrongly. Over- splitting doesn't produce broken results, but it loses a chance to merge some identical sections. That was the cause of indeterminism. To fix the problem, I made sections have two colors, namely current color and next color. At the beginning of each iteration, both colors are the same. Each thread reads from current color and writes to next color. In this way, we can avoid threads from reading partial results. After each iteration, we flip current and next. This is a very simple solution and is implemented in less than 50 lines of code. I tested this patch with Chromium and confirmed that this parallelized ICF produces the identical output as the non-parallelized one. Differential Revision: https://reviews.llvm.org/D27247 llvm-svn: 288373
2016-12-02 01:09:04 +08:00
if (End == Ranges.end())
break;
}
log("ICF needed " + Twine(Cnt) + " iterations");
// Merge sections in the same group.
for (Range R : Ranges) {
if (R.End - R.Begin == 1)
continue;
log("selected " + Sections[R.Begin]->Name);
for (size_t I = R.Begin + 1; I < R.End; ++I) {
log(" removed " + Sections[I]->Name);
Sections[R.Begin]->replace(Sections[I]);
}
}
}
// ICF entry point function.
template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
template void elf::doIcf<ELF32LE>();
template void elf::doIcf<ELF32BE>();
template void elf::doIcf<ELF64LE>();
template void elf::doIcf<ELF64BE>();