2016-07-21 06:06:41 +08:00
|
|
|
//===-- sanitizer_allocator_primary32.h -------------------------*- C++ -*-===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// Part of the Sanitizer Allocator.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SANITIZER_ALLOCATOR_H
|
|
|
|
#error This file must be included inside sanitizer_allocator.h
|
|
|
|
#endif
|
|
|
|
|
2016-08-23 08:30:43 +08:00
|
|
|
template<class SizeClassAllocator> struct SizeClassAllocator32LocalCache;
|
|
|
|
|
2016-07-21 06:06:41 +08:00
|
|
|
// SizeClassAllocator32 -- allocator for 32-bit address space.
|
|
|
|
// This allocator can theoretically be used on 64-bit arch, but there it is less
|
|
|
|
// efficient than SizeClassAllocator64.
|
|
|
|
//
|
|
|
|
// [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
|
|
|
|
// be returned by MmapOrDie().
|
|
|
|
//
|
|
|
|
// Region:
|
2017-06-22 08:02:37 +08:00
|
|
|
// a result of a single call to MmapAlignedOrDieOnFatalError(kRegionSize,
|
|
|
|
// kRegionSize).
|
2016-07-21 06:06:41 +08:00
|
|
|
// Since the regions are aligned by kRegionSize, there are exactly
|
|
|
|
// kNumPossibleRegions possible regions in the address space and so we keep
|
|
|
|
// a ByteMap possible_regions to store the size classes of each Region.
|
|
|
|
// 0 size class means the region is not used by the allocator.
|
|
|
|
//
|
|
|
|
// One Region is used to allocate chunks of a single size class.
|
|
|
|
// A Region looks like this:
|
|
|
|
// UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
|
|
|
|
//
|
|
|
|
// In order to avoid false sharing the objects of this class should be
|
|
|
|
// chache-line aligned.
|
2017-05-15 22:47:19 +08:00
|
|
|
|
|
|
|
struct SizeClassAllocator32FlagMasks { // Bit masks.
|
|
|
|
enum {
|
|
|
|
kRandomShuffleChunks = 1,
|
2017-08-28 23:20:02 +08:00
|
|
|
kUseSeparateSizeClassForBatch = 2,
|
2017-05-15 22:47:19 +08:00
|
|
|
};
|
|
|
|
};
|
|
|
|
|
|
|
|
template <class Params>
|
2016-07-21 06:06:41 +08:00
|
|
|
class SizeClassAllocator32 {
|
|
|
|
public:
|
Introduce `AddressSpaceView` template parameter to `SizeClassAllocator32`, `FlatByteMap`, and `TwoLevelByteMap`.
Summary:
This is a follow up patch to r346956 for the `SizeClassAllocator32`
allocator.
This patch makes `AddressSpaceView` a template parameter both to the
`ByteMap` implementations (but makes `LocalAddressSpaceView` the
default), some `AP32` implementations and is used in `SizeClassAllocator32`.
The actual changes to `ByteMap` implementations and
`SizeClassAllocator32` are very simple. However the patch is large
because it requires changing all the `AP32` definitions, and users of
those definitions.
For ASan and LSan we make `AP32` and `ByteMap` templateds type that take
a single `AddressSpaceView` argument. This has been done because we will
instantiate the allocator with a type that isn't `LocalAddressSpaceView`
in the future patches. For the allocators used in the other sanitizers
(i.e. HWAsan, MSan, Scudo, and TSan) use of `LocalAddressSpaceView` is
hard coded because we do not intend to instantiate the allocators with
any other type.
In the cases where untemplated types have become templated on a single
`AddressSpaceView` parameter (e.g. `PrimaryAllocator`) their name has
been changed to have a `ASVT` suffix (Address Space View Type) to
indicate they are templated. The only exception to this are the `AP32`
types due to the desire to keep the type name as short as possible.
In order to check that template is instantiated in the correct a way a
`static_assert(...)` has been added that checks that the
`AddressSpaceView` type used by `Params::ByteMap::AddressSpaceView` matches
the `Params::AddressSpaceView`. This uses the new `sanitizer_type_traits.h`
header.
rdar://problem/45284065
Reviewers: kcc, dvyukov, vitalybuka, cryptoad, eugenis, kubamracek, george.karpenkov
Subscribers: mgorny, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D54904
llvm-svn: 349138
2018-12-14 17:03:18 +08:00
|
|
|
using AddressSpaceView = typename Params::AddressSpaceView;
|
2017-05-15 22:47:19 +08:00
|
|
|
static const uptr kSpaceBeg = Params::kSpaceBeg;
|
|
|
|
static const u64 kSpaceSize = Params::kSpaceSize;
|
|
|
|
static const uptr kMetadataSize = Params::kMetadataSize;
|
|
|
|
typedef typename Params::SizeClassMap SizeClassMap;
|
|
|
|
static const uptr kRegionSizeLog = Params::kRegionSizeLog;
|
|
|
|
typedef typename Params::ByteMap ByteMap;
|
|
|
|
typedef typename Params::MapUnmapCallback MapUnmapCallback;
|
|
|
|
|
2017-08-28 23:20:02 +08:00
|
|
|
static const bool kRandomShuffleChunks = Params::kFlags &
|
|
|
|
SizeClassAllocator32FlagMasks::kRandomShuffleChunks;
|
|
|
|
static const bool kUseSeparateSizeClassForBatch = Params::kFlags &
|
|
|
|
SizeClassAllocator32FlagMasks::kUseSeparateSizeClassForBatch;
|
2017-05-15 22:47:19 +08:00
|
|
|
|
2016-08-06 09:24:11 +08:00
|
|
|
struct TransferBatch {
|
2016-08-10 07:30:22 +08:00
|
|
|
static const uptr kMaxNumCached = SizeClassMap::kMaxNumCachedHint - 2;
|
2018-05-04 03:14:07 +08:00
|
|
|
void SetFromArray(void *batch[], uptr count) {
|
2018-05-16 23:13:26 +08:00
|
|
|
DCHECK_LE(count, kMaxNumCached);
|
2016-08-06 09:24:11 +08:00
|
|
|
count_ = count;
|
|
|
|
for (uptr i = 0; i < count; i++)
|
|
|
|
batch_[i] = batch[i];
|
|
|
|
}
|
|
|
|
uptr Count() const { return count_; }
|
|
|
|
void Clear() { count_ = 0; }
|
|
|
|
void Add(void *ptr) {
|
|
|
|
batch_[count_++] = ptr;
|
2018-05-16 23:13:26 +08:00
|
|
|
DCHECK_LE(count_, kMaxNumCached);
|
2016-08-06 09:24:11 +08:00
|
|
|
}
|
2018-05-16 23:13:26 +08:00
|
|
|
void CopyToArray(void *to_batch[]) const {
|
2016-08-10 04:54:50 +08:00
|
|
|
for (uptr i = 0, n = Count(); i < n; i++)
|
|
|
|
to_batch[i] = batch_[i];
|
|
|
|
}
|
2016-08-10 07:30:22 +08:00
|
|
|
|
|
|
|
// How much memory do we need for a batch containing n elements.
|
|
|
|
static uptr AllocationSizeRequiredForNElements(uptr n) {
|
|
|
|
return sizeof(uptr) * 2 + sizeof(void *) * n;
|
|
|
|
}
|
[sanitizer] Size class map & local cache improvements
Summary:
- Reland rL324263, this time allowing for a compile-time decision as to whether
or not use the 32-bit division. A single test is using a class map covering
a maximum size greater than 4GB, this can be checked via the template
parameters, and allows SizeClassAllocator64PopulateFreeListOOM to pass;
- `MaxCachedHint` is always called on a class id for which we have already
computed the size, but we still recompute `Size(class_id)`. Change the
prototype of the function to work on sizes instead of class ids. This also
allows us to get rid of the `kBatchClassID` special case. Update the callers
accordingly;
- `InitCache` and `Drain` will start iterating at index 1: index 0 contents are
unused and can safely be left to be 0. Plus we do not pay the cost of going
through an `UNLIKELY` in `MaxCachedHint`, and touching memory that is
otherwise not used;
- `const` some variables in the areas modified;
- Remove an spurious extra line at the end of a file.
Reviewers: alekseyshl, tl0gic, dberris
Reviewed By: alekseyshl, dberris
Subscribers: dberris, kubamracek, delcypher, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D43088
llvm-svn: 324906
2018-02-13 00:59:17 +08:00
|
|
|
static uptr MaxCached(uptr size) {
|
|
|
|
return Min(kMaxNumCached, SizeClassMap::MaxCachedHint(size));
|
2016-08-10 07:30:22 +08:00
|
|
|
}
|
|
|
|
|
2016-08-06 09:24:11 +08:00
|
|
|
TransferBatch *next;
|
|
|
|
|
|
|
|
private:
|
|
|
|
uptr count_;
|
|
|
|
void *batch_[kMaxNumCached];
|
|
|
|
};
|
|
|
|
|
|
|
|
static const uptr kBatchSize = sizeof(TransferBatch);
|
|
|
|
COMPILER_CHECK((kBatchSize & (kBatchSize - 1)) == 0);
|
2017-08-28 23:20:02 +08:00
|
|
|
COMPILER_CHECK(kBatchSize == SizeClassMap::kMaxNumCachedHint * sizeof(uptr));
|
2016-08-06 09:24:11 +08:00
|
|
|
|
|
|
|
static uptr ClassIdToSize(uptr class_id) {
|
2017-08-28 23:20:02 +08:00
|
|
|
return (class_id == SizeClassMap::kBatchClassID) ?
|
|
|
|
kBatchSize : SizeClassMap::Size(class_id);
|
2016-08-06 09:24:11 +08:00
|
|
|
}
|
|
|
|
|
2017-05-15 22:47:19 +08:00
|
|
|
typedef SizeClassAllocator32<Params> ThisT;
|
2016-08-23 08:30:43 +08:00
|
|
|
typedef SizeClassAllocator32LocalCache<ThisT> AllocatorCache;
|
2016-07-21 06:06:41 +08:00
|
|
|
|
2016-11-29 08:22:50 +08:00
|
|
|
void Init(s32 release_to_os_interval_ms) {
|
Introduce `AddressSpaceView` template parameter to `SizeClassAllocator32`, `FlatByteMap`, and `TwoLevelByteMap`.
Summary:
This is a follow up patch to r346956 for the `SizeClassAllocator32`
allocator.
This patch makes `AddressSpaceView` a template parameter both to the
`ByteMap` implementations (but makes `LocalAddressSpaceView` the
default), some `AP32` implementations and is used in `SizeClassAllocator32`.
The actual changes to `ByteMap` implementations and
`SizeClassAllocator32` are very simple. However the patch is large
because it requires changing all the `AP32` definitions, and users of
those definitions.
For ASan and LSan we make `AP32` and `ByteMap` templateds type that take
a single `AddressSpaceView` argument. This has been done because we will
instantiate the allocator with a type that isn't `LocalAddressSpaceView`
in the future patches. For the allocators used in the other sanitizers
(i.e. HWAsan, MSan, Scudo, and TSan) use of `LocalAddressSpaceView` is
hard coded because we do not intend to instantiate the allocators with
any other type.
In the cases where untemplated types have become templated on a single
`AddressSpaceView` parameter (e.g. `PrimaryAllocator`) their name has
been changed to have a `ASVT` suffix (Address Space View Type) to
indicate they are templated. The only exception to this are the `AP32`
types due to the desire to keep the type name as short as possible.
In order to check that template is instantiated in the correct a way a
`static_assert(...)` has been added that checks that the
`AddressSpaceView` type used by `Params::ByteMap::AddressSpaceView` matches
the `Params::AddressSpaceView`. This uses the new `sanitizer_type_traits.h`
header.
rdar://problem/45284065
Reviewers: kcc, dvyukov, vitalybuka, cryptoad, eugenis, kubamracek, george.karpenkov
Subscribers: mgorny, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D54904
llvm-svn: 349138
2018-12-14 17:03:18 +08:00
|
|
|
static_assert(
|
|
|
|
is_same<typename ByteMap::AddressSpaceView, AddressSpaceView>::value,
|
|
|
|
"AddressSpaceView type mismatch");
|
2018-05-08 03:02:19 +08:00
|
|
|
possible_regions.Init();
|
2016-07-21 06:06:41 +08:00
|
|
|
internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
|
|
|
|
}
|
|
|
|
|
2016-11-29 08:22:50 +08:00
|
|
|
s32 ReleaseToOSIntervalMs() const {
|
|
|
|
return kReleaseToOSIntervalNever;
|
|
|
|
}
|
|
|
|
|
|
|
|
void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
|
|
|
|
// This is empty here. Currently only implemented in 64-bit allocator.
|
|
|
|
}
|
|
|
|
|
2017-10-24 01:12:07 +08:00
|
|
|
void ForceReleaseToOS() {
|
|
|
|
// Currently implemented in 64-bit allocator only.
|
|
|
|
}
|
|
|
|
|
2016-07-21 06:06:41 +08:00
|
|
|
void *MapWithCallback(uptr size) {
|
2018-04-14 03:21:27 +08:00
|
|
|
void *res = MmapOrDie(size, PrimaryAllocatorName);
|
2016-07-21 06:06:41 +08:00
|
|
|
MapUnmapCallback().OnMap((uptr)res, size);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
void UnmapWithCallback(uptr beg, uptr size) {
|
|
|
|
MapUnmapCallback().OnUnmap(beg, size);
|
|
|
|
UnmapOrDie(reinterpret_cast<void *>(beg), size);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool CanAllocate(uptr size, uptr alignment) {
|
|
|
|
return size <= SizeClassMap::kMaxSize &&
|
|
|
|
alignment <= SizeClassMap::kMaxSize;
|
|
|
|
}
|
|
|
|
|
|
|
|
void *GetMetaData(const void *p) {
|
|
|
|
CHECK(PointerIsMine(p));
|
|
|
|
uptr mem = reinterpret_cast<uptr>(p);
|
|
|
|
uptr beg = ComputeRegionBeg(mem);
|
2016-08-06 09:24:11 +08:00
|
|
|
uptr size = ClassIdToSize(GetSizeClass(p));
|
2016-07-21 06:06:41 +08:00
|
|
|
u32 offset = mem - beg;
|
|
|
|
uptr n = offset / (u32)size; // 32-bit division
|
|
|
|
uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
|
|
|
|
return reinterpret_cast<void*>(meta);
|
|
|
|
}
|
|
|
|
|
2016-08-06 09:24:11 +08:00
|
|
|
NOINLINE TransferBatch *AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
|
|
|
|
uptr class_id) {
|
2018-05-16 23:13:26 +08:00
|
|
|
DCHECK_LT(class_id, kNumClasses);
|
2016-07-21 06:06:41 +08:00
|
|
|
SizeClassInfo *sci = GetSizeClassInfo(class_id);
|
|
|
|
SpinMutexLock l(&sci->mutex);
|
[sanitizer] Size class map & local cache improvements
Summary:
- Reland rL324263, this time allowing for a compile-time decision as to whether
or not use the 32-bit division. A single test is using a class map covering
a maximum size greater than 4GB, this can be checked via the template
parameters, and allows SizeClassAllocator64PopulateFreeListOOM to pass;
- `MaxCachedHint` is always called on a class id for which we have already
computed the size, but we still recompute `Size(class_id)`. Change the
prototype of the function to work on sizes instead of class ids. This also
allows us to get rid of the `kBatchClassID` special case. Update the callers
accordingly;
- `InitCache` and `Drain` will start iterating at index 1: index 0 contents are
unused and can safely be left to be 0. Plus we do not pay the cost of going
through an `UNLIKELY` in `MaxCachedHint`, and touching memory that is
otherwise not used;
- `const` some variables in the areas modified;
- Remove an spurious extra line at the end of a file.
Reviewers: alekseyshl, tl0gic, dberris
Reviewed By: alekseyshl, dberris
Subscribers: dberris, kubamracek, delcypher, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D43088
llvm-svn: 324906
2018-02-13 00:59:17 +08:00
|
|
|
if (sci->free_list.empty()) {
|
|
|
|
if (UNLIKELY(!PopulateFreeList(stat, c, sci, class_id)))
|
|
|
|
return nullptr;
|
|
|
|
DCHECK(!sci->free_list.empty());
|
|
|
|
}
|
2016-08-06 09:24:11 +08:00
|
|
|
TransferBatch *b = sci->free_list.front();
|
2016-07-21 06:06:41 +08:00
|
|
|
sci->free_list.pop_front();
|
|
|
|
return b;
|
|
|
|
}
|
|
|
|
|
2016-08-06 09:24:11 +08:00
|
|
|
NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id,
|
|
|
|
TransferBatch *b) {
|
2018-05-16 23:13:26 +08:00
|
|
|
DCHECK_LT(class_id, kNumClasses);
|
2017-08-28 23:20:02 +08:00
|
|
|
CHECK_GT(b->Count(), 0);
|
2016-07-21 06:06:41 +08:00
|
|
|
SizeClassInfo *sci = GetSizeClassInfo(class_id);
|
|
|
|
SpinMutexLock l(&sci->mutex);
|
|
|
|
sci->free_list.push_front(b);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool PointerIsMine(const void *p) {
|
|
|
|
uptr mem = reinterpret_cast<uptr>(p);
|
|
|
|
if (mem < kSpaceBeg || mem >= kSpaceBeg + kSpaceSize)
|
|
|
|
return false;
|
|
|
|
return GetSizeClass(p) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
uptr GetSizeClass(const void *p) {
|
|
|
|
return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
|
|
|
|
}
|
|
|
|
|
|
|
|
void *GetBlockBegin(const void *p) {
|
|
|
|
CHECK(PointerIsMine(p));
|
|
|
|
uptr mem = reinterpret_cast<uptr>(p);
|
|
|
|
uptr beg = ComputeRegionBeg(mem);
|
2016-08-06 09:24:11 +08:00
|
|
|
uptr size = ClassIdToSize(GetSizeClass(p));
|
2016-07-21 06:06:41 +08:00
|
|
|
u32 offset = mem - beg;
|
|
|
|
u32 n = offset / (u32)size; // 32-bit division
|
|
|
|
uptr res = beg + (n * (u32)size);
|
|
|
|
return reinterpret_cast<void*>(res);
|
|
|
|
}
|
|
|
|
|
|
|
|
uptr GetActuallyAllocatedSize(void *p) {
|
|
|
|
CHECK(PointerIsMine(p));
|
2016-08-06 09:24:11 +08:00
|
|
|
return ClassIdToSize(GetSizeClass(p));
|
2016-07-21 06:06:41 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
|
|
|
|
|
|
|
|
uptr TotalMemoryUsed() {
|
|
|
|
// No need to lock here.
|
|
|
|
uptr res = 0;
|
|
|
|
for (uptr i = 0; i < kNumPossibleRegions; i++)
|
|
|
|
if (possible_regions[i])
|
|
|
|
res += kRegionSize;
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
void TestOnlyUnmap() {
|
|
|
|
for (uptr i = 0; i < kNumPossibleRegions; i++)
|
|
|
|
if (possible_regions[i])
|
|
|
|
UnmapWithCallback((i * kRegionSize), kRegionSize);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
|
|
|
|
// introspection API.
|
|
|
|
void ForceLock() {
|
|
|
|
for (uptr i = 0; i < kNumClasses; i++) {
|
|
|
|
GetSizeClassInfo(i)->mutex.Lock();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ForceUnlock() {
|
|
|
|
for (int i = kNumClasses - 1; i >= 0; i--) {
|
|
|
|
GetSizeClassInfo(i)->mutex.Unlock();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Iterate over all existing chunks.
|
|
|
|
// The allocator must be locked when calling this function.
|
|
|
|
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
|
|
|
|
for (uptr region = 0; region < kNumPossibleRegions; region++)
|
|
|
|
if (possible_regions[region]) {
|
2016-08-06 09:24:11 +08:00
|
|
|
uptr chunk_size = ClassIdToSize(possible_regions[region]);
|
2016-07-21 06:06:41 +08:00
|
|
|
uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
|
|
|
|
uptr region_beg = region * kRegionSize;
|
|
|
|
for (uptr chunk = region_beg;
|
|
|
|
chunk < region_beg + max_chunks_in_region * chunk_size;
|
|
|
|
chunk += chunk_size) {
|
|
|
|
// Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
|
|
|
|
callback(chunk, arg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-05-16 23:13:26 +08:00
|
|
|
void PrintStats() {}
|
2016-07-21 06:06:41 +08:00
|
|
|
|
2018-05-16 23:13:26 +08:00
|
|
|
static uptr AdditionalSize() { return 0; }
|
2016-07-21 06:06:41 +08:00
|
|
|
|
|
|
|
typedef SizeClassMap SizeClassMapT;
|
|
|
|
static const uptr kNumClasses = SizeClassMap::kNumClasses;
|
|
|
|
|
|
|
|
private:
|
|
|
|
static const uptr kRegionSize = 1 << kRegionSizeLog;
|
|
|
|
static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
|
|
|
|
|
2018-03-13 01:18:26 +08:00
|
|
|
struct ALIGNED(SANITIZER_CACHE_LINE_SIZE) SizeClassInfo {
|
2018-05-16 23:13:26 +08:00
|
|
|
StaticSpinMutex mutex;
|
2016-08-06 09:24:11 +08:00
|
|
|
IntrusiveList<TransferBatch> free_list;
|
[sanitizer] Random shuffling of chunks for the 32-bit Primary Allocator
Summary:
The 64-bit primary has had random shuffling of chunks for a while, this
implements it for the 32-bit primary. Scudo is currently the only user of
`kRandomShuffleChunks`.
This change consists of a few modifications:
- move the random shuffling functions out of the 64-bit primary to
`sanitizer_common.h`. Alternatively I could move them to
`sanitizer_allocator.h` as they are only used in the allocator, I don't feel
strongly either way;
- small change in the 64-bit primary to make the `rand_state` initialization
`UNLIKELY`;
- addition of a `rand_state` in the 32-bit primary's `SizeClassInfo` and
shuffling of chunks when populating the free list.
- enabling the `random_shuffle.cpp` test on platforms using the 32-bit primary
for Scudo.
Some comments on why the shuffling is done that way. Initially I just
implemented a `Shuffle` function in the `TransferBatch` which was simpler but I
came to realize this wasn't good enough: for chunks of 10000 bytes for example,
with a `CompactSizeClassMap`, a batch holds only 1 chunk, meaning shuffling the
batch has no effect, while a region is usually 1MB, eg: 104 chunks of that size.
So I decided to "stage" the newly gathered chunks in a temporary array that
would be shuffled prior to placing the chunks in batches.
The result is looping twice through n_chunks even if shuffling is not enabled,
but I didn't notice any significant significant performance impact.
Reviewers: alekseyshl
Reviewed By: alekseyshl
Subscribers: srhines, llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D39244
llvm-svn: 316596
2017-10-26 01:24:56 +08:00
|
|
|
u32 rand_state;
|
2016-07-21 06:06:41 +08:00
|
|
|
};
|
2018-03-13 01:18:26 +08:00
|
|
|
COMPILER_CHECK(sizeof(SizeClassInfo) % kCacheLineSize == 0);
|
2016-07-21 06:06:41 +08:00
|
|
|
|
|
|
|
uptr ComputeRegionId(uptr mem) {
|
[sanitizer] Size class map & local cache improvements
Summary:
- Reland rL324263, this time allowing for a compile-time decision as to whether
or not use the 32-bit division. A single test is using a class map covering
a maximum size greater than 4GB, this can be checked via the template
parameters, and allows SizeClassAllocator64PopulateFreeListOOM to pass;
- `MaxCachedHint` is always called on a class id for which we have already
computed the size, but we still recompute `Size(class_id)`. Change the
prototype of the function to work on sizes instead of class ids. This also
allows us to get rid of the `kBatchClassID` special case. Update the callers
accordingly;
- `InitCache` and `Drain` will start iterating at index 1: index 0 contents are
unused and can safely be left to be 0. Plus we do not pay the cost of going
through an `UNLIKELY` in `MaxCachedHint`, and touching memory that is
otherwise not used;
- `const` some variables in the areas modified;
- Remove an spurious extra line at the end of a file.
Reviewers: alekseyshl, tl0gic, dberris
Reviewed By: alekseyshl, dberris
Subscribers: dberris, kubamracek, delcypher, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D43088
llvm-svn: 324906
2018-02-13 00:59:17 +08:00
|
|
|
const uptr res = mem >> kRegionSizeLog;
|
2016-07-21 06:06:41 +08:00
|
|
|
CHECK_LT(res, kNumPossibleRegions);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
uptr ComputeRegionBeg(uptr mem) {
|
|
|
|
return mem & ~(kRegionSize - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
|
2018-05-16 23:13:26 +08:00
|
|
|
DCHECK_LT(class_id, kNumClasses);
|
|
|
|
const uptr res = reinterpret_cast<uptr>(MmapAlignedOrDieOnFatalError(
|
2018-04-14 03:21:27 +08:00
|
|
|
kRegionSize, kRegionSize, PrimaryAllocatorName));
|
2017-06-22 08:02:37 +08:00
|
|
|
if (UNLIKELY(!res))
|
|
|
|
return 0;
|
2017-06-15 01:32:26 +08:00
|
|
|
MapUnmapCallback().OnMap(res, kRegionSize);
|
|
|
|
stat->Add(AllocatorStatMapped, kRegionSize);
|
[sanitizer] Small tweaks and fixes to allocator related functions
Summary:
In `sanitizer_allocator_primary32.h`:
- rounding up in `MapWithCallback` is not needed as `MmapOrDie` does it. Note
that the 64-bit counterpart doesn't round up, this keeps the behavior
consistent;
- since `IsAligned` exists, use it in `AllocateRegion`;
- in `PopulateFreeList`:
- checking `b->Count` to be greater than 0 when `b->Count() == max_count` is
redundant when done more than once. Just check that `max_count` is greater
than 0 out of the loop; the compiler (at least on ARM) didn't optimize it;
- mark the batch creation failure as `UNLIKELY`;
In `sanitizer_allocator_primary64.h`:
- in `MapWithCallback`, mark the failure condition as `UNLIKELY`;
In `sanitizer_posix.h`:
- mark a bunch of Mmap related failure conditions as `UNLIKELY`;
- in `MmapAlignedOrDieOnFatalError`, we have `IsAligned`, so use it; rearrange
the conditions as one test was redudant;
- in `MmapFixedImpl`, 30 chars was not large enough to hold the message and a
full 64-bit address (or at least a 48-bit usermode address), increase to 40.
Reviewers: alekseyshl
Reviewed By: alekseyshl
Subscribers: aemerson, kubamracek, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D34840
llvm-svn: 306834
2017-07-01 00:05:40 +08:00
|
|
|
CHECK(IsAligned(res, kRegionSize));
|
2017-06-15 01:32:26 +08:00
|
|
|
possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id));
|
|
|
|
return res;
|
2016-07-21 06:06:41 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
SizeClassInfo *GetSizeClassInfo(uptr class_id) {
|
2018-03-13 01:18:26 +08:00
|
|
|
DCHECK_LT(class_id, kNumClasses);
|
2016-07-21 06:06:41 +08:00
|
|
|
return &size_class_info_array[class_id];
|
|
|
|
}
|
|
|
|
|
[sanitizer] Random shuffling of chunks for the 32-bit Primary Allocator
Summary:
The 64-bit primary has had random shuffling of chunks for a while, this
implements it for the 32-bit primary. Scudo is currently the only user of
`kRandomShuffleChunks`.
This change consists of a few modifications:
- move the random shuffling functions out of the 64-bit primary to
`sanitizer_common.h`. Alternatively I could move them to
`sanitizer_allocator.h` as they are only used in the allocator, I don't feel
strongly either way;
- small change in the 64-bit primary to make the `rand_state` initialization
`UNLIKELY`;
- addition of a `rand_state` in the 32-bit primary's `SizeClassInfo` and
shuffling of chunks when populating the free list.
- enabling the `random_shuffle.cpp` test on platforms using the 32-bit primary
for Scudo.
Some comments on why the shuffling is done that way. Initially I just
implemented a `Shuffle` function in the `TransferBatch` which was simpler but I
came to realize this wasn't good enough: for chunks of 10000 bytes for example,
with a `CompactSizeClassMap`, a batch holds only 1 chunk, meaning shuffling the
batch has no effect, while a region is usually 1MB, eg: 104 chunks of that size.
So I decided to "stage" the newly gathered chunks in a temporary array that
would be shuffled prior to placing the chunks in batches.
The result is looping twice through n_chunks even if shuffling is not enabled,
but I didn't notice any significant significant performance impact.
Reviewers: alekseyshl
Reviewed By: alekseyshl
Subscribers: srhines, llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D39244
llvm-svn: 316596
2017-10-26 01:24:56 +08:00
|
|
|
bool PopulateBatches(AllocatorCache *c, SizeClassInfo *sci, uptr class_id,
|
|
|
|
TransferBatch **current_batch, uptr max_count,
|
|
|
|
uptr *pointers_array, uptr count) {
|
|
|
|
// If using a separate class for batches, we do not need to shuffle it.
|
|
|
|
if (kRandomShuffleChunks && (!kUseSeparateSizeClassForBatch ||
|
|
|
|
class_id != SizeClassMap::kBatchClassID))
|
|
|
|
RandomShuffle(pointers_array, count, &sci->rand_state);
|
|
|
|
TransferBatch *b = *current_batch;
|
|
|
|
for (uptr i = 0; i < count; i++) {
|
|
|
|
if (!b) {
|
|
|
|
b = c->CreateBatch(class_id, this, (TransferBatch*)pointers_array[i]);
|
|
|
|
if (UNLIKELY(!b))
|
|
|
|
return false;
|
|
|
|
b->Clear();
|
|
|
|
}
|
|
|
|
b->Add((void*)pointers_array[i]);
|
|
|
|
if (b->Count() == max_count) {
|
|
|
|
sci->free_list.push_back(b);
|
|
|
|
b = nullptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*current_batch = b;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2017-06-22 08:02:37 +08:00
|
|
|
bool PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
|
2016-07-21 06:06:41 +08:00
|
|
|
SizeClassInfo *sci, uptr class_id) {
|
[sanitizer] Size class map & local cache improvements
Summary:
- Reland rL324263, this time allowing for a compile-time decision as to whether
or not use the 32-bit division. A single test is using a class map covering
a maximum size greater than 4GB, this can be checked via the template
parameters, and allows SizeClassAllocator64PopulateFreeListOOM to pass;
- `MaxCachedHint` is always called on a class id for which we have already
computed the size, but we still recompute `Size(class_id)`. Change the
prototype of the function to work on sizes instead of class ids. This also
allows us to get rid of the `kBatchClassID` special case. Update the callers
accordingly;
- `InitCache` and `Drain` will start iterating at index 1: index 0 contents are
unused and can safely be left to be 0. Plus we do not pay the cost of going
through an `UNLIKELY` in `MaxCachedHint`, and touching memory that is
otherwise not used;
- `const` some variables in the areas modified;
- Remove an spurious extra line at the end of a file.
Reviewers: alekseyshl, tl0gic, dberris
Reviewed By: alekseyshl, dberris
Subscribers: dberris, kubamracek, delcypher, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D43088
llvm-svn: 324906
2018-02-13 00:59:17 +08:00
|
|
|
const uptr region = AllocateRegion(stat, class_id);
|
|
|
|
if (UNLIKELY(!region))
|
2017-06-22 08:02:37 +08:00
|
|
|
return false;
|
[sanitizer] Random shuffling of chunks for the 32-bit Primary Allocator
Summary:
The 64-bit primary has had random shuffling of chunks for a while, this
implements it for the 32-bit primary. Scudo is currently the only user of
`kRandomShuffleChunks`.
This change consists of a few modifications:
- move the random shuffling functions out of the 64-bit primary to
`sanitizer_common.h`. Alternatively I could move them to
`sanitizer_allocator.h` as they are only used in the allocator, I don't feel
strongly either way;
- small change in the 64-bit primary to make the `rand_state` initialization
`UNLIKELY`;
- addition of a `rand_state` in the 32-bit primary's `SizeClassInfo` and
shuffling of chunks when populating the free list.
- enabling the `random_shuffle.cpp` test on platforms using the 32-bit primary
for Scudo.
Some comments on why the shuffling is done that way. Initially I just
implemented a `Shuffle` function in the `TransferBatch` which was simpler but I
came to realize this wasn't good enough: for chunks of 10000 bytes for example,
with a `CompactSizeClassMap`, a batch holds only 1 chunk, meaning shuffling the
batch has no effect, while a region is usually 1MB, eg: 104 chunks of that size.
So I decided to "stage" the newly gathered chunks in a temporary array that
would be shuffled prior to placing the chunks in batches.
The result is looping twice through n_chunks even if shuffling is not enabled,
but I didn't notice any significant significant performance impact.
Reviewers: alekseyshl
Reviewed By: alekseyshl
Subscribers: srhines, llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D39244
llvm-svn: 316596
2017-10-26 01:24:56 +08:00
|
|
|
if (kRandomShuffleChunks)
|
|
|
|
if (UNLIKELY(sci->rand_state == 0))
|
|
|
|
// The random state is initialized from ASLR (PIE) and time.
|
|
|
|
sci->rand_state = reinterpret_cast<uptr>(sci) ^ NanoTime();
|
[sanitizer] Size class map & local cache improvements
Summary:
- Reland rL324263, this time allowing for a compile-time decision as to whether
or not use the 32-bit division. A single test is using a class map covering
a maximum size greater than 4GB, this can be checked via the template
parameters, and allows SizeClassAllocator64PopulateFreeListOOM to pass;
- `MaxCachedHint` is always called on a class id for which we have already
computed the size, but we still recompute `Size(class_id)`. Change the
prototype of the function to work on sizes instead of class ids. This also
allows us to get rid of the `kBatchClassID` special case. Update the callers
accordingly;
- `InitCache` and `Drain` will start iterating at index 1: index 0 contents are
unused and can safely be left to be 0. Plus we do not pay the cost of going
through an `UNLIKELY` in `MaxCachedHint`, and touching memory that is
otherwise not used;
- `const` some variables in the areas modified;
- Remove an spurious extra line at the end of a file.
Reviewers: alekseyshl, tl0gic, dberris
Reviewed By: alekseyshl, dberris
Subscribers: dberris, kubamracek, delcypher, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D43088
llvm-svn: 324906
2018-02-13 00:59:17 +08:00
|
|
|
const uptr size = ClassIdToSize(class_id);
|
|
|
|
const uptr n_chunks = kRegionSize / (size + kMetadataSize);
|
|
|
|
const uptr max_count = TransferBatch::MaxCached(size);
|
|
|
|
DCHECK_GT(max_count, 0);
|
2016-08-06 09:24:11 +08:00
|
|
|
TransferBatch *b = nullptr;
|
[sanitizer] Size class map & local cache improvements
Summary:
- Reland rL324263, this time allowing for a compile-time decision as to whether
or not use the 32-bit division. A single test is using a class map covering
a maximum size greater than 4GB, this can be checked via the template
parameters, and allows SizeClassAllocator64PopulateFreeListOOM to pass;
- `MaxCachedHint` is always called on a class id for which we have already
computed the size, but we still recompute `Size(class_id)`. Change the
prototype of the function to work on sizes instead of class ids. This also
allows us to get rid of the `kBatchClassID` special case. Update the callers
accordingly;
- `InitCache` and `Drain` will start iterating at index 1: index 0 contents are
unused and can safely be left to be 0. Plus we do not pay the cost of going
through an `UNLIKELY` in `MaxCachedHint`, and touching memory that is
otherwise not used;
- `const` some variables in the areas modified;
- Remove an spurious extra line at the end of a file.
Reviewers: alekseyshl, tl0gic, dberris
Reviewed By: alekseyshl, dberris
Subscribers: dberris, kubamracek, delcypher, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D43088
llvm-svn: 324906
2018-02-13 00:59:17 +08:00
|
|
|
constexpr uptr kShuffleArraySize = 48;
|
[sanitizer] Random shuffling of chunks for the 32-bit Primary Allocator
Summary:
The 64-bit primary has had random shuffling of chunks for a while, this
implements it for the 32-bit primary. Scudo is currently the only user of
`kRandomShuffleChunks`.
This change consists of a few modifications:
- move the random shuffling functions out of the 64-bit primary to
`sanitizer_common.h`. Alternatively I could move them to
`sanitizer_allocator.h` as they are only used in the allocator, I don't feel
strongly either way;
- small change in the 64-bit primary to make the `rand_state` initialization
`UNLIKELY`;
- addition of a `rand_state` in the 32-bit primary's `SizeClassInfo` and
shuffling of chunks when populating the free list.
- enabling the `random_shuffle.cpp` test on platforms using the 32-bit primary
for Scudo.
Some comments on why the shuffling is done that way. Initially I just
implemented a `Shuffle` function in the `TransferBatch` which was simpler but I
came to realize this wasn't good enough: for chunks of 10000 bytes for example,
with a `CompactSizeClassMap`, a batch holds only 1 chunk, meaning shuffling the
batch has no effect, while a region is usually 1MB, eg: 104 chunks of that size.
So I decided to "stage" the newly gathered chunks in a temporary array that
would be shuffled prior to placing the chunks in batches.
The result is looping twice through n_chunks even if shuffling is not enabled,
but I didn't notice any significant significant performance impact.
Reviewers: alekseyshl
Reviewed By: alekseyshl
Subscribers: srhines, llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D39244
llvm-svn: 316596
2017-10-26 01:24:56 +08:00
|
|
|
uptr shuffle_array[kShuffleArraySize];
|
|
|
|
uptr count = 0;
|
[sanitizer] Size class map & local cache improvements
Summary:
- Reland rL324263, this time allowing for a compile-time decision as to whether
or not use the 32-bit division. A single test is using a class map covering
a maximum size greater than 4GB, this can be checked via the template
parameters, and allows SizeClassAllocator64PopulateFreeListOOM to pass;
- `MaxCachedHint` is always called on a class id for which we have already
computed the size, but we still recompute `Size(class_id)`. Change the
prototype of the function to work on sizes instead of class ids. This also
allows us to get rid of the `kBatchClassID` special case. Update the callers
accordingly;
- `InitCache` and `Drain` will start iterating at index 1: index 0 contents are
unused and can safely be left to be 0. Plus we do not pay the cost of going
through an `UNLIKELY` in `MaxCachedHint`, and touching memory that is
otherwise not used;
- `const` some variables in the areas modified;
- Remove an spurious extra line at the end of a file.
Reviewers: alekseyshl, tl0gic, dberris
Reviewed By: alekseyshl, dberris
Subscribers: dberris, kubamracek, delcypher, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D43088
llvm-svn: 324906
2018-02-13 00:59:17 +08:00
|
|
|
for (uptr i = region; i < region + n_chunks * size; i += size) {
|
[sanitizer] Random shuffling of chunks for the 32-bit Primary Allocator
Summary:
The 64-bit primary has had random shuffling of chunks for a while, this
implements it for the 32-bit primary. Scudo is currently the only user of
`kRandomShuffleChunks`.
This change consists of a few modifications:
- move the random shuffling functions out of the 64-bit primary to
`sanitizer_common.h`. Alternatively I could move them to
`sanitizer_allocator.h` as they are only used in the allocator, I don't feel
strongly either way;
- small change in the 64-bit primary to make the `rand_state` initialization
`UNLIKELY`;
- addition of a `rand_state` in the 32-bit primary's `SizeClassInfo` and
shuffling of chunks when populating the free list.
- enabling the `random_shuffle.cpp` test on platforms using the 32-bit primary
for Scudo.
Some comments on why the shuffling is done that way. Initially I just
implemented a `Shuffle` function in the `TransferBatch` which was simpler but I
came to realize this wasn't good enough: for chunks of 10000 bytes for example,
with a `CompactSizeClassMap`, a batch holds only 1 chunk, meaning shuffling the
batch has no effect, while a region is usually 1MB, eg: 104 chunks of that size.
So I decided to "stage" the newly gathered chunks in a temporary array that
would be shuffled prior to placing the chunks in batches.
The result is looping twice through n_chunks even if shuffling is not enabled,
but I didn't notice any significant significant performance impact.
Reviewers: alekseyshl
Reviewed By: alekseyshl
Subscribers: srhines, llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D39244
llvm-svn: 316596
2017-10-26 01:24:56 +08:00
|
|
|
shuffle_array[count++] = i;
|
|
|
|
if (count == kShuffleArraySize) {
|
|
|
|
if (UNLIKELY(!PopulateBatches(c, sci, class_id, &b, max_count,
|
|
|
|
shuffle_array, count)))
|
2017-06-22 08:02:37 +08:00
|
|
|
return false;
|
[sanitizer] Random shuffling of chunks for the 32-bit Primary Allocator
Summary:
The 64-bit primary has had random shuffling of chunks for a while, this
implements it for the 32-bit primary. Scudo is currently the only user of
`kRandomShuffleChunks`.
This change consists of a few modifications:
- move the random shuffling functions out of the 64-bit primary to
`sanitizer_common.h`. Alternatively I could move them to
`sanitizer_allocator.h` as they are only used in the allocator, I don't feel
strongly either way;
- small change in the 64-bit primary to make the `rand_state` initialization
`UNLIKELY`;
- addition of a `rand_state` in the 32-bit primary's `SizeClassInfo` and
shuffling of chunks when populating the free list.
- enabling the `random_shuffle.cpp` test on platforms using the 32-bit primary
for Scudo.
Some comments on why the shuffling is done that way. Initially I just
implemented a `Shuffle` function in the `TransferBatch` which was simpler but I
came to realize this wasn't good enough: for chunks of 10000 bytes for example,
with a `CompactSizeClassMap`, a batch holds only 1 chunk, meaning shuffling the
batch has no effect, while a region is usually 1MB, eg: 104 chunks of that size.
So I decided to "stage" the newly gathered chunks in a temporary array that
would be shuffled prior to placing the chunks in batches.
The result is looping twice through n_chunks even if shuffling is not enabled,
but I didn't notice any significant significant performance impact.
Reviewers: alekseyshl
Reviewed By: alekseyshl
Subscribers: srhines, llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D39244
llvm-svn: 316596
2017-10-26 01:24:56 +08:00
|
|
|
count = 0;
|
2016-07-23 03:02:59 +08:00
|
|
|
}
|
|
|
|
}
|
[sanitizer] Random shuffling of chunks for the 32-bit Primary Allocator
Summary:
The 64-bit primary has had random shuffling of chunks for a while, this
implements it for the 32-bit primary. Scudo is currently the only user of
`kRandomShuffleChunks`.
This change consists of a few modifications:
- move the random shuffling functions out of the 64-bit primary to
`sanitizer_common.h`. Alternatively I could move them to
`sanitizer_allocator.h` as they are only used in the allocator, I don't feel
strongly either way;
- small change in the 64-bit primary to make the `rand_state` initialization
`UNLIKELY`;
- addition of a `rand_state` in the 32-bit primary's `SizeClassInfo` and
shuffling of chunks when populating the free list.
- enabling the `random_shuffle.cpp` test on platforms using the 32-bit primary
for Scudo.
Some comments on why the shuffling is done that way. Initially I just
implemented a `Shuffle` function in the `TransferBatch` which was simpler but I
came to realize this wasn't good enough: for chunks of 10000 bytes for example,
with a `CompactSizeClassMap`, a batch holds only 1 chunk, meaning shuffling the
batch has no effect, while a region is usually 1MB, eg: 104 chunks of that size.
So I decided to "stage" the newly gathered chunks in a temporary array that
would be shuffled prior to placing the chunks in batches.
The result is looping twice through n_chunks even if shuffling is not enabled,
but I didn't notice any significant significant performance impact.
Reviewers: alekseyshl
Reviewed By: alekseyshl
Subscribers: srhines, llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D39244
llvm-svn: 316596
2017-10-26 01:24:56 +08:00
|
|
|
if (count) {
|
|
|
|
if (UNLIKELY(!PopulateBatches(c, sci, class_id, &b, max_count,
|
|
|
|
shuffle_array, count)))
|
|
|
|
return false;
|
|
|
|
}
|
2016-07-23 03:02:59 +08:00
|
|
|
if (b) {
|
2016-08-03 08:14:10 +08:00
|
|
|
CHECK_GT(b->Count(), 0);
|
2016-07-21 06:06:41 +08:00
|
|
|
sci->free_list.push_back(b);
|
|
|
|
}
|
2017-06-22 08:02:37 +08:00
|
|
|
return true;
|
2016-07-21 06:06:41 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
ByteMap possible_regions;
|
|
|
|
SizeClassInfo size_class_info_array[kNumClasses];
|
|
|
|
};
|