llvm-project/clang/AST/Type.cpp

406 lines
12 KiB
C++
Raw Normal View History

//===--- Type.cpp - Type representation and manipulation ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements type-related functionality.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/IdentifierTable.h"
#include "clang/AST/Type.h"
#include "clang/AST/Decl.h"
#include <iostream>
using namespace llvm;
using namespace clang;
Type::~Type() {}
/// isVoidType - Helper method to determine if this is the 'void' type.
bool Type::isVoidType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Void;
return false;
}
bool Type::isObjectType() const {
if (isa<FunctionType>(CanonicalType))
return false;
else if (CanonicalType->isIncompleteType())
return false;
else
return true;
}
bool Type::isDerivedType() const {
return isPointerType() || isArrayType() || isFunctionType() ||
isStructureType() || isUnionType();
}
bool Type::isFunctionType() const {
return isa<FunctionType>(CanonicalType);
}
bool Type::isPointerType() const {
return isa<PointerType>(CanonicalType);
}
bool Type::isArrayType() const {
return isa<ArrayType>(CanonicalType);
}
bool Type::isStructureType() const {
if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
if (TT->getDecl()->getKind() == Decl::Struct)
return true;
}
return false;
}
bool Type::isUnionType() const {
if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
if (TT->getDecl()->getKind() == Decl::Union)
return true;
}
return false;
}
bool Type::isIntegralType() const {
switch (CanonicalType->getTypeClass()) {
default: return false;
case Builtin:
const BuiltinType *BT = static_cast<BuiltinType*>(CanonicalType.getTypePtr());
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::ULongLong;
case Tagged:
const TagType *TT = static_cast<TagType*>(CanonicalType.getTypePtr());
if (TT->getDecl()->getKind() == Decl::Enum)
return true;
return false;
}
}
bool Type::isFloatingType() const {
switch (CanonicalType->getTypeClass()) {
default: return false;
case Builtin:
const BuiltinType *BT = static_cast<BuiltinType*>(CanonicalType.getTypePtr());
return BT->getKind() >= BuiltinType::Float &&
BT->getKind() <= BuiltinType::LongDoubleComplex;
}
}
bool Type::isRealFloatingType() const {
switch (CanonicalType->getTypeClass()) {
default: return false;
case Builtin:
const BuiltinType *BT = static_cast<BuiltinType*>(CanonicalType.getTypePtr());
return BT->getKind() >= BuiltinType::Float &&
BT->getKind() <= BuiltinType::LongDouble;
}
}
bool Type::isRealType() const {
// this is equivalent to (isIntegralType() || isRealFloatingType()).
switch (CanonicalType->getTypeClass()) { // inlined for performance
default: return false;
case Builtin:
const BuiltinType *BT = static_cast<BuiltinType*>(CanonicalType.getTypePtr());
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongDouble;
case Tagged:
const TagType *TT = static_cast<TagType*>(CanonicalType.getTypePtr());
if (TT->getDecl()->getKind() == Decl::Enum)
return true;
return false;
}
}
bool Type::isComplexType() const {
switch (CanonicalType->getTypeClass()) {
default: return false;
case Builtin:
const BuiltinType *BT = static_cast<BuiltinType*>(CanonicalType.getTypePtr());
return BT->getKind() >= BuiltinType::FloatComplex &&
BT->getKind() <= BuiltinType::LongDoubleComplex;
}
}
bool Type::isArithmeticType() const {
switch (CanonicalType->getTypeClass()) {
default: return false;
case Builtin:
const BuiltinType *BT = static_cast<BuiltinType*>(CanonicalType.getTypePtr());
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongDoubleComplex;
}
}
bool Type::isScalarType() const {
switch (CanonicalType->getTypeClass()) {
default: return false;
case Builtin:
const BuiltinType *BT = static_cast<BuiltinType*>(CanonicalType.getTypePtr());
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongDoubleComplex;
case Pointer:
return true;
}
}
bool Type::isAggregateType() const {
switch (CanonicalType->getTypeClass()) {
default: return false;
case Array:
return true;
case Tagged:
const TagType *TT = static_cast<TagType*>(CanonicalType.getTypePtr());
if (TT->getDecl()->getKind() == Decl::Struct)
return true;
return true;
}
}
/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
/// - a type that can describe objects, but which lacks information needed to
/// determine its size.
bool Type::isIncompleteType() const {
switch (CanonicalType->getTypeClass()) {
default: return false;
case Builtin:
// Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
// be completed.
return isVoidType();
case Tagged:
// A tagged type (struct/union/enum/class) is incomplete if the decl is a
// forward declaration, but not a full definition (C99 6.2.5p22).
return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
case Array:
// An array of unknown size is an incomplete type (C99 6.2.5p22).
return cast<ArrayType>(CanonicalType)->getSize() == 0;
}
}
/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
/// an incomplete type other than void.
bool Type::isLvalue() const {
if (isObjectType())
return true;
else if (isIncompleteType())
return isVoidType() ? false : true;
else
return false;
}
/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
/// does not have an incomplete type, does not have a const-qualified type, and
/// if it is a structure or union, does not have any member (including,
/// recursively, any member or element of all contained aggregates or unions)
/// with a const-qualified type.
bool QualType::isModifiableLvalue() const {
if (isConstQualified())
return false;
else
return getTypePtr()->isModifiableLvalue();
}
bool Type::isModifiableLvalue() const {
if (!isLvalue())
return false;
if (isArrayType())
return false;
if (isIncompleteType())
return false;
if (const RecordType *r = dyn_cast<RecordType>(this))
return r->isModifiableLvalue();
return true;
}
const char *BuiltinType::getName() const {
switch (getKind()) {
default: assert(0 && "Unknown builtin type!");
case Void: return "void";
case Bool: return "_Bool";
case Char: return "char";
case SChar: return "signed char";
case Short: return "short";
case Int: return "int";
case Long: return "long";
case LongLong: return "long long";
case UChar: return "unsigned char";
case UShort: return "unsigned short";
case UInt: return "unsigned int";
case ULong: return "unsigned long";
case ULongLong: return "unsigned long long";
case Float: return "float";
case Double: return "double";
case LongDouble: return "long double";
case FloatComplex: return "float _Complex";
case DoubleComplex: return "double _Complex";
case LongDoubleComplex: return "long double _Complex";
}
}
void FunctionTypeProto::Profile(FoldingSetNodeID &ID, QualType Result,
QualType* ArgTys,
unsigned NumArgs, bool isVariadic) {
ID.AddPointer(Result.getAsOpaquePtr());
for (unsigned i = 0; i != NumArgs; ++i)
ID.AddPointer(ArgTys[i].getAsOpaquePtr());
ID.AddInteger(isVariadic);
}
void FunctionTypeProto::Profile(FoldingSetNodeID &ID) {
Profile(ID, getResultType(), ArgInfo, NumArgs, isVariadic());
}
bool RecordType::classof(const Type *T) {
if (const TagType *TT = dyn_cast<TagType>(T))
return isa<RecordDecl>(TT->getDecl());
return false;
}
//===----------------------------------------------------------------------===//
// Type Printing
//===----------------------------------------------------------------------===//
void QualType::dump() const {
std::string R = "foo";
getAsString(R);
std::cerr << R << "\n";
}
static void AppendTypeQualList(std::string &S, unsigned TypeQuals) {
// Note: funkiness to ensure we get a space only between quals.
bool NonePrinted = true;
if (TypeQuals & QualType::Const)
S += "const", NonePrinted = false;
if (TypeQuals & QualType::Volatile)
S += (NonePrinted+" volatile"), NonePrinted = false;
if (TypeQuals & QualType::Restrict)
S += (NonePrinted+" restrict"), NonePrinted = false;
}
void QualType::getAsString(std::string &S) const {
if (isNull()) {
S += "NULL TYPE\n";
return;
}
// Print qualifiers as appropriate.
if (unsigned TQ = getQualifiers()) {
std::string TQS;
AppendTypeQualList(TQS, TQ);
S = TQS + ' ' + S;
}
getTypePtr()->getAsString(S);
}
void BuiltinType::getAsString(std::string &S) const {
if (S.empty()) {
S = getName();
} else {
// Prefix the basic type, e.g. 'int X'.
S = ' ' + S;
S = getName() + S;
}
}
void PointerType::getAsString(std::string &S) const {
S = '*' + S;
// Handle things like 'int (*A)[4];' correctly.
// FIXME: this should include vectors, but vectors use attributes I guess.
if (isa<ArrayType>(PointeeType.getTypePtr()))
S = '(' + S + ')';
PointeeType.getAsString(S);
}
void ArrayType::getAsString(std::string &S) const {
S += '[';
if (IndexTypeQuals) {
AppendTypeQualList(S, IndexTypeQuals);
S += ' ';
}
if (SizeModifier == Static)
S += "static";
else if (SizeModifier == Star)
S += '*';
S += ']';
ElementType.getAsString(S);
}
void FunctionTypeNoProto::getAsString(std::string &S) const {
// If needed for precedence reasons, wrap the inner part in grouping parens.
if (!S.empty())
S = "(" + S + ")";
S += "()";
getResultType().getAsString(S);
}
void FunctionTypeProto::getAsString(std::string &S) const {
// If needed for precedence reasons, wrap the inner part in grouping parens.
if (!S.empty())
S = "(" + S + ")";
S += "(";
std::string Tmp;
for (unsigned i = 0, e = getNumArgs(); i != e; ++i) {
if (i) S += ", ";
getArgType(i).getAsString(Tmp);
S += Tmp;
Tmp.clear();
}
if (isVariadic()) {
if (getNumArgs())
S += ", ";
S += "...";
} else if (getNumArgs() == 0) {
// Do not emit int() if we have a proto, emit 'int(void)'.
S += "void";
}
S += ")";
getResultType().getAsString(S);
}
void TypedefType::getAsString(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
InnerString = getDecl()->getIdentifier()->getName() + InnerString;
}
void TagType::getAsString(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
const char *Kind = getDecl()->getKindName();
const char *ID;
if (const IdentifierInfo *II = getDecl()->getIdentifier())
ID = II->getName();
else
ID = "<anonymous>";
InnerString = std::string(Kind) + " " + ID + InnerString;
}