llvm-project/clang/lib/StaticAnalyzer/Checkers/NonNullParamChecker.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

327 lines
11 KiB
C++
Raw Normal View History

//===--- NonNullParamChecker.cpp - Undefined arguments checker -*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This defines NonNullParamChecker, which checks for arguments expected not to
// be null due to:
// - the corresponding parameters being declared to have nonnull attribute
// - the corresponding parameters being references; since the call would form
// a reference to a null pointer
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Attr.h"
#include "clang/Analysis/AnyCall.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
using namespace ento;
namespace {
class NonNullParamChecker
: public Checker<check::PreCall, check::BeginFunction,
EventDispatcher<ImplicitNullDerefEvent>> {
mutable std::unique_ptr<BugType> BTAttrNonNull;
mutable std::unique_ptr<BugType> BTNullRefArg;
public:
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkBeginFunction(CheckerContext &C) const;
std::unique_ptr<PathSensitiveBugReport>
genReportNullAttrNonNull(const ExplodedNode *ErrorN, const Expr *ArgE,
unsigned IdxOfArg) const;
std::unique_ptr<PathSensitiveBugReport>
genReportReferenceToNullPointer(const ExplodedNode *ErrorN,
const Expr *ArgE) const;
};
template <class CallType>
void setBitsAccordingToFunctionAttributes(const CallType &Call,
llvm::SmallBitVector &AttrNonNull) {
const Decl *FD = Call.getDecl();
for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
if (!NonNull->args_size()) {
// Lack of attribute parameters means that all of the parameters are
// implicitly marked as non-null.
AttrNonNull.set();
break;
}
for (const ParamIdx &Idx : NonNull->args()) {
// 'nonnull' attribute's parameters are 1-based and should be adjusted to
// match actual AST parameter/argument indices.
unsigned IdxAST = Idx.getASTIndex();
if (IdxAST >= AttrNonNull.size())
continue;
AttrNonNull.set(IdxAST);
}
}
}
template <class CallType>
void setBitsAccordingToParameterAttributes(const CallType &Call,
llvm::SmallBitVector &AttrNonNull) {
for (const ParmVarDecl *Parameter : Call.parameters()) {
unsigned ParameterIndex = Parameter->getFunctionScopeIndex();
if (ParameterIndex == AttrNonNull.size())
break;
if (Parameter->hasAttr<NonNullAttr>())
AttrNonNull.set(ParameterIndex);
}
}
template <class CallType>
llvm::SmallBitVector getNonNullAttrsImpl(const CallType &Call,
unsigned ExpectedSize) {
llvm::SmallBitVector AttrNonNull(ExpectedSize);
setBitsAccordingToFunctionAttributes(Call, AttrNonNull);
setBitsAccordingToParameterAttributes(Call, AttrNonNull);
return AttrNonNull;
}
/// \return Bitvector marking non-null attributes.
llvm::SmallBitVector getNonNullAttrs(const CallEvent &Call) {
return getNonNullAttrsImpl(Call, Call.getNumArgs());
}
/// \return Bitvector marking non-null attributes.
llvm::SmallBitVector getNonNullAttrs(const AnyCall &Call) {
return getNonNullAttrsImpl(Call, Call.param_size());
}
} // end anonymous namespace
void NonNullParamChecker::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
if (!Call.getDecl())
return;
llvm::SmallBitVector AttrNonNull = getNonNullAttrs(Call);
unsigned NumArgs = Call.getNumArgs();
ProgramStateRef state = C.getState();
ArrayRef<ParmVarDecl *> parms = Call.parameters();
for (unsigned idx = 0; idx < NumArgs; ++idx) {
// For vararg functions, a corresponding parameter decl may not exist.
bool HasParam = idx < parms.size();
// Check if the parameter is a reference. We want to report when reference
// to a null pointer is passed as a parameter.
bool HasRefTypeParam =
HasParam ? parms[idx]->getType()->isReferenceType() : false;
bool ExpectedToBeNonNull = AttrNonNull.test(idx);
if (!ExpectedToBeNonNull && !HasRefTypeParam)
continue;
// If the value is unknown or undefined, we can't perform this check.
const Expr *ArgE = Call.getArgExpr(idx);
SVal V = Call.getArgSVal(idx);
auto DV = V.getAs<DefinedSVal>();
if (!DV)
continue;
assert(!HasRefTypeParam || DV->getAs<Loc>());
// Process the case when the argument is not a location.
if (ExpectedToBeNonNull && !DV->getAs<Loc>()) {
// If the argument is a union type, we want to handle a potential
// transparent_union GCC extension.
if (!ArgE)
continue;
QualType T = ArgE->getType();
const RecordType *UT = T->getAsUnionType();
if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
continue;
auto CSV = DV->getAs<nonloc::CompoundVal>();
// FIXME: Handle LazyCompoundVals?
if (!CSV)
continue;
V = *(CSV->begin());
DV = V.getAs<DefinedSVal>();
assert(++CSV->begin() == CSV->end());
// FIXME: Handle (some_union){ some_other_union_val }, which turns into
// a LazyCompoundVal inside a CompoundVal.
if (!V.getAs<Loc>())
continue;
// Retrieve the corresponding expression.
if (const auto *CE = dyn_cast<CompoundLiteralExpr>(ArgE))
if (const auto *IE = dyn_cast<InitListExpr>(CE->getInitializer()))
ArgE = dyn_cast<Expr>(*(IE->begin()));
}
ConstraintManager &CM = C.getConstraintManager();
ProgramStateRef stateNotNull, stateNull;
std::tie(stateNotNull, stateNull) = CM.assumeDual(state, *DV);
// Generate an error node. Check for a null node in case
// we cache out.
if (stateNull && !stateNotNull) {
if (ExplodedNode *errorNode = C.generateErrorNode(stateNull)) {
std::unique_ptr<BugReport> R;
if (ExpectedToBeNonNull)
R = genReportNullAttrNonNull(errorNode, ArgE, idx + 1);
else if (HasRefTypeParam)
R = genReportReferenceToNullPointer(errorNode, ArgE);
// Highlight the range of the argument that was null.
R->addRange(Call.getArgSourceRange(idx));
// Emit the bug report.
C.emitReport(std::move(R));
}
// Always return. Either we cached out or we just emitted an error.
return;
}
if (stateNull) {
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
if (ExplodedNode *N = C.generateSink(stateNull, C.getPredecessor())) {
ImplicitNullDerefEvent event = {
V, false, N, &C.getBugReporter(),
/*IsDirectDereference=*/HasRefTypeParam};
dispatchEvent(event);
}
}
// If a pointer value passed the check we should assume that it is
// indeed not null from this point forward.
state = stateNotNull;
}
// If we reach here all of the arguments passed the nonnull check.
// If 'state' has been updated generated a new node.
C.addTransition(state);
}
/// We want to trust developer annotations and consider all 'nonnull' parameters
/// as non-null indeed. Each marked parameter will get a corresponding
/// constraint.
///
/// This approach will not only help us to get rid of some false positives, but
/// remove duplicates and shorten warning traces as well.
///
/// \code
/// void foo(int *x) [[gnu::nonnull]] {
/// // . . .
/// *x = 42; // we don't want to consider this as an error...
/// // . . .
/// }
///
/// foo(nullptr); // ...and report here instead
/// \endcode
void NonNullParamChecker::checkBeginFunction(CheckerContext &Context) const {
// Planned assumption makes sense only for top-level functions.
// Inlined functions will get similar constraints as part of 'checkPreCall'.
if (!Context.inTopFrame())
return;
const LocationContext *LocContext = Context.getLocationContext();
const Decl *FD = LocContext->getDecl();
// AnyCall helps us here to avoid checking for FunctionDecl and ObjCMethodDecl
// separately and aggregates interfaces of these classes.
auto AbstractCall = AnyCall::forDecl(FD);
if (!AbstractCall)
return;
ProgramStateRef State = Context.getState();
llvm::SmallBitVector ParameterNonNullMarks = getNonNullAttrs(*AbstractCall);
for (const ParmVarDecl *Parameter : AbstractCall->parameters()) {
// 1. Check parameter if it is annotated as non-null
if (!ParameterNonNullMarks.test(Parameter->getFunctionScopeIndex()))
continue;
// 2. Check that parameter is a pointer.
// Nonnull attribute can be applied to non-pointers (by default
// __attribute__(nonnull) implies "all parameters").
if (!Parameter->getType()->isPointerType())
continue;
Loc ParameterLoc = State->getLValue(Parameter, LocContext);
// We never consider top-level function parameters undefined.
auto StoredVal =
State->getSVal(ParameterLoc).castAs<DefinedOrUnknownSVal>();
// 3. Assume that it is indeed non-null
if (ProgramStateRef NewState = State->assume(StoredVal, true)) {
State = NewState;
}
}
Context.addTransition(State);
}
std::unique_ptr<PathSensitiveBugReport>
NonNullParamChecker::genReportNullAttrNonNull(const ExplodedNode *ErrorNode,
const Expr *ArgE,
unsigned IdxOfArg) const {
// Lazily allocate the BugType object if it hasn't already been
// created. Ownership is transferred to the BugReporter object once
// the BugReport is passed to 'EmitWarning'.
if (!BTAttrNonNull)
BTAttrNonNull.reset(new BugType(
this, "Argument with 'nonnull' attribute passed null", "API"));
llvm::SmallString<256> SBuf;
llvm::raw_svector_ostream OS(SBuf);
OS << "Null pointer passed to "
<< IdxOfArg << llvm::getOrdinalSuffix(IdxOfArg)
<< " parameter expecting 'nonnull'";
auto R =
std::make_unique<PathSensitiveBugReport>(*BTAttrNonNull, SBuf, ErrorNode);
if (ArgE)
bugreporter::trackExpressionValue(ErrorNode, ArgE, *R);
return R;
}
std::unique_ptr<PathSensitiveBugReport>
NonNullParamChecker::genReportReferenceToNullPointer(
const ExplodedNode *ErrorNode, const Expr *ArgE) const {
if (!BTNullRefArg)
BTNullRefArg.reset(new BuiltinBug(this, "Dereference of null pointer"));
auto R = std::make_unique<PathSensitiveBugReport>(
*BTNullRefArg, "Forming reference to null pointer", ErrorNode);
if (ArgE) {
const Expr *ArgEDeref = bugreporter::getDerefExpr(ArgE);
if (!ArgEDeref)
ArgEDeref = ArgE;
bugreporter::trackExpressionValue(ErrorNode, ArgEDeref, *R);
}
return R;
}
void ento::registerNonNullParamChecker(CheckerManager &mgr) {
mgr.registerChecker<NonNullParamChecker>();
}
bool ento::shouldRegisterNonNullParamChecker(const CheckerManager &mgr) {
return true;
}