2015-02-05 04:55:43 +08:00
|
|
|
/*
|
|
|
|
* Copyright 2008-2009 Katholieke Universiteit Leuven
|
|
|
|
* Copyright 2010 INRIA Saclay
|
|
|
|
*
|
|
|
|
* Use of this software is governed by the MIT license
|
|
|
|
*
|
|
|
|
* Written by Sven Verdoolaege, K.U.Leuven, Departement
|
|
|
|
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
|
|
|
|
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
|
|
|
|
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <isl_mat_private.h>
|
|
|
|
#include <isl_vec_private.h>
|
|
|
|
#include <isl_seq.h>
|
|
|
|
#include "isl_map_private.h"
|
|
|
|
#include "isl_equalities.h"
|
|
|
|
#include <isl_val_private.h>
|
|
|
|
|
|
|
|
/* Given a set of modulo constraints
|
|
|
|
*
|
|
|
|
* c + A y = 0 mod d
|
|
|
|
*
|
|
|
|
* this function computes a particular solution y_0
|
|
|
|
*
|
|
|
|
* The input is given as a matrix B = [ c A ] and a vector d.
|
|
|
|
*
|
|
|
|
* The output is matrix containing the solution y_0 or
|
|
|
|
* a zero-column matrix if the constraints admit no integer solution.
|
|
|
|
*
|
|
|
|
* The given set of constrains is equivalent to
|
|
|
|
*
|
|
|
|
* c + A y = -D x
|
|
|
|
*
|
|
|
|
* with D = diag d and x a fresh set of variables.
|
|
|
|
* Reducing both c and A modulo d does not change the
|
|
|
|
* value of y in the solution and may lead to smaller coefficients.
|
|
|
|
* Let M = [ D A ] and [ H 0 ] = M U, the Hermite normal form of M.
|
|
|
|
* Then
|
|
|
|
* [ x ]
|
|
|
|
* M [ y ] = - c
|
|
|
|
* and so
|
|
|
|
* [ x ]
|
|
|
|
* [ H 0 ] U^{-1} [ y ] = - c
|
|
|
|
* Let
|
|
|
|
* [ A ] [ x ]
|
|
|
|
* [ B ] = U^{-1} [ y ]
|
|
|
|
* then
|
|
|
|
* H A + 0 B = -c
|
|
|
|
*
|
|
|
|
* so B may be chosen arbitrarily, e.g., B = 0, and then
|
|
|
|
*
|
|
|
|
* [ x ] = [ -c ]
|
|
|
|
* U^{-1} [ y ] = [ 0 ]
|
|
|
|
* or
|
|
|
|
* [ x ] [ -c ]
|
|
|
|
* [ y ] = U [ 0 ]
|
|
|
|
* specifically,
|
|
|
|
*
|
|
|
|
* y = U_{2,1} (-c)
|
|
|
|
*
|
|
|
|
* If any of the coordinates of this y are non-integer
|
|
|
|
* then the constraints admit no integer solution and
|
|
|
|
* a zero-column matrix is returned.
|
|
|
|
*/
|
2020-08-21 13:17:29 +08:00
|
|
|
static __isl_give isl_mat *particular_solution(__isl_keep isl_mat *B,
|
|
|
|
__isl_keep isl_vec *d)
|
2015-02-05 04:55:43 +08:00
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
struct isl_mat *M = NULL;
|
|
|
|
struct isl_mat *C = NULL;
|
|
|
|
struct isl_mat *U = NULL;
|
|
|
|
struct isl_mat *H = NULL;
|
|
|
|
struct isl_mat *cst = NULL;
|
|
|
|
struct isl_mat *T = NULL;
|
|
|
|
|
|
|
|
M = isl_mat_alloc(B->ctx, B->n_row, B->n_row + B->n_col - 1);
|
|
|
|
C = isl_mat_alloc(B->ctx, 1 + B->n_row, 1);
|
|
|
|
if (!M || !C)
|
|
|
|
goto error;
|
|
|
|
isl_int_set_si(C->row[0][0], 1);
|
|
|
|
for (i = 0; i < B->n_row; ++i) {
|
|
|
|
isl_seq_clr(M->row[i], B->n_row);
|
|
|
|
isl_int_set(M->row[i][i], d->block.data[i]);
|
|
|
|
isl_int_neg(C->row[1 + i][0], B->row[i][0]);
|
|
|
|
isl_int_fdiv_r(C->row[1+i][0], C->row[1+i][0], M->row[i][i]);
|
|
|
|
for (j = 0; j < B->n_col - 1; ++j)
|
|
|
|
isl_int_fdiv_r(M->row[i][B->n_row + j],
|
|
|
|
B->row[i][1 + j], M->row[i][i]);
|
|
|
|
}
|
|
|
|
M = isl_mat_left_hermite(M, 0, &U, NULL);
|
|
|
|
if (!M || !U)
|
|
|
|
goto error;
|
|
|
|
H = isl_mat_sub_alloc(M, 0, B->n_row, 0, B->n_row);
|
|
|
|
H = isl_mat_lin_to_aff(H);
|
|
|
|
C = isl_mat_inverse_product(H, C);
|
|
|
|
if (!C)
|
|
|
|
goto error;
|
|
|
|
for (i = 0; i < B->n_row; ++i) {
|
|
|
|
if (!isl_int_is_divisible_by(C->row[1+i][0], C->row[0][0]))
|
|
|
|
break;
|
|
|
|
isl_int_divexact(C->row[1+i][0], C->row[1+i][0], C->row[0][0]);
|
|
|
|
}
|
|
|
|
if (i < B->n_row)
|
|
|
|
cst = isl_mat_alloc(B->ctx, B->n_row, 0);
|
|
|
|
else
|
|
|
|
cst = isl_mat_sub_alloc(C, 1, B->n_row, 0, 1);
|
|
|
|
T = isl_mat_sub_alloc(U, B->n_row, B->n_col - 1, 0, B->n_row);
|
|
|
|
cst = isl_mat_product(T, cst);
|
|
|
|
isl_mat_free(M);
|
|
|
|
isl_mat_free(C);
|
|
|
|
isl_mat_free(U);
|
|
|
|
return cst;
|
|
|
|
error:
|
|
|
|
isl_mat_free(M);
|
|
|
|
isl_mat_free(C);
|
|
|
|
isl_mat_free(U);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Compute and return the matrix
|
|
|
|
*
|
|
|
|
* U_1^{-1} diag(d_1, 1, ..., 1)
|
|
|
|
*
|
|
|
|
* with U_1 the unimodular completion of the first (and only) row of B.
|
|
|
|
* The columns of this matrix generate the lattice that satisfies
|
|
|
|
* the single (linear) modulo constraint.
|
|
|
|
*/
|
2020-08-21 13:17:29 +08:00
|
|
|
static __isl_take isl_mat *parameter_compression_1(__isl_keep isl_mat *B,
|
|
|
|
__isl_keep isl_vec *d)
|
2015-02-05 04:55:43 +08:00
|
|
|
{
|
|
|
|
struct isl_mat *U;
|
|
|
|
|
|
|
|
U = isl_mat_alloc(B->ctx, B->n_col - 1, B->n_col - 1);
|
|
|
|
if (!U)
|
|
|
|
return NULL;
|
|
|
|
isl_seq_cpy(U->row[0], B->row[0] + 1, B->n_col - 1);
|
|
|
|
U = isl_mat_unimodular_complete(U, 1);
|
|
|
|
U = isl_mat_right_inverse(U);
|
|
|
|
if (!U)
|
|
|
|
return NULL;
|
|
|
|
isl_mat_col_mul(U, 0, d->block.data[0], 0);
|
|
|
|
U = isl_mat_lin_to_aff(U);
|
|
|
|
return U;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Compute a common lattice of solutions to the linear modulo
|
|
|
|
* constraints specified by B and d.
|
|
|
|
* See also the documentation of isl_mat_parameter_compression.
|
|
|
|
* We put the matrix
|
|
|
|
*
|
|
|
|
* A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
|
|
|
|
*
|
|
|
|
* on a common denominator. This denominator D is the lcm of modulos d.
|
|
|
|
* Since L_i = U_i^{-1} diag(d_i, 1, ... 1), we have
|
|
|
|
* L_i^{-T} = U_i^T diag(d_i, 1, ... 1)^{-T} = U_i^T diag(1/d_i, 1, ..., 1).
|
|
|
|
* Putting this on the common denominator, we have
|
|
|
|
* D * L_i^{-T} = U_i^T diag(D/d_i, D, ..., D).
|
|
|
|
*/
|
2020-08-21 13:17:29 +08:00
|
|
|
static __isl_give isl_mat *parameter_compression_multi(__isl_keep isl_mat *B,
|
|
|
|
__isl_keep isl_vec *d)
|
2015-02-05 04:55:43 +08:00
|
|
|
{
|
|
|
|
int i, j, k;
|
|
|
|
isl_int D;
|
|
|
|
struct isl_mat *A = NULL, *U = NULL;
|
|
|
|
struct isl_mat *T;
|
|
|
|
unsigned size;
|
|
|
|
|
|
|
|
isl_int_init(D);
|
|
|
|
|
|
|
|
isl_vec_lcm(d, &D);
|
|
|
|
|
|
|
|
size = B->n_col - 1;
|
|
|
|
A = isl_mat_alloc(B->ctx, size, B->n_row * size);
|
|
|
|
U = isl_mat_alloc(B->ctx, size, size);
|
|
|
|
if (!U || !A)
|
|
|
|
goto error;
|
|
|
|
for (i = 0; i < B->n_row; ++i) {
|
|
|
|
isl_seq_cpy(U->row[0], B->row[i] + 1, size);
|
|
|
|
U = isl_mat_unimodular_complete(U, 1);
|
|
|
|
if (!U)
|
|
|
|
goto error;
|
|
|
|
isl_int_divexact(D, D, d->block.data[i]);
|
|
|
|
for (k = 0; k < U->n_col; ++k)
|
|
|
|
isl_int_mul(A->row[k][i*size+0], D, U->row[0][k]);
|
|
|
|
isl_int_mul(D, D, d->block.data[i]);
|
|
|
|
for (j = 1; j < U->n_row; ++j)
|
|
|
|
for (k = 0; k < U->n_col; ++k)
|
|
|
|
isl_int_mul(A->row[k][i*size+j],
|
|
|
|
D, U->row[j][k]);
|
|
|
|
}
|
|
|
|
A = isl_mat_left_hermite(A, 0, NULL, NULL);
|
|
|
|
T = isl_mat_sub_alloc(A, 0, A->n_row, 0, A->n_row);
|
|
|
|
T = isl_mat_lin_to_aff(T);
|
|
|
|
if (!T)
|
|
|
|
goto error;
|
|
|
|
isl_int_set(T->row[0][0], D);
|
|
|
|
T = isl_mat_right_inverse(T);
|
|
|
|
if (!T)
|
|
|
|
goto error;
|
|
|
|
isl_assert(T->ctx, isl_int_is_one(T->row[0][0]), goto error);
|
|
|
|
T = isl_mat_transpose(T);
|
|
|
|
isl_mat_free(A);
|
|
|
|
isl_mat_free(U);
|
|
|
|
|
|
|
|
isl_int_clear(D);
|
|
|
|
return T;
|
|
|
|
error:
|
|
|
|
isl_mat_free(A);
|
|
|
|
isl_mat_free(U);
|
|
|
|
isl_int_clear(D);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Given a set of modulo constraints
|
|
|
|
*
|
|
|
|
* c + A y = 0 mod d
|
|
|
|
*
|
|
|
|
* this function returns an affine transformation T,
|
|
|
|
*
|
|
|
|
* y = T y'
|
|
|
|
*
|
|
|
|
* that bijectively maps the integer vectors y' to integer
|
|
|
|
* vectors y that satisfy the modulo constraints.
|
|
|
|
*
|
|
|
|
* This function is inspired by Section 2.5.3
|
|
|
|
* of B. Meister, "Stating and Manipulating Periodicity in the Polytope
|
|
|
|
* Model. Applications to Program Analysis and Optimization".
|
|
|
|
* However, the implementation only follows the algorithm of that
|
|
|
|
* section for computing a particular solution and not for computing
|
|
|
|
* a general homogeneous solution. The latter is incomplete and
|
|
|
|
* may remove some valid solutions.
|
|
|
|
* Instead, we use an adaptation of the algorithm in Section 7 of
|
|
|
|
* B. Meister, S. Verdoolaege, "Polynomial Approximations in the Polytope
|
|
|
|
* Model: Bringing the Power of Quasi-Polynomials to the Masses".
|
|
|
|
*
|
|
|
|
* The input is given as a matrix B = [ c A ] and a vector d.
|
|
|
|
* Each element of the vector d corresponds to a row in B.
|
|
|
|
* The output is a lower triangular matrix.
|
|
|
|
* If no integer vector y satisfies the given constraints then
|
|
|
|
* a matrix with zero columns is returned.
|
|
|
|
*
|
|
|
|
* We first compute a particular solution y_0 to the given set of
|
|
|
|
* modulo constraints in particular_solution. If no such solution
|
|
|
|
* exists, then we return a zero-columned transformation matrix.
|
|
|
|
* Otherwise, we compute the generic solution to
|
|
|
|
*
|
|
|
|
* A y = 0 mod d
|
|
|
|
*
|
|
|
|
* That is we want to compute G such that
|
|
|
|
*
|
|
|
|
* y = G y''
|
|
|
|
*
|
|
|
|
* with y'' integer, describes the set of solutions.
|
|
|
|
*
|
|
|
|
* We first remove the common factors of each row.
|
|
|
|
* In particular if gcd(A_i,d_i) != 1, then we divide the whole
|
|
|
|
* row i (including d_i) by this common factor. If afterwards gcd(A_i) != 1,
|
|
|
|
* then we divide this row of A by the common factor, unless gcd(A_i) = 0.
|
|
|
|
* In the later case, we simply drop the row (in both A and d).
|
|
|
|
*
|
|
|
|
* If there are no rows left in A, then G is the identity matrix. Otherwise,
|
|
|
|
* for each row i, we now determine the lattice of integer vectors
|
|
|
|
* that satisfies this row. Let U_i be the unimodular extension of the
|
|
|
|
* row A_i. This unimodular extension exists because gcd(A_i) = 1.
|
|
|
|
* The first component of
|
|
|
|
*
|
|
|
|
* y' = U_i y
|
|
|
|
*
|
|
|
|
* needs to be a multiple of d_i. Let y' = diag(d_i, 1, ..., 1) y''.
|
|
|
|
* Then,
|
|
|
|
*
|
|
|
|
* y = U_i^{-1} diag(d_i, 1, ..., 1) y''
|
|
|
|
*
|
|
|
|
* for arbitrary integer vectors y''. That is, y belongs to the lattice
|
|
|
|
* generated by the columns of L_i = U_i^{-1} diag(d_i, 1, ..., 1).
|
|
|
|
* If there is only one row, then G = L_1.
|
|
|
|
*
|
|
|
|
* If there is more than one row left, we need to compute the intersection
|
|
|
|
* of the lattices. That is, we need to compute an L such that
|
|
|
|
*
|
|
|
|
* L = L_i L_i' for all i
|
|
|
|
*
|
|
|
|
* with L_i' some integer matrices. Let A be constructed as follows
|
|
|
|
*
|
|
|
|
* A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
|
|
|
|
*
|
|
|
|
* and computed the Hermite Normal Form of A = [ H 0 ] U
|
|
|
|
* Then,
|
|
|
|
*
|
|
|
|
* L_i^{-T} = H U_{1,i}
|
|
|
|
*
|
|
|
|
* or
|
|
|
|
*
|
|
|
|
* H^{-T} = L_i U_{1,i}^T
|
|
|
|
*
|
|
|
|
* In other words G = L = H^{-T}.
|
|
|
|
* To ensure that G is lower triangular, we compute and use its Hermite
|
|
|
|
* normal form.
|
|
|
|
*
|
|
|
|
* The affine transformation matrix returned is then
|
|
|
|
*
|
|
|
|
* [ 1 0 ]
|
|
|
|
* [ y_0 G ]
|
|
|
|
*
|
|
|
|
* as any y = y_0 + G y' with y' integer is a solution to the original
|
|
|
|
* modulo constraints.
|
|
|
|
*/
|
2017-04-28 14:11:17 +08:00
|
|
|
__isl_give isl_mat *isl_mat_parameter_compression(__isl_take isl_mat *B,
|
|
|
|
__isl_take isl_vec *d)
|
2015-02-05 04:55:43 +08:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct isl_mat *cst = NULL;
|
|
|
|
struct isl_mat *T = NULL;
|
|
|
|
isl_int D;
|
|
|
|
|
|
|
|
if (!B || !d)
|
|
|
|
goto error;
|
|
|
|
isl_assert(B->ctx, B->n_row == d->size, goto error);
|
|
|
|
cst = particular_solution(B, d);
|
|
|
|
if (!cst)
|
|
|
|
goto error;
|
|
|
|
if (cst->n_col == 0) {
|
|
|
|
T = isl_mat_alloc(B->ctx, B->n_col, 0);
|
|
|
|
isl_mat_free(cst);
|
|
|
|
isl_mat_free(B);
|
|
|
|
isl_vec_free(d);
|
|
|
|
return T;
|
|
|
|
}
|
|
|
|
isl_int_init(D);
|
|
|
|
/* Replace a*g*row = 0 mod g*m by row = 0 mod m */
|
|
|
|
for (i = 0; i < B->n_row; ++i) {
|
|
|
|
isl_seq_gcd(B->row[i] + 1, B->n_col - 1, &D);
|
|
|
|
if (isl_int_is_one(D))
|
|
|
|
continue;
|
|
|
|
if (isl_int_is_zero(D)) {
|
|
|
|
B = isl_mat_drop_rows(B, i, 1);
|
|
|
|
d = isl_vec_cow(d);
|
|
|
|
if (!B || !d)
|
|
|
|
goto error2;
|
|
|
|
isl_seq_cpy(d->block.data+i, d->block.data+i+1,
|
|
|
|
d->size - (i+1));
|
|
|
|
d->size--;
|
|
|
|
i--;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
B = isl_mat_cow(B);
|
|
|
|
if (!B)
|
|
|
|
goto error2;
|
|
|
|
isl_seq_scale_down(B->row[i] + 1, B->row[i] + 1, D, B->n_col-1);
|
|
|
|
isl_int_gcd(D, D, d->block.data[i]);
|
|
|
|
d = isl_vec_cow(d);
|
|
|
|
if (!d)
|
|
|
|
goto error2;
|
|
|
|
isl_int_divexact(d->block.data[i], d->block.data[i], D);
|
|
|
|
}
|
|
|
|
isl_int_clear(D);
|
|
|
|
if (B->n_row == 0)
|
|
|
|
T = isl_mat_identity(B->ctx, B->n_col);
|
|
|
|
else if (B->n_row == 1)
|
|
|
|
T = parameter_compression_1(B, d);
|
|
|
|
else
|
|
|
|
T = parameter_compression_multi(B, d);
|
|
|
|
T = isl_mat_left_hermite(T, 0, NULL, NULL);
|
|
|
|
if (!T)
|
|
|
|
goto error;
|
|
|
|
isl_mat_sub_copy(T->ctx, T->row + 1, cst->row, cst->n_row, 0, 0, 1);
|
|
|
|
isl_mat_free(cst);
|
|
|
|
isl_mat_free(B);
|
|
|
|
isl_vec_free(d);
|
|
|
|
return T;
|
|
|
|
error2:
|
|
|
|
isl_int_clear(D);
|
|
|
|
error:
|
|
|
|
isl_mat_free(cst);
|
|
|
|
isl_mat_free(B);
|
|
|
|
isl_vec_free(d);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Given a set of equalities
|
|
|
|
*
|
|
|
|
* B(y) + A x = 0 (*)
|
|
|
|
*
|
|
|
|
* compute and return an affine transformation T,
|
|
|
|
*
|
|
|
|
* y = T y'
|
|
|
|
*
|
|
|
|
* that bijectively maps the integer vectors y' to integer
|
|
|
|
* vectors y that satisfy the modulo constraints for some value of x.
|
|
|
|
*
|
|
|
|
* Let [H 0] be the Hermite Normal Form of A, i.e.,
|
|
|
|
*
|
|
|
|
* A = [H 0] Q
|
|
|
|
*
|
|
|
|
* Then y is a solution of (*) iff
|
|
|
|
*
|
|
|
|
* H^-1 B(y) (= - [I 0] Q x)
|
|
|
|
*
|
|
|
|
* is an integer vector. Let d be the common denominator of H^-1.
|
|
|
|
* We impose
|
|
|
|
*
|
|
|
|
* d H^-1 B(y) = 0 mod d
|
|
|
|
*
|
|
|
|
* and compute the solution using isl_mat_parameter_compression.
|
|
|
|
*/
|
|
|
|
__isl_give isl_mat *isl_mat_parameter_compression_ext(__isl_take isl_mat *B,
|
|
|
|
__isl_take isl_mat *A)
|
|
|
|
{
|
|
|
|
isl_ctx *ctx;
|
|
|
|
isl_vec *d;
|
|
|
|
int n_row, n_col;
|
|
|
|
|
|
|
|
if (!A)
|
|
|
|
return isl_mat_free(B);
|
|
|
|
|
|
|
|
ctx = isl_mat_get_ctx(A);
|
|
|
|
n_row = A->n_row;
|
|
|
|
n_col = A->n_col;
|
|
|
|
A = isl_mat_left_hermite(A, 0, NULL, NULL);
|
|
|
|
A = isl_mat_drop_cols(A, n_row, n_col - n_row);
|
|
|
|
A = isl_mat_lin_to_aff(A);
|
|
|
|
A = isl_mat_right_inverse(A);
|
|
|
|
d = isl_vec_alloc(ctx, n_row);
|
|
|
|
if (A)
|
|
|
|
d = isl_vec_set(d, A->row[0][0]);
|
|
|
|
A = isl_mat_drop_rows(A, 0, 1);
|
|
|
|
A = isl_mat_drop_cols(A, 0, 1);
|
|
|
|
B = isl_mat_product(A, B);
|
|
|
|
|
|
|
|
return isl_mat_parameter_compression(B, d);
|
|
|
|
}
|
|
|
|
|
2016-03-26 03:38:18 +08:00
|
|
|
/* Return a compression matrix that indicates that there are no solutions
|
|
|
|
* to the original constraints. In particular, return a zero-column
|
|
|
|
* matrix with 1 + dim rows. If "T2" is not NULL, then assign *T2
|
|
|
|
* the inverse of this matrix. *T2 may already have been assigned
|
|
|
|
* matrix, so free it first.
|
|
|
|
* "free1", "free2" and "free3" are temporary matrices that are
|
|
|
|
* not useful when an empty compression is returned. They are
|
|
|
|
* simply freed.
|
|
|
|
*/
|
|
|
|
static __isl_give isl_mat *empty_compression(isl_ctx *ctx, unsigned dim,
|
|
|
|
__isl_give isl_mat **T2, __isl_take isl_mat *free1,
|
|
|
|
__isl_take isl_mat *free2, __isl_take isl_mat *free3)
|
|
|
|
{
|
|
|
|
isl_mat_free(free1);
|
|
|
|
isl_mat_free(free2);
|
|
|
|
isl_mat_free(free3);
|
|
|
|
if (T2) {
|
|
|
|
isl_mat_free(*T2);
|
|
|
|
*T2 = isl_mat_alloc(ctx, 0, 1 + dim);
|
|
|
|
}
|
|
|
|
return isl_mat_alloc(ctx, 1 + dim, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Given a matrix that maps a (possibly) parametric domain to
|
|
|
|
* a parametric domain, add in rows that map the "nparam" parameters onto
|
|
|
|
* themselves.
|
|
|
|
*/
|
|
|
|
static __isl_give isl_mat *insert_parameter_rows(__isl_take isl_mat *mat,
|
|
|
|
unsigned nparam)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (nparam == 0)
|
|
|
|
return mat;
|
|
|
|
if (!mat)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
mat = isl_mat_insert_rows(mat, 1, nparam);
|
|
|
|
if (!mat)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
for (i = 0; i < nparam; ++i) {
|
|
|
|
isl_seq_clr(mat->row[1 + i], mat->n_col);
|
|
|
|
isl_int_set(mat->row[1 + i][1 + i], mat->row[0][0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return mat;
|
|
|
|
}
|
|
|
|
|
2015-02-05 04:55:43 +08:00
|
|
|
/* Given a set of equalities
|
|
|
|
*
|
2016-03-26 03:38:18 +08:00
|
|
|
* -C(y) + M x = 0
|
2015-02-05 04:55:43 +08:00
|
|
|
*
|
|
|
|
* this function computes a unimodular transformation from a lower-dimensional
|
|
|
|
* space to the original space that bijectively maps the integer points x'
|
|
|
|
* in the lower-dimensional space to the integer points x in the original
|
|
|
|
* space that satisfy the equalities.
|
|
|
|
*
|
2016-03-26 03:38:18 +08:00
|
|
|
* The input is given as a matrix B = [ -C M ] and the output is a
|
2015-02-05 04:55:43 +08:00
|
|
|
* matrix that maps [1 x'] to [1 x].
|
2016-03-26 03:38:18 +08:00
|
|
|
* The number of equality constraints in B is assumed to be smaller than
|
|
|
|
* or equal to the number of variables x.
|
|
|
|
* "first" is the position of the first x variable.
|
2016-11-16 19:06:47 +08:00
|
|
|
* The preceding variables are considered to be y-variables.
|
2015-02-05 04:55:43 +08:00
|
|
|
* If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x'].
|
|
|
|
*
|
|
|
|
* First compute the (left) Hermite normal form of M,
|
|
|
|
*
|
|
|
|
* M [U1 U2] = M U = H = [H1 0]
|
|
|
|
* or
|
|
|
|
* M = H Q = [H1 0] [Q1]
|
|
|
|
* [Q2]
|
|
|
|
*
|
|
|
|
* with U, Q unimodular, Q = U^{-1} (and H lower triangular).
|
|
|
|
* Define the transformed variables as
|
|
|
|
*
|
|
|
|
* x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x
|
|
|
|
* [ x2' ] [Q2]
|
|
|
|
*
|
|
|
|
* The equalities then become
|
|
|
|
*
|
2016-03-26 03:38:18 +08:00
|
|
|
* -C(y) + H1 x1' = 0 or x1' = H1^{-1} C(y) = C'(y)
|
2015-02-05 04:55:43 +08:00
|
|
|
*
|
2016-03-26 03:38:18 +08:00
|
|
|
* If the denominator of the constant term does not divide the
|
|
|
|
* the common denominator of the coefficients of y, then every
|
|
|
|
* integer point is mapped to a non-integer point and then the original set
|
|
|
|
* has no integer solutions (since the x' are a unimodular transformation
|
|
|
|
* of the x). In this case, a zero-column matrix is returned.
|
2015-02-05 04:55:43 +08:00
|
|
|
* Otherwise, the transformation is given by
|
|
|
|
*
|
2016-03-26 03:38:18 +08:00
|
|
|
* x = U1 H1^{-1} C(y) + U2 x2'
|
2015-02-05 04:55:43 +08:00
|
|
|
*
|
|
|
|
* The inverse transformation is simply
|
|
|
|
*
|
|
|
|
* x2' = Q2 x
|
|
|
|
*/
|
2016-03-26 03:38:18 +08:00
|
|
|
__isl_give isl_mat *isl_mat_final_variable_compression(__isl_take isl_mat *B,
|
|
|
|
int first, __isl_give isl_mat **T2)
|
2015-02-05 04:55:43 +08:00
|
|
|
{
|
2016-03-26 03:38:18 +08:00
|
|
|
int i, n;
|
|
|
|
isl_ctx *ctx;
|
|
|
|
isl_mat *H = NULL, *C, *H1, *U = NULL, *U1, *U2;
|
2015-02-05 04:55:43 +08:00
|
|
|
unsigned dim;
|
|
|
|
|
|
|
|
if (T2)
|
|
|
|
*T2 = NULL;
|
|
|
|
if (!B)
|
|
|
|
goto error;
|
|
|
|
|
2016-03-26 03:38:18 +08:00
|
|
|
ctx = isl_mat_get_ctx(B);
|
2015-02-05 04:55:43 +08:00
|
|
|
dim = B->n_col - 1;
|
2016-03-26 03:38:18 +08:00
|
|
|
n = dim - first;
|
|
|
|
if (n < B->n_row)
|
|
|
|
isl_die(ctx, isl_error_invalid, "too many equality constraints",
|
|
|
|
goto error);
|
|
|
|
H = isl_mat_sub_alloc(B, 0, B->n_row, 1 + first, n);
|
2015-02-05 04:55:43 +08:00
|
|
|
H = isl_mat_left_hermite(H, 0, &U, T2);
|
|
|
|
if (!H || !U || (T2 && !*T2))
|
|
|
|
goto error;
|
|
|
|
if (T2) {
|
|
|
|
*T2 = isl_mat_drop_rows(*T2, 0, B->n_row);
|
2016-03-26 03:38:18 +08:00
|
|
|
*T2 = isl_mat_diagonal(isl_mat_identity(ctx, 1 + first), *T2);
|
2015-02-05 04:55:43 +08:00
|
|
|
if (!*T2)
|
|
|
|
goto error;
|
|
|
|
}
|
2016-03-26 03:38:18 +08:00
|
|
|
C = isl_mat_alloc(ctx, 1 + B->n_row, 1 + first);
|
2015-02-05 04:55:43 +08:00
|
|
|
if (!C)
|
|
|
|
goto error;
|
|
|
|
isl_int_set_si(C->row[0][0], 1);
|
2016-03-26 03:38:18 +08:00
|
|
|
isl_seq_clr(C->row[0] + 1, first);
|
|
|
|
isl_mat_sub_neg(ctx, C->row + 1, B->row, B->n_row, 0, 0, 1 + first);
|
2015-02-05 04:55:43 +08:00
|
|
|
H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
|
|
|
|
H1 = isl_mat_lin_to_aff(H1);
|
2016-03-26 03:38:18 +08:00
|
|
|
C = isl_mat_inverse_product(H1, C);
|
|
|
|
if (!C)
|
2015-02-05 04:55:43 +08:00
|
|
|
goto error;
|
|
|
|
isl_mat_free(H);
|
2016-03-26 03:38:18 +08:00
|
|
|
if (!isl_int_is_one(C->row[0][0])) {
|
|
|
|
isl_int g;
|
|
|
|
|
|
|
|
isl_int_init(g);
|
2015-02-05 04:55:43 +08:00
|
|
|
for (i = 0; i < B->n_row; ++i) {
|
2016-03-26 03:38:18 +08:00
|
|
|
isl_seq_gcd(C->row[1 + i] + 1, first, &g);
|
|
|
|
isl_int_gcd(g, g, C->row[0][0]);
|
|
|
|
if (!isl_int_is_divisible_by(C->row[1 + i][0], g))
|
|
|
|
break;
|
2015-02-05 04:55:43 +08:00
|
|
|
}
|
2016-03-26 03:38:18 +08:00
|
|
|
isl_int_clear(g);
|
|
|
|
|
|
|
|
if (i < B->n_row)
|
|
|
|
return empty_compression(ctx, dim, T2, B, C, U);
|
|
|
|
C = isl_mat_normalize(C);
|
2015-02-05 04:55:43 +08:00
|
|
|
}
|
|
|
|
U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, B->n_row);
|
|
|
|
U1 = isl_mat_lin_to_aff(U1);
|
|
|
|
U2 = isl_mat_sub_alloc(U, 0, U->n_row, B->n_row, U->n_row - B->n_row);
|
|
|
|
U2 = isl_mat_lin_to_aff(U2);
|
|
|
|
isl_mat_free(U);
|
2016-03-26 03:38:18 +08:00
|
|
|
C = isl_mat_product(U1, C);
|
|
|
|
C = isl_mat_aff_direct_sum(C, U2);
|
|
|
|
C = insert_parameter_rows(C, first);
|
2015-02-05 04:55:43 +08:00
|
|
|
|
|
|
|
isl_mat_free(B);
|
|
|
|
|
2016-03-26 03:38:18 +08:00
|
|
|
return C;
|
2015-02-05 04:55:43 +08:00
|
|
|
error:
|
|
|
|
isl_mat_free(B);
|
|
|
|
isl_mat_free(H);
|
|
|
|
isl_mat_free(U);
|
|
|
|
if (T2) {
|
|
|
|
isl_mat_free(*T2);
|
|
|
|
*T2 = NULL;
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2016-03-26 03:38:18 +08:00
|
|
|
/* Given a set of equalities
|
|
|
|
*
|
|
|
|
* M x - c = 0
|
|
|
|
*
|
|
|
|
* this function computes a unimodular transformation from a lower-dimensional
|
|
|
|
* space to the original space that bijectively maps the integer points x'
|
|
|
|
* in the lower-dimensional space to the integer points x in the original
|
|
|
|
* space that satisfy the equalities.
|
|
|
|
*
|
|
|
|
* The input is given as a matrix B = [ -c M ] and the output is a
|
|
|
|
* matrix that maps [1 x'] to [1 x].
|
|
|
|
* The number of equality constraints in B is assumed to be smaller than
|
|
|
|
* or equal to the number of variables x.
|
|
|
|
* If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x'].
|
|
|
|
*/
|
|
|
|
__isl_give isl_mat *isl_mat_variable_compression(__isl_take isl_mat *B,
|
|
|
|
__isl_give isl_mat **T2)
|
|
|
|
{
|
|
|
|
return isl_mat_final_variable_compression(B, 0, T2);
|
|
|
|
}
|
|
|
|
|
2015-09-01 23:42:13 +08:00
|
|
|
/* Return "bset" and set *T and *T2 to the identity transformation
|
|
|
|
* on "bset" (provided T and T2 are not NULL).
|
|
|
|
*/
|
|
|
|
static __isl_give isl_basic_set *return_with_identity(
|
|
|
|
__isl_take isl_basic_set *bset, __isl_give isl_mat **T,
|
|
|
|
__isl_give isl_mat **T2)
|
|
|
|
{
|
[Polly] Update ISL to isl-0.22.1-87-gfee05a13.
The primary motivation is to fix an assertion failure in
isl_basic_map_alloc_equality:
isl_assert(ctx, room_for_con(bmap, 1), return -1);
Although the assertion does not occur anymore, I could not identify
which of ISL's commits fixed it.
Compared to the previous ISL version, Polly requires some changes for this update
* Since ISL commit
20d3574 "perform parameter alignment by modifying both arguments to function"
isl_*_gist_* and similar functions do not always align the paramter
list anymore. This caused the parameter lists in JScop files to
become out-of-sync. Since many regression tests use JScop files with
a fixed parameter list and order, we explicitly call align_params to
ensure a predictable parameter list.
* ISL changed some return types to isl_size, a typedef of (signed) int.
This caused some issues where the return type was unsigned int before:
- No overload for std::max(unsigned,isl_size)
- It cause additional 'mixed signed/unsigned comparison' warnings.
Since they do not break compilation, and sizes larger than 2^31
were never supported, I am going to fix it separately.
* With the change to isl_size, commit
57d547 "isl_*_list_size: return isl_size"
also changed the return value in case of an error from 0 to -1. This
caused undefined looping over isl_iterator since the 'end iterator'
got index -1, never reached from the 'begin iterator' with index 0.
* Some internal changes in ISL caused the number of operations to
increase when determining access ranges to determine aliasing
overlaps. In one test, this caused exceeding the default limit of
800000. The operations-limit was disabled for this test.
2020-02-11 04:51:33 +08:00
|
|
|
isl_size dim;
|
2015-09-01 23:42:13 +08:00
|
|
|
isl_mat *id;
|
|
|
|
|
[Polly] Update ISL to isl-0.22.1-87-gfee05a13.
The primary motivation is to fix an assertion failure in
isl_basic_map_alloc_equality:
isl_assert(ctx, room_for_con(bmap, 1), return -1);
Although the assertion does not occur anymore, I could not identify
which of ISL's commits fixed it.
Compared to the previous ISL version, Polly requires some changes for this update
* Since ISL commit
20d3574 "perform parameter alignment by modifying both arguments to function"
isl_*_gist_* and similar functions do not always align the paramter
list anymore. This caused the parameter lists in JScop files to
become out-of-sync. Since many regression tests use JScop files with
a fixed parameter list and order, we explicitly call align_params to
ensure a predictable parameter list.
* ISL changed some return types to isl_size, a typedef of (signed) int.
This caused some issues where the return type was unsigned int before:
- No overload for std::max(unsigned,isl_size)
- It cause additional 'mixed signed/unsigned comparison' warnings.
Since they do not break compilation, and sizes larger than 2^31
were never supported, I am going to fix it separately.
* With the change to isl_size, commit
57d547 "isl_*_list_size: return isl_size"
also changed the return value in case of an error from 0 to -1. This
caused undefined looping over isl_iterator since the 'end iterator'
got index -1, never reached from the 'begin iterator' with index 0.
* Some internal changes in ISL caused the number of operations to
increase when determining access ranges to determine aliasing
overlaps. In one test, this caused exceeding the default limit of
800000. The operations-limit was disabled for this test.
2020-02-11 04:51:33 +08:00
|
|
|
dim = isl_basic_set_dim(bset, isl_dim_set);
|
|
|
|
if (dim < 0)
|
|
|
|
return isl_basic_set_free(bset);
|
2015-09-01 23:42:13 +08:00
|
|
|
if (!T && !T2)
|
|
|
|
return bset;
|
|
|
|
|
|
|
|
id = isl_mat_identity(isl_basic_map_get_ctx(bset), 1 + dim);
|
|
|
|
if (T)
|
|
|
|
*T = isl_mat_copy(id);
|
|
|
|
if (T2)
|
|
|
|
*T2 = isl_mat_copy(id);
|
|
|
|
isl_mat_free(id);
|
|
|
|
|
|
|
|
return bset;
|
|
|
|
}
|
|
|
|
|
2015-02-05 04:55:43 +08:00
|
|
|
/* Use the n equalities of bset to unimodularly transform the
|
|
|
|
* variables x such that n transformed variables x1' have a constant value
|
|
|
|
* and rewrite the constraints of bset in terms of the remaining
|
|
|
|
* transformed variables x2'. The matrix pointed to by T maps
|
|
|
|
* the new variables x2' back to the original variables x, while T2
|
|
|
|
* maps the original variables to the new variables.
|
|
|
|
*/
|
[Polly] Update ISL to isl-0.22.1-87-gfee05a13.
The primary motivation is to fix an assertion failure in
isl_basic_map_alloc_equality:
isl_assert(ctx, room_for_con(bmap, 1), return -1);
Although the assertion does not occur anymore, I could not identify
which of ISL's commits fixed it.
Compared to the previous ISL version, Polly requires some changes for this update
* Since ISL commit
20d3574 "perform parameter alignment by modifying both arguments to function"
isl_*_gist_* and similar functions do not always align the paramter
list anymore. This caused the parameter lists in JScop files to
become out-of-sync. Since many regression tests use JScop files with
a fixed parameter list and order, we explicitly call align_params to
ensure a predictable parameter list.
* ISL changed some return types to isl_size, a typedef of (signed) int.
This caused some issues where the return type was unsigned int before:
- No overload for std::max(unsigned,isl_size)
- It cause additional 'mixed signed/unsigned comparison' warnings.
Since they do not break compilation, and sizes larger than 2^31
were never supported, I am going to fix it separately.
* With the change to isl_size, commit
57d547 "isl_*_list_size: return isl_size"
also changed the return value in case of an error from 0 to -1. This
caused undefined looping over isl_iterator since the 'end iterator'
got index -1, never reached from the 'begin iterator' with index 0.
* Some internal changes in ISL caused the number of operations to
increase when determining access ranges to determine aliasing
overlaps. In one test, this caused exceeding the default limit of
800000. The operations-limit was disabled for this test.
2020-02-11 04:51:33 +08:00
|
|
|
static __isl_give isl_basic_set *compress_variables(
|
|
|
|
__isl_take isl_basic_set *bset,
|
|
|
|
__isl_give isl_mat **T, __isl_give isl_mat **T2)
|
2015-02-05 04:55:43 +08:00
|
|
|
{
|
|
|
|
struct isl_mat *B, *TC;
|
[Polly] Update ISL to isl-0.22.1-87-gfee05a13.
The primary motivation is to fix an assertion failure in
isl_basic_map_alloc_equality:
isl_assert(ctx, room_for_con(bmap, 1), return -1);
Although the assertion does not occur anymore, I could not identify
which of ISL's commits fixed it.
Compared to the previous ISL version, Polly requires some changes for this update
* Since ISL commit
20d3574 "perform parameter alignment by modifying both arguments to function"
isl_*_gist_* and similar functions do not always align the paramter
list anymore. This caused the parameter lists in JScop files to
become out-of-sync. Since many regression tests use JScop files with
a fixed parameter list and order, we explicitly call align_params to
ensure a predictable parameter list.
* ISL changed some return types to isl_size, a typedef of (signed) int.
This caused some issues where the return type was unsigned int before:
- No overload for std::max(unsigned,isl_size)
- It cause additional 'mixed signed/unsigned comparison' warnings.
Since they do not break compilation, and sizes larger than 2^31
were never supported, I am going to fix it separately.
* With the change to isl_size, commit
57d547 "isl_*_list_size: return isl_size"
also changed the return value in case of an error from 0 to -1. This
caused undefined looping over isl_iterator since the 'end iterator'
got index -1, never reached from the 'begin iterator' with index 0.
* Some internal changes in ISL caused the number of operations to
increase when determining access ranges to determine aliasing
overlaps. In one test, this caused exceeding the default limit of
800000. The operations-limit was disabled for this test.
2020-02-11 04:51:33 +08:00
|
|
|
isl_size dim;
|
2015-02-05 04:55:43 +08:00
|
|
|
|
|
|
|
if (T)
|
|
|
|
*T = NULL;
|
|
|
|
if (T2)
|
|
|
|
*T2 = NULL;
|
[Polly] Update ISL to isl-0.22.1-87-gfee05a13.
The primary motivation is to fix an assertion failure in
isl_basic_map_alloc_equality:
isl_assert(ctx, room_for_con(bmap, 1), return -1);
Although the assertion does not occur anymore, I could not identify
which of ISL's commits fixed it.
Compared to the previous ISL version, Polly requires some changes for this update
* Since ISL commit
20d3574 "perform parameter alignment by modifying both arguments to function"
isl_*_gist_* and similar functions do not always align the paramter
list anymore. This caused the parameter lists in JScop files to
become out-of-sync. Since many regression tests use JScop files with
a fixed parameter list and order, we explicitly call align_params to
ensure a predictable parameter list.
* ISL changed some return types to isl_size, a typedef of (signed) int.
This caused some issues where the return type was unsigned int before:
- No overload for std::max(unsigned,isl_size)
- It cause additional 'mixed signed/unsigned comparison' warnings.
Since they do not break compilation, and sizes larger than 2^31
were never supported, I am going to fix it separately.
* With the change to isl_size, commit
57d547 "isl_*_list_size: return isl_size"
also changed the return value in case of an error from 0 to -1. This
caused undefined looping over isl_iterator since the 'end iterator'
got index -1, never reached from the 'begin iterator' with index 0.
* Some internal changes in ISL caused the number of operations to
increase when determining access ranges to determine aliasing
overlaps. In one test, this caused exceeding the default limit of
800000. The operations-limit was disabled for this test.
2020-02-11 04:51:33 +08:00
|
|
|
if (isl_basic_set_check_no_params(bset) < 0 ||
|
|
|
|
isl_basic_set_check_no_locals(bset) < 0)
|
|
|
|
return isl_basic_set_free(bset);
|
|
|
|
dim = isl_basic_set_dim(bset, isl_dim_set);
|
|
|
|
if (dim < 0)
|
|
|
|
return isl_basic_set_free(bset);
|
2015-02-05 04:55:43 +08:00
|
|
|
isl_assert(bset->ctx, bset->n_eq <= dim, goto error);
|
|
|
|
if (bset->n_eq == 0)
|
2015-09-01 23:42:13 +08:00
|
|
|
return return_with_identity(bset, T, T2);
|
2015-02-05 04:55:43 +08:00
|
|
|
|
|
|
|
B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + dim);
|
|
|
|
TC = isl_mat_variable_compression(B, T2);
|
|
|
|
if (!TC)
|
|
|
|
goto error;
|
|
|
|
if (TC->n_col == 0) {
|
|
|
|
isl_mat_free(TC);
|
|
|
|
if (T2) {
|
|
|
|
isl_mat_free(*T2);
|
|
|
|
*T2 = NULL;
|
|
|
|
}
|
2016-12-23 07:08:57 +08:00
|
|
|
bset = isl_basic_set_set_to_empty(bset);
|
|
|
|
return return_with_identity(bset, T, T2);
|
2015-02-05 04:55:43 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
bset = isl_basic_set_preimage(bset, T ? isl_mat_copy(TC) : TC);
|
|
|
|
if (T)
|
|
|
|
*T = TC;
|
|
|
|
return bset;
|
|
|
|
error:
|
|
|
|
isl_basic_set_free(bset);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2020-08-21 13:17:29 +08:00
|
|
|
__isl_give isl_basic_set *isl_basic_set_remove_equalities(
|
|
|
|
__isl_take isl_basic_set *bset, __isl_give isl_mat **T,
|
|
|
|
__isl_give isl_mat **T2)
|
2015-02-05 04:55:43 +08:00
|
|
|
{
|
|
|
|
if (T)
|
|
|
|
*T = NULL;
|
|
|
|
if (T2)
|
|
|
|
*T2 = NULL;
|
[Polly] Update ISL to isl-0.22.1-87-gfee05a13.
The primary motivation is to fix an assertion failure in
isl_basic_map_alloc_equality:
isl_assert(ctx, room_for_con(bmap, 1), return -1);
Although the assertion does not occur anymore, I could not identify
which of ISL's commits fixed it.
Compared to the previous ISL version, Polly requires some changes for this update
* Since ISL commit
20d3574 "perform parameter alignment by modifying both arguments to function"
isl_*_gist_* and similar functions do not always align the paramter
list anymore. This caused the parameter lists in JScop files to
become out-of-sync. Since many regression tests use JScop files with
a fixed parameter list and order, we explicitly call align_params to
ensure a predictable parameter list.
* ISL changed some return types to isl_size, a typedef of (signed) int.
This caused some issues where the return type was unsigned int before:
- No overload for std::max(unsigned,isl_size)
- It cause additional 'mixed signed/unsigned comparison' warnings.
Since they do not break compilation, and sizes larger than 2^31
were never supported, I am going to fix it separately.
* With the change to isl_size, commit
57d547 "isl_*_list_size: return isl_size"
also changed the return value in case of an error from 0 to -1. This
caused undefined looping over isl_iterator since the 'end iterator'
got index -1, never reached from the 'begin iterator' with index 0.
* Some internal changes in ISL caused the number of operations to
increase when determining access ranges to determine aliasing
overlaps. In one test, this caused exceeding the default limit of
800000. The operations-limit was disabled for this test.
2020-02-11 04:51:33 +08:00
|
|
|
if (isl_basic_set_check_no_params(bset) < 0)
|
|
|
|
return isl_basic_set_free(bset);
|
2015-02-05 04:55:43 +08:00
|
|
|
bset = isl_basic_set_gauss(bset, NULL);
|
|
|
|
if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
|
2015-09-01 23:42:13 +08:00
|
|
|
return return_with_identity(bset, T, T2);
|
2015-02-05 04:55:43 +08:00
|
|
|
bset = compress_variables(bset, T, T2);
|
|
|
|
return bset;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if dimension dim belongs to a residue class
|
|
|
|
* i_dim \equiv r mod m
|
|
|
|
* with m != 1 and if so return m in *modulo and r in *residue.
|
|
|
|
* As a special case, when i_dim has a fixed value v, then
|
|
|
|
* *modulo is set to 0 and *residue to v.
|
|
|
|
*
|
|
|
|
* If i_dim does not belong to such a residue class, then *modulo
|
|
|
|
* is set to 1 and *residue is set to 0.
|
|
|
|
*/
|
2017-02-17 13:11:16 +08:00
|
|
|
isl_stat isl_basic_set_dim_residue_class(__isl_keep isl_basic_set *bset,
|
2015-02-05 04:55:43 +08:00
|
|
|
int pos, isl_int *modulo, isl_int *residue)
|
|
|
|
{
|
2017-02-17 13:11:16 +08:00
|
|
|
isl_bool fixed;
|
2015-02-05 04:55:43 +08:00
|
|
|
struct isl_ctx *ctx;
|
|
|
|
struct isl_mat *H = NULL, *U = NULL, *C, *H1, *U1;
|
[Polly] Update ISL to isl-0.22.1-87-gfee05a13.
The primary motivation is to fix an assertion failure in
isl_basic_map_alloc_equality:
isl_assert(ctx, room_for_con(bmap, 1), return -1);
Although the assertion does not occur anymore, I could not identify
which of ISL's commits fixed it.
Compared to the previous ISL version, Polly requires some changes for this update
* Since ISL commit
20d3574 "perform parameter alignment by modifying both arguments to function"
isl_*_gist_* and similar functions do not always align the paramter
list anymore. This caused the parameter lists in JScop files to
become out-of-sync. Since many regression tests use JScop files with
a fixed parameter list and order, we explicitly call align_params to
ensure a predictable parameter list.
* ISL changed some return types to isl_size, a typedef of (signed) int.
This caused some issues where the return type was unsigned int before:
- No overload for std::max(unsigned,isl_size)
- It cause additional 'mixed signed/unsigned comparison' warnings.
Since they do not break compilation, and sizes larger than 2^31
were never supported, I am going to fix it separately.
* With the change to isl_size, commit
57d547 "isl_*_list_size: return isl_size"
also changed the return value in case of an error from 0 to -1. This
caused undefined looping over isl_iterator since the 'end iterator'
got index -1, never reached from the 'begin iterator' with index 0.
* Some internal changes in ISL caused the number of operations to
increase when determining access ranges to determine aliasing
overlaps. In one test, this caused exceeding the default limit of
800000. The operations-limit was disabled for this test.
2020-02-11 04:51:33 +08:00
|
|
|
isl_size total;
|
|
|
|
isl_size nparam;
|
2015-02-05 04:55:43 +08:00
|
|
|
|
|
|
|
if (!bset || !modulo || !residue)
|
2017-02-17 13:11:16 +08:00
|
|
|
return isl_stat_error;
|
2015-02-05 04:55:43 +08:00
|
|
|
|
2017-02-17 13:11:16 +08:00
|
|
|
fixed = isl_basic_set_plain_dim_is_fixed(bset, pos, residue);
|
|
|
|
if (fixed < 0)
|
|
|
|
return isl_stat_error;
|
|
|
|
if (fixed) {
|
2015-02-05 04:55:43 +08:00
|
|
|
isl_int_set_si(*modulo, 0);
|
2017-02-17 13:11:16 +08:00
|
|
|
return isl_stat_ok;
|
2015-02-05 04:55:43 +08:00
|
|
|
}
|
|
|
|
|
2015-02-26 03:34:52 +08:00
|
|
|
ctx = isl_basic_set_get_ctx(bset);
|
[Polly] Update ISL to isl-0.22.1-87-gfee05a13.
The primary motivation is to fix an assertion failure in
isl_basic_map_alloc_equality:
isl_assert(ctx, room_for_con(bmap, 1), return -1);
Although the assertion does not occur anymore, I could not identify
which of ISL's commits fixed it.
Compared to the previous ISL version, Polly requires some changes for this update
* Since ISL commit
20d3574 "perform parameter alignment by modifying both arguments to function"
isl_*_gist_* and similar functions do not always align the paramter
list anymore. This caused the parameter lists in JScop files to
become out-of-sync. Since many regression tests use JScop files with
a fixed parameter list and order, we explicitly call align_params to
ensure a predictable parameter list.
* ISL changed some return types to isl_size, a typedef of (signed) int.
This caused some issues where the return type was unsigned int before:
- No overload for std::max(unsigned,isl_size)
- It cause additional 'mixed signed/unsigned comparison' warnings.
Since they do not break compilation, and sizes larger than 2^31
were never supported, I am going to fix it separately.
* With the change to isl_size, commit
57d547 "isl_*_list_size: return isl_size"
also changed the return value in case of an error from 0 to -1. This
caused undefined looping over isl_iterator since the 'end iterator'
got index -1, never reached from the 'begin iterator' with index 0.
* Some internal changes in ISL caused the number of operations to
increase when determining access ranges to determine aliasing
overlaps. In one test, this caused exceeding the default limit of
800000. The operations-limit was disabled for this test.
2020-02-11 04:51:33 +08:00
|
|
|
total = isl_basic_set_dim(bset, isl_dim_all);
|
|
|
|
nparam = isl_basic_set_dim(bset, isl_dim_param);
|
|
|
|
if (total < 0 || nparam < 0)
|
|
|
|
return isl_stat_error;
|
2015-02-26 03:34:52 +08:00
|
|
|
H = isl_mat_sub_alloc6(ctx, bset->eq, 0, bset->n_eq, 1, total);
|
2015-02-05 04:55:43 +08:00
|
|
|
H = isl_mat_left_hermite(H, 0, &U, NULL);
|
|
|
|
if (!H)
|
2017-02-17 13:11:16 +08:00
|
|
|
return isl_stat_error;
|
2015-02-05 04:55:43 +08:00
|
|
|
|
|
|
|
isl_seq_gcd(U->row[nparam + pos]+bset->n_eq,
|
|
|
|
total-bset->n_eq, modulo);
|
|
|
|
if (isl_int_is_zero(*modulo))
|
|
|
|
isl_int_set_si(*modulo, 1);
|
|
|
|
if (isl_int_is_one(*modulo)) {
|
|
|
|
isl_int_set_si(*residue, 0);
|
|
|
|
isl_mat_free(H);
|
|
|
|
isl_mat_free(U);
|
2017-02-17 13:11:16 +08:00
|
|
|
return isl_stat_ok;
|
2015-02-05 04:55:43 +08:00
|
|
|
}
|
|
|
|
|
2015-02-26 03:34:52 +08:00
|
|
|
C = isl_mat_alloc(ctx, 1 + bset->n_eq, 1);
|
2015-02-05 04:55:43 +08:00
|
|
|
if (!C)
|
|
|
|
goto error;
|
|
|
|
isl_int_set_si(C->row[0][0], 1);
|
2015-02-26 03:34:52 +08:00
|
|
|
isl_mat_sub_neg(ctx, C->row + 1, bset->eq, bset->n_eq, 0, 0, 1);
|
2015-02-05 04:55:43 +08:00
|
|
|
H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
|
|
|
|
H1 = isl_mat_lin_to_aff(H1);
|
|
|
|
C = isl_mat_inverse_product(H1, C);
|
|
|
|
isl_mat_free(H);
|
|
|
|
U1 = isl_mat_sub_alloc(U, nparam+pos, 1, 0, bset->n_eq);
|
|
|
|
U1 = isl_mat_lin_to_aff(U1);
|
|
|
|
isl_mat_free(U);
|
|
|
|
C = isl_mat_product(U1, C);
|
|
|
|
if (!C)
|
2017-02-17 13:11:16 +08:00
|
|
|
return isl_stat_error;
|
2015-02-05 04:55:43 +08:00
|
|
|
if (!isl_int_is_divisible_by(C->row[1][0], C->row[0][0])) {
|
|
|
|
bset = isl_basic_set_copy(bset);
|
|
|
|
bset = isl_basic_set_set_to_empty(bset);
|
|
|
|
isl_basic_set_free(bset);
|
|
|
|
isl_int_set_si(*modulo, 1);
|
|
|
|
isl_int_set_si(*residue, 0);
|
2017-02-17 13:11:16 +08:00
|
|
|
return isl_stat_ok;
|
2015-02-05 04:55:43 +08:00
|
|
|
}
|
|
|
|
isl_int_divexact(*residue, C->row[1][0], C->row[0][0]);
|
|
|
|
isl_int_fdiv_r(*residue, *residue, *modulo);
|
|
|
|
isl_mat_free(C);
|
2017-02-17 13:11:16 +08:00
|
|
|
return isl_stat_ok;
|
2015-02-05 04:55:43 +08:00
|
|
|
error:
|
|
|
|
isl_mat_free(H);
|
|
|
|
isl_mat_free(U);
|
2017-02-17 13:11:16 +08:00
|
|
|
return isl_stat_error;
|
2015-02-05 04:55:43 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if dimension dim belongs to a residue class
|
|
|
|
* i_dim \equiv r mod m
|
|
|
|
* with m != 1 and if so return m in *modulo and r in *residue.
|
|
|
|
* As a special case, when i_dim has a fixed value v, then
|
|
|
|
* *modulo is set to 0 and *residue to v.
|
|
|
|
*
|
|
|
|
* If i_dim does not belong to such a residue class, then *modulo
|
|
|
|
* is set to 1 and *residue is set to 0.
|
|
|
|
*/
|
2017-02-17 13:11:16 +08:00
|
|
|
isl_stat isl_set_dim_residue_class(__isl_keep isl_set *set,
|
2015-02-05 04:55:43 +08:00
|
|
|
int pos, isl_int *modulo, isl_int *residue)
|
|
|
|
{
|
|
|
|
isl_int m;
|
|
|
|
isl_int r;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (!set || !modulo || !residue)
|
2017-02-17 13:11:16 +08:00
|
|
|
return isl_stat_error;
|
2015-02-05 04:55:43 +08:00
|
|
|
|
|
|
|
if (set->n == 0) {
|
|
|
|
isl_int_set_si(*modulo, 0);
|
|
|
|
isl_int_set_si(*residue, 0);
|
2017-02-17 13:11:16 +08:00
|
|
|
return isl_stat_ok;
|
2015-02-05 04:55:43 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (isl_basic_set_dim_residue_class(set->p[0], pos, modulo, residue)<0)
|
2017-02-17 13:11:16 +08:00
|
|
|
return isl_stat_error;
|
2015-02-05 04:55:43 +08:00
|
|
|
|
|
|
|
if (set->n == 1)
|
2017-02-17 13:11:16 +08:00
|
|
|
return isl_stat_ok;
|
2015-02-05 04:55:43 +08:00
|
|
|
|
|
|
|
if (isl_int_is_one(*modulo))
|
2017-02-17 13:11:16 +08:00
|
|
|
return isl_stat_ok;
|
2015-02-05 04:55:43 +08:00
|
|
|
|
|
|
|
isl_int_init(m);
|
|
|
|
isl_int_init(r);
|
|
|
|
|
|
|
|
for (i = 1; i < set->n; ++i) {
|
|
|
|
if (isl_basic_set_dim_residue_class(set->p[i], pos, &m, &r) < 0)
|
|
|
|
goto error;
|
|
|
|
isl_int_gcd(*modulo, *modulo, m);
|
|
|
|
isl_int_sub(m, *residue, r);
|
|
|
|
isl_int_gcd(*modulo, *modulo, m);
|
|
|
|
if (!isl_int_is_zero(*modulo))
|
|
|
|
isl_int_fdiv_r(*residue, *residue, *modulo);
|
|
|
|
if (isl_int_is_one(*modulo))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
isl_int_clear(m);
|
|
|
|
isl_int_clear(r);
|
|
|
|
|
2017-02-17 13:11:16 +08:00
|
|
|
return isl_stat_ok;
|
2015-02-05 04:55:43 +08:00
|
|
|
error:
|
|
|
|
isl_int_clear(m);
|
|
|
|
isl_int_clear(r);
|
2017-02-17 13:11:16 +08:00
|
|
|
return isl_stat_error;
|
2015-02-05 04:55:43 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if dimension "dim" belongs to a residue class
|
|
|
|
* i_dim \equiv r mod m
|
|
|
|
* with m != 1 and if so return m in *modulo and r in *residue.
|
|
|
|
* As a special case, when i_dim has a fixed value v, then
|
|
|
|
* *modulo is set to 0 and *residue to v.
|
|
|
|
*
|
|
|
|
* If i_dim does not belong to such a residue class, then *modulo
|
|
|
|
* is set to 1 and *residue is set to 0.
|
|
|
|
*/
|
2015-05-28 21:32:11 +08:00
|
|
|
isl_stat isl_set_dim_residue_class_val(__isl_keep isl_set *set,
|
2015-02-05 04:55:43 +08:00
|
|
|
int pos, __isl_give isl_val **modulo, __isl_give isl_val **residue)
|
|
|
|
{
|
|
|
|
*modulo = NULL;
|
|
|
|
*residue = NULL;
|
|
|
|
if (!set)
|
2015-05-28 21:32:11 +08:00
|
|
|
return isl_stat_error;
|
2015-02-05 04:55:43 +08:00
|
|
|
*modulo = isl_val_alloc(isl_set_get_ctx(set));
|
|
|
|
*residue = isl_val_alloc(isl_set_get_ctx(set));
|
|
|
|
if (!*modulo || !*residue)
|
|
|
|
goto error;
|
|
|
|
if (isl_set_dim_residue_class(set, pos,
|
|
|
|
&(*modulo)->n, &(*residue)->n) < 0)
|
|
|
|
goto error;
|
|
|
|
isl_int_set_si((*modulo)->d, 1);
|
|
|
|
isl_int_set_si((*residue)->d, 1);
|
2015-05-28 21:32:11 +08:00
|
|
|
return isl_stat_ok;
|
2015-02-05 04:55:43 +08:00
|
|
|
error:
|
|
|
|
isl_val_free(*modulo);
|
|
|
|
isl_val_free(*residue);
|
2015-05-28 21:32:11 +08:00
|
|
|
return isl_stat_error;
|
2015-02-05 04:55:43 +08:00
|
|
|
}
|