llvm-project/mlir/lib/Parser/Parser.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

311 lines
12 KiB
C
Raw Normal View History

//===- Parser.h - MLIR Base Parser Class ------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_LIB_PARSER_PARSER_H
#define MLIR_LIB_PARSER_PARSER_H
#include "ParserState.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/OpImplementation.h"
namespace mlir {
namespace detail {
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
/// This class implement support for parsing global entities like attributes and
/// types. It is intended to be subclassed by specialized subparsers that
/// include state.
class Parser {
public:
using Delimiter = OpAsmParser::Delimiter;
Builder builder;
Parser(ParserState &state) : builder(state.context), state(state) {}
// Helper methods to get stuff from the parser-global state.
ParserState &getState() const { return state; }
MLIRContext *getContext() const { return state.context; }
const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); }
/// Parse a comma-separated list of elements up until the specified end token.
ParseResult
parseCommaSeparatedListUntil(Token::Kind rightToken,
function_ref<ParseResult()> parseElement,
bool allowEmptyList = true);
/// Parse a list of comma-separated items with an optional delimiter. If a
/// delimiter is provided, then an empty list is allowed. If not, then at
/// least one element will be parsed.
ParseResult
parseCommaSeparatedList(Delimiter delimiter,
function_ref<ParseResult()> parseElementFn,
StringRef contextMessage = StringRef());
/// Parse a comma separated list of elements that must have at least one entry
/// in it.
ParseResult
parseCommaSeparatedList(function_ref<ParseResult()> parseElementFn) {
return parseCommaSeparatedList(Delimiter::None, parseElementFn);
}
ParseResult parsePrettyDialectSymbolName(StringRef &prettyName);
// We have two forms of parsing methods - those that return a non-null
// pointer on success, and those that return a ParseResult to indicate whether
// they returned a failure. The second class fills in by-reference arguments
// as the results of their action.
//===--------------------------------------------------------------------===//
// Error Handling
//===--------------------------------------------------------------------===//
/// Emit an error and return failure.
InFlightDiagnostic emitError(const Twine &message = {}) {
return emitError(state.curToken.getLoc(), message);
}
InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message = {});
/// Encode the specified source location information into an attribute for
/// attachment to the IR.
Location getEncodedSourceLocation(llvm::SMLoc loc) {
// If there are no active nested parsers, we can get the encoded source
// location directly.
if (state.parserDepth == 0)
return state.lex.getEncodedSourceLocation(loc);
// Otherwise, we need to re-encode it to point to the top level buffer.
return state.symbols.topLevelLexer->getEncodedSourceLocation(
remapLocationToTopLevelBuffer(loc));
}
/// Remaps the given SMLoc to the top level lexer of the parser. This is used
/// to adjust locations of potentially nested parsers to ensure that they can
/// be emitted properly as diagnostics.
llvm::SMLoc remapLocationToTopLevelBuffer(llvm::SMLoc loc) {
// If there are no active nested parsers, we can return location directly.
SymbolState &symbols = state.symbols;
if (state.parserDepth == 0)
return loc;
assert(symbols.topLevelLexer && "expected valid top-level lexer");
// Otherwise, we need to remap the location to the main parser. This is
// simply offseting the location onto the location of the last nested
// parser.
size_t offset = loc.getPointer() - state.lex.getBufferBegin();
auto *rawLoc =
symbols.nestedParserLocs[state.parserDepth - 1].getPointer() + offset;
return llvm::SMLoc::getFromPointer(rawLoc);
}
//===--------------------------------------------------------------------===//
// Token Parsing
//===--------------------------------------------------------------------===//
/// Return the current token the parser is inspecting.
const Token &getToken() const { return state.curToken; }
StringRef getTokenSpelling() const { return state.curToken.getSpelling(); }
/// If the current token has the specified kind, consume it and return true.
/// If not, return false.
bool consumeIf(Token::Kind kind) {
if (state.curToken.isNot(kind))
return false;
consumeToken(kind);
return true;
}
/// Advance the current lexer onto the next token.
void consumeToken() {
assert(state.curToken.isNot(Token::eof, Token::error) &&
"shouldn't advance past EOF or errors");
state.curToken = state.lex.lexToken();
}
/// Advance the current lexer onto the next token, asserting what the expected
/// current token is. This is preferred to the above method because it leads
/// to more self-documenting code with better checking.
void consumeToken(Token::Kind kind) {
assert(state.curToken.is(kind) && "consumed an unexpected token");
consumeToken();
}
/// Consume the specified token if present and return success. On failure,
/// output a diagnostic and return failure.
ParseResult parseToken(Token::Kind expectedToken, const Twine &message);
/// Parse an optional integer value from the stream.
OptionalParseResult parseOptionalInteger(APInt &result);
/// Parse a floating point value from an integer literal token.
ParseResult parseFloatFromIntegerLiteral(Optional<APFloat> &result,
const Token &tok, bool isNegative,
const llvm::fltSemantics &semantics,
size_t typeSizeInBits);
//===--------------------------------------------------------------------===//
// Type Parsing
//===--------------------------------------------------------------------===//
/// Invoke the `getChecked` method of the given Attribute or Type class, using
/// the provided location to emit errors in the case of failure. Note that
/// unlike `OpBuilder::getType`, this method does not implicitly insert a
/// context parameter.
template <typename T, typename... ParamsT>
T getChecked(llvm::SMLoc loc, ParamsT &&...params) {
return T::getChecked([&] { return emitError(loc); },
std::forward<ParamsT>(params)...);
}
ParseResult parseFunctionResultTypes(SmallVectorImpl<Type> &elements);
ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements);
ParseResult parseTypeListParens(SmallVectorImpl<Type> &elements);
/// Optionally parse a type.
OptionalParseResult parseOptionalType(Type &type);
/// Parse an arbitrary type.
Type parseType();
/// Parse a complex type.
Type parseComplexType();
/// Parse an extended type.
Type parseExtendedType();
/// Parse a function type.
Type parseFunctionType();
/// Parse a memref type.
Type parseMemRefType();
/// Parse a non function type.
Type parseNonFunctionType();
/// Parse a tensor type.
Type parseTensorType();
/// Parse a tuple type.
Type parseTupleType();
/// Parse a vector type.
VectorType parseVectorType();
ParseResult parseVectorDimensionList(SmallVectorImpl<int64_t> &dimensions,
unsigned &numScalableDims);
ParseResult parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions,
bool allowDynamic = true);
ParseResult parseIntegerInDimensionList(int64_t &value);
ParseResult parseXInDimensionList();
/// Parse strided layout specification.
ParseResult parseStridedLayout(int64_t &offset,
SmallVectorImpl<int64_t> &strides);
// Parse a brace-delimiter list of comma-separated integers with `?` as an
// unknown marker.
ParseResult parseStrideList(SmallVectorImpl<int64_t> &dimensions);
//===--------------------------------------------------------------------===//
// Attribute Parsing
//===--------------------------------------------------------------------===//
/// Parse an arbitrary attribute with an optional type.
Attribute parseAttribute(Type type = {});
/// Parse an optional attribute with the provided type.
OptionalParseResult parseOptionalAttribute(Attribute &attribute,
Type type = {});
OptionalParseResult parseOptionalAttribute(ArrayAttr &attribute, Type type);
OptionalParseResult parseOptionalAttribute(StringAttr &attribute, Type type);
[mlir][PDL] Add a PDL Interpreter Dialect The PDL Interpreter dialect provides a lower level abstraction compared to the PDL dialect, and is targeted towards low level optimization and interpreter code generation. The dialect operations encapsulates low-level pattern match and rewrite "primitives", such as navigating the IR (Operation::getOperand), creating new operations (OpBuilder::create), etc. Many of the operations within this dialect also fuse branching control flow with some form of a predicate comparison operation. This type of fusion reduces the amount of work that an interpreter must do when executing. An example of this representation is shown below: ```mlir // The following high level PDL pattern: pdl.pattern : benefit(1) { %resultType = pdl.type %inputOperand = pdl.input %root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType pdl.rewrite %root { pdl.replace %root with (%inputOperand) } } // May be represented in the interpreter dialect as follows: module { func @matcher(%arg0: !pdl.operation) { pdl_interp.check_operation_name of %arg0 is "foo.op" -> ^bb2, ^bb1 ^bb1: pdl_interp.return ^bb2: pdl_interp.check_operand_count of %arg0 is 1 -> ^bb3, ^bb1 ^bb3: pdl_interp.check_result_count of %arg0 is 1 -> ^bb4, ^bb1 ^bb4: %0 = pdl_interp.get_operand 0 of %arg0 pdl_interp.is_not_null %0 : !pdl.value -> ^bb5, ^bb1 ^bb5: %1 = pdl_interp.get_result 0 of %arg0 pdl_interp.is_not_null %1 : !pdl.value -> ^bb6, ^bb1 ^bb6: pdl_interp.record_match @rewriters::@rewriter(%0, %arg0 : !pdl.value, !pdl.operation) : benefit(1), loc([%arg0]), root("foo.op") -> ^bb1 } module @rewriters { func @rewriter(%arg0: !pdl.value, %arg1: !pdl.operation) { pdl_interp.replace %arg1 with(%arg0) pdl_interp.return } } } ``` Differential Revision: https://reviews.llvm.org/D84579
2020-08-26 20:12:07 +08:00
/// Parse an optional attribute that is demarcated by a specific token.
template <typename AttributeT>
OptionalParseResult parseOptionalAttributeWithToken(Token::Kind kind,
AttributeT &attr,
Type type = {}) {
if (getToken().isNot(kind))
return llvm::None;
if (Attribute parsedAttr = parseAttribute(type)) {
attr = parsedAttr.cast<AttributeT>();
[mlir][PDL] Add a PDL Interpreter Dialect The PDL Interpreter dialect provides a lower level abstraction compared to the PDL dialect, and is targeted towards low level optimization and interpreter code generation. The dialect operations encapsulates low-level pattern match and rewrite "primitives", such as navigating the IR (Operation::getOperand), creating new operations (OpBuilder::create), etc. Many of the operations within this dialect also fuse branching control flow with some form of a predicate comparison operation. This type of fusion reduces the amount of work that an interpreter must do when executing. An example of this representation is shown below: ```mlir // The following high level PDL pattern: pdl.pattern : benefit(1) { %resultType = pdl.type %inputOperand = pdl.input %root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType pdl.rewrite %root { pdl.replace %root with (%inputOperand) } } // May be represented in the interpreter dialect as follows: module { func @matcher(%arg0: !pdl.operation) { pdl_interp.check_operation_name of %arg0 is "foo.op" -> ^bb2, ^bb1 ^bb1: pdl_interp.return ^bb2: pdl_interp.check_operand_count of %arg0 is 1 -> ^bb3, ^bb1 ^bb3: pdl_interp.check_result_count of %arg0 is 1 -> ^bb4, ^bb1 ^bb4: %0 = pdl_interp.get_operand 0 of %arg0 pdl_interp.is_not_null %0 : !pdl.value -> ^bb5, ^bb1 ^bb5: %1 = pdl_interp.get_result 0 of %arg0 pdl_interp.is_not_null %1 : !pdl.value -> ^bb6, ^bb1 ^bb6: pdl_interp.record_match @rewriters::@rewriter(%0, %arg0 : !pdl.value, !pdl.operation) : benefit(1), loc([%arg0]), root("foo.op") -> ^bb1 } module @rewriters { func @rewriter(%arg0: !pdl.value, %arg1: !pdl.operation) { pdl_interp.replace %arg1 with(%arg0) pdl_interp.return } } } ``` Differential Revision: https://reviews.llvm.org/D84579
2020-08-26 20:12:07 +08:00
return success();
}
return failure();
}
/// Parse an attribute dictionary.
ParseResult parseAttributeDict(NamedAttrList &attributes);
/// Parse an extended attribute.
Attribute parseExtendedAttr(Type type);
/// Parse a float attribute.
Attribute parseFloatAttr(Type type, bool isNegative);
/// Parse a decimal or a hexadecimal literal, which can be either an integer
/// or a float attribute.
Attribute parseDecOrHexAttr(Type type, bool isNegative);
/// Parse an opaque elements attribute.
Attribute parseOpaqueElementsAttr(Type attrType);
/// Parse a dense elements attribute.
Attribute parseDenseElementsAttr(Type attrType);
ShapedType parseElementsLiteralType(Type type);
/// Parse a sparse elements attribute.
Attribute parseSparseElementsAttr(Type attrType);
//===--------------------------------------------------------------------===//
// Location Parsing
//===--------------------------------------------------------------------===//
/// Parse a raw location instance.
ParseResult parseLocationInstance(LocationAttr &loc);
/// Parse a callsite location instance.
ParseResult parseCallSiteLocation(LocationAttr &loc);
/// Parse a fused location instance.
ParseResult parseFusedLocation(LocationAttr &loc);
/// Parse a name or FileLineCol location instance.
ParseResult parseNameOrFileLineColLocation(LocationAttr &loc);
//===--------------------------------------------------------------------===//
// Affine Parsing
//===--------------------------------------------------------------------===//
/// Parse a reference to either an affine map, or an integer set.
ParseResult parseAffineMapOrIntegerSetReference(AffineMap &map,
IntegerSet &set);
ParseResult parseAffineMapReference(AffineMap &map);
ParseResult parseIntegerSetReference(IntegerSet &set);
/// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
ParseResult
parseAffineMapOfSSAIds(AffineMap &map,
function_ref<ParseResult(bool)> parseElement,
Delimiter delimiter);
/// Parse an AffineExpr where dim and symbol identifiers are SSA ids.
ParseResult
parseAffineExprOfSSAIds(AffineExpr &expr,
function_ref<ParseResult(bool)> parseElement);
protected:
/// The Parser is subclassed and reinstantiated. Do not add additional
/// non-trivial state here, add it to the ParserState class.
ParserState &state;
};
} // namespace detail
} // namespace mlir
#endif // MLIR_LIB_PARSER_PARSER_H