llvm-project/clang/lib/Sema/CodeCompleteConsumer.cpp

554 lines
16 KiB
C++
Raw Normal View History

//===--- CodeCompleteConsumer.cpp - Code Completion Interface ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the CodeCompleteConsumer class.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/CodeCompleteConsumer.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/Sema.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Lex/Preprocessor.h"
#include "clang-c/Index.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
#include <functional>
using namespace clang;
//===----------------------------------------------------------------------===//
// Code completion context implementation
//===----------------------------------------------------------------------===//
bool CodeCompletionContext::wantConstructorResults() const {
switch (Kind) {
case CCC_Recovery:
case CCC_Statement:
case CCC_Expression:
case CCC_ObjCMessageReceiver:
case CCC_ParenthesizedExpression:
return true;
case CCC_TopLevel:
case CCC_ObjCInterface:
case CCC_ObjCImplementation:
case CCC_ObjCIvarList:
case CCC_ClassStructUnion:
case CCC_DotMemberAccess:
case CCC_ArrowMemberAccess:
case CCC_ObjCPropertyAccess:
case CCC_EnumTag:
case CCC_UnionTag:
case CCC_ClassOrStructTag:
case CCC_ObjCProtocolName:
case CCC_Namespace:
case CCC_Type:
case CCC_Name:
case CCC_PotentiallyQualifiedName:
case CCC_MacroName:
case CCC_MacroNameUse:
case CCC_PreprocessorExpression:
case CCC_PreprocessorDirective:
case CCC_NaturalLanguage:
case CCC_SelectorName:
case CCC_TypeQualifiers:
case CCC_Other:
case CCC_OtherWithMacros:
case CCC_ObjCInstanceMessage:
case CCC_ObjCClassMessage:
case CCC_ObjCInterfaceName:
case CCC_ObjCCategoryName:
return false;
}
llvm_unreachable("Invalid CodeCompletionContext::Kind!");
}
//===----------------------------------------------------------------------===//
// Code completion string implementation
//===----------------------------------------------------------------------===//
CodeCompletionString::Chunk::Chunk(ChunkKind Kind, const char *Text)
: Kind(Kind), Text("")
{
switch (Kind) {
case CK_TypedText:
case CK_Text:
case CK_Placeholder:
case CK_Informative:
case CK_ResultType:
case CK_CurrentParameter:
this->Text = Text;
break;
case CK_Optional:
llvm_unreachable("Optional strings cannot be created from text");
case CK_LeftParen:
this->Text = "(";
break;
case CK_RightParen:
this->Text = ")";
break;
case CK_LeftBracket:
this->Text = "[";
break;
case CK_RightBracket:
this->Text = "]";
break;
case CK_LeftBrace:
this->Text = "{";
break;
case CK_RightBrace:
this->Text = "}";
break;
case CK_LeftAngle:
this->Text = "<";
break;
case CK_RightAngle:
this->Text = ">";
break;
case CK_Comma:
this->Text = ", ";
break;
case CK_Colon:
this->Text = ":";
break;
case CK_SemiColon:
this->Text = ";";
break;
case CK_Equal:
this->Text = " = ";
break;
case CK_HorizontalSpace:
this->Text = " ";
break;
case CK_VerticalSpace:
this->Text = "\n";
break;
}
}
CodeCompletionString::Chunk
CodeCompletionString::Chunk::CreateText(const char *Text) {
return Chunk(CK_Text, Text);
}
CodeCompletionString::Chunk
CodeCompletionString::Chunk::CreateOptional(CodeCompletionString *Optional) {
Chunk Result;
Result.Kind = CK_Optional;
Result.Optional = Optional;
return Result;
}
CodeCompletionString::Chunk
CodeCompletionString::Chunk::CreatePlaceholder(const char *Placeholder) {
return Chunk(CK_Placeholder, Placeholder);
}
CodeCompletionString::Chunk
CodeCompletionString::Chunk::CreateInformative(const char *Informative) {
return Chunk(CK_Informative, Informative);
}
CodeCompletionString::Chunk
CodeCompletionString::Chunk::CreateResultType(const char *ResultType) {
return Chunk(CK_ResultType, ResultType);
}
CodeCompletionString::Chunk
CodeCompletionString::Chunk::CreateCurrentParameter(
const char *CurrentParameter) {
return Chunk(CK_CurrentParameter, CurrentParameter);
}
CodeCompletionString::CodeCompletionString(const Chunk *Chunks,
unsigned NumChunks,
unsigned Priority,
CXAvailabilityKind Availability,
const char **Annotations,
unsigned NumAnnotations)
: NumChunks(NumChunks), NumAnnotations(NumAnnotations)
, Priority(Priority), Availability(Availability)
{
assert(NumChunks <= 0xffff);
assert(NumAnnotations <= 0xffff);
Chunk *StoredChunks = reinterpret_cast<Chunk *>(this + 1);
for (unsigned I = 0; I != NumChunks; ++I)
StoredChunks[I] = Chunks[I];
const char **StoredAnnotations = reinterpret_cast<const char **>(StoredChunks + NumChunks);
for (unsigned I = 0; I != NumAnnotations; ++I)
StoredAnnotations[I] = Annotations[I];
}
unsigned CodeCompletionString::getAnnotationCount() const {
return NumAnnotations;
}
const char *CodeCompletionString::getAnnotation(unsigned AnnotationNr) const {
if (AnnotationNr < NumAnnotations)
return reinterpret_cast<const char * const*>(end())[AnnotationNr];
else
return 0;
}
std::string CodeCompletionString::getAsString() const {
std::string Result;
llvm::raw_string_ostream OS(Result);
for (iterator C = begin(), CEnd = end(); C != CEnd; ++C) {
switch (C->Kind) {
case CK_Optional: OS << "{#" << C->Optional->getAsString() << "#}"; break;
case CK_Placeholder: OS << "<#" << C->Text << "#>"; break;
case CK_Informative:
case CK_ResultType:
OS << "[#" << C->Text << "#]";
break;
case CK_CurrentParameter: OS << "<#" << C->Text << "#>"; break;
default: OS << C->Text; break;
}
}
return OS.str();
}
const char *CodeCompletionString::getTypedText() const {
for (iterator C = begin(), CEnd = end(); C != CEnd; ++C)
if (C->Kind == CK_TypedText)
return C->Text;
return 0;
}
const char *CodeCompletionAllocator::CopyString(StringRef String) {
char *Mem = (char *)Allocate(String.size() + 1, 1);
std::copy(String.begin(), String.end(), Mem);
Mem[String.size()] = 0;
return Mem;
}
const char *CodeCompletionAllocator::CopyString(Twine String) {
// FIXME: It would be more efficient to teach Twine to tell us its size and
// then add a routine there to fill in an allocated char* with the contents
// of the string.
SmallString<128> Data;
return CopyString(String.toStringRef(Data));
}
CodeCompletionString *CodeCompletionBuilder::TakeString() {
void *Mem = Allocator.Allocate(
sizeof(CodeCompletionString) + sizeof(Chunk) * Chunks.size()
+ sizeof(const char *) * Annotations.size(),
llvm::alignOf<CodeCompletionString>());
CodeCompletionString *Result
= new (Mem) CodeCompletionString(Chunks.data(), Chunks.size(),
Priority, Availability,
Annotations.data(), Annotations.size());
Chunks.clear();
return Result;
}
void CodeCompletionBuilder::AddTypedTextChunk(const char *Text) {
Chunks.push_back(Chunk(CodeCompletionString::CK_TypedText, Text));
}
void CodeCompletionBuilder::AddTextChunk(const char *Text) {
Chunks.push_back(Chunk::CreateText(Text));
}
void CodeCompletionBuilder::AddOptionalChunk(CodeCompletionString *Optional) {
Chunks.push_back(Chunk::CreateOptional(Optional));
}
void CodeCompletionBuilder::AddPlaceholderChunk(const char *Placeholder) {
Chunks.push_back(Chunk::CreatePlaceholder(Placeholder));
}
void CodeCompletionBuilder::AddInformativeChunk(const char *Text) {
Chunks.push_back(Chunk::CreateInformative(Text));
}
void CodeCompletionBuilder::AddResultTypeChunk(const char *ResultType) {
Chunks.push_back(Chunk::CreateResultType(ResultType));
}
void
CodeCompletionBuilder::AddCurrentParameterChunk(const char *CurrentParameter) {
Chunks.push_back(Chunk::CreateCurrentParameter(CurrentParameter));
}
void CodeCompletionBuilder::AddChunk(CodeCompletionString::ChunkKind CK,
const char *Text) {
Chunks.push_back(Chunk(CK, Text));
}
unsigned CodeCompletionResult::getPriorityFromDecl(NamedDecl *ND) {
if (!ND)
return CCP_Unlikely;
// Context-based decisions.
DeclContext *DC = ND->getDeclContext()->getRedeclContext();
if (DC->isFunctionOrMethod() || isa<BlockDecl>(DC)) {
// _cmd is relatively rare
if (ImplicitParamDecl *ImplicitParam = dyn_cast<ImplicitParamDecl>(ND))
if (ImplicitParam->getIdentifier() &&
ImplicitParam->getIdentifier()->isStr("_cmd"))
return CCP_ObjC_cmd;
return CCP_LocalDeclaration;
}
if (DC->isRecord() || isa<ObjCContainerDecl>(DC))
return CCP_MemberDeclaration;
// Content-based decisions.
if (isa<EnumConstantDecl>(ND))
return CCP_Constant;
if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND))
return CCP_Type;
return CCP_Declaration;
}
//===----------------------------------------------------------------------===//
// Code completion overload candidate implementation
//===----------------------------------------------------------------------===//
FunctionDecl *
CodeCompleteConsumer::OverloadCandidate::getFunction() const {
if (getKind() == CK_Function)
return Function;
else if (getKind() == CK_FunctionTemplate)
return FunctionTemplate->getTemplatedDecl();
else
return 0;
}
const FunctionType *
CodeCompleteConsumer::OverloadCandidate::getFunctionType() const {
switch (Kind) {
case CK_Function:
return Function->getType()->getAs<FunctionType>();
case CK_FunctionTemplate:
return FunctionTemplate->getTemplatedDecl()->getType()
->getAs<FunctionType>();
case CK_FunctionType:
return Type;
}
llvm_unreachable("Invalid CandidateKind!");
}
//===----------------------------------------------------------------------===//
// Code completion consumer implementation
//===----------------------------------------------------------------------===//
CodeCompleteConsumer::~CodeCompleteConsumer() { }
void
PrintingCodeCompleteConsumer::ProcessCodeCompleteResults(Sema &SemaRef,
CodeCompletionContext Context,
CodeCompletionResult *Results,
unsigned NumResults) {
std::stable_sort(Results, Results + NumResults);
// Print the results.
for (unsigned I = 0; I != NumResults; ++I) {
OS << "COMPLETION: ";
switch (Results[I].Kind) {
case CodeCompletionResult::RK_Declaration:
OS << *Results[I].Declaration;
if (Results[I].Hidden)
OS << " (Hidden)";
if (CodeCompletionString *CCS
= Results[I].CreateCodeCompletionString(SemaRef, Allocator)) {
OS << " : " << CCS->getAsString();
}
OS << '\n';
break;
case CodeCompletionResult::RK_Keyword:
OS << Results[I].Keyword << '\n';
break;
case CodeCompletionResult::RK_Macro: {
OS << Results[I].Macro->getName();
if (CodeCompletionString *CCS
= Results[I].CreateCodeCompletionString(SemaRef, Allocator)) {
OS << " : " << CCS->getAsString();
}
OS << '\n';
break;
}
case CodeCompletionResult::RK_Pattern: {
OS << "Pattern : "
<< Results[I].Pattern->getAsString() << '\n';
break;
}
}
}
}
void
PrintingCodeCompleteConsumer::ProcessOverloadCandidates(Sema &SemaRef,
unsigned CurrentArg,
OverloadCandidate *Candidates,
unsigned NumCandidates) {
for (unsigned I = 0; I != NumCandidates; ++I) {
if (CodeCompletionString *CCS
= Candidates[I].CreateSignatureString(CurrentArg, SemaRef,
Allocator)) {
OS << "OVERLOAD: " << CCS->getAsString() << "\n";
}
}
}
/// \brief Retrieve the effective availability of the given declaration.
static AvailabilityResult getDeclAvailability(Decl *D) {
AvailabilityResult AR = D->getAvailability();
if (isa<EnumConstantDecl>(D))
AR = std::max(AR, cast<Decl>(D->getDeclContext())->getAvailability());
return AR;
}
void CodeCompletionResult::computeCursorKindAndAvailability(bool Accessible) {
switch (Kind) {
case RK_Declaration: {
// Set the availability based on attributes.
switch (getDeclAvailability(Declaration)) {
Implement a new 'availability' attribute, that allows one to specify which versions of an OS provide a certain facility. For example, void foo() __attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6))); says that the function "foo" was introduced in 10.2, deprecated in 10.4, and completely obsoleted in 10.6. This attribute ties in with the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that we want to deploy back to Mac OS X 10.1). There are several concrete behaviors that this attribute enables, as illustrated with the function foo() above: - If we choose a deployment target >= Mac OS X 10.4, uses of "foo" will result in a deprecation warning, as if we had placed attribute((deprecated)) on it (but with a better diagnostic) - If we choose a deployment target >= Mac OS X 10.6, uses of "foo" will result in an "unavailable" warning (in C)/error (in C++), as if we had placed attribute((unavailable)) on it - If we choose a deployment target prior to 10.2, foo() is weak-imported (if it is a kind of entity that can be weak imported), as if we had placed the weak_import attribute on it. Naturally, there can be multiple availability attributes on a declaration, for different platforms; only the current platform matters when checking availability attributes. The only platforms this attribute currently works for are "ios" and "macosx", since we already have -mxxxx-version-min flags for them and we have experience there with macro tricks translating down to the deprecated/unavailable/weak_import attributes. The end goal is to open this up to other platforms, and even extension to other "platforms" that are really libraries (say, through a #pragma clang define_system), but that hasn't yet been designed and we may want to shake out more issues with this narrower problem first. Addresses <rdar://problem/6690412>. As a drive-by bug-fix, if an entity is both deprecated and unavailable, we only emit the "unavailable" diagnostic. llvm-svn: 128127
2011-03-23 08:50:03 +08:00
case AR_Available:
case AR_NotYetIntroduced:
Availability = CXAvailability_Available;
break;
case AR_Deprecated:
Availability = CXAvailability_Deprecated;
Implement a new 'availability' attribute, that allows one to specify which versions of an OS provide a certain facility. For example, void foo() __attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6))); says that the function "foo" was introduced in 10.2, deprecated in 10.4, and completely obsoleted in 10.6. This attribute ties in with the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that we want to deploy back to Mac OS X 10.1). There are several concrete behaviors that this attribute enables, as illustrated with the function foo() above: - If we choose a deployment target >= Mac OS X 10.4, uses of "foo" will result in a deprecation warning, as if we had placed attribute((deprecated)) on it (but with a better diagnostic) - If we choose a deployment target >= Mac OS X 10.6, uses of "foo" will result in an "unavailable" warning (in C)/error (in C++), as if we had placed attribute((unavailable)) on it - If we choose a deployment target prior to 10.2, foo() is weak-imported (if it is a kind of entity that can be weak imported), as if we had placed the weak_import attribute on it. Naturally, there can be multiple availability attributes on a declaration, for different platforms; only the current platform matters when checking availability attributes. The only platforms this attribute currently works for are "ios" and "macosx", since we already have -mxxxx-version-min flags for them and we have experience there with macro tricks translating down to the deprecated/unavailable/weak_import attributes. The end goal is to open this up to other platforms, and even extension to other "platforms" that are really libraries (say, through a #pragma clang define_system), but that hasn't yet been designed and we may want to shake out more issues with this narrower problem first. Addresses <rdar://problem/6690412>. As a drive-by bug-fix, if an entity is both deprecated and unavailable, we only emit the "unavailable" diagnostic. llvm-svn: 128127
2011-03-23 08:50:03 +08:00
break;
Implement a new 'availability' attribute, that allows one to specify which versions of an OS provide a certain facility. For example, void foo() __attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6))); says that the function "foo" was introduced in 10.2, deprecated in 10.4, and completely obsoleted in 10.6. This attribute ties in with the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that we want to deploy back to Mac OS X 10.1). There are several concrete behaviors that this attribute enables, as illustrated with the function foo() above: - If we choose a deployment target >= Mac OS X 10.4, uses of "foo" will result in a deprecation warning, as if we had placed attribute((deprecated)) on it (but with a better diagnostic) - If we choose a deployment target >= Mac OS X 10.6, uses of "foo" will result in an "unavailable" warning (in C)/error (in C++), as if we had placed attribute((unavailable)) on it - If we choose a deployment target prior to 10.2, foo() is weak-imported (if it is a kind of entity that can be weak imported), as if we had placed the weak_import attribute on it. Naturally, there can be multiple availability attributes on a declaration, for different platforms; only the current platform matters when checking availability attributes. The only platforms this attribute currently works for are "ios" and "macosx", since we already have -mxxxx-version-min flags for them and we have experience there with macro tricks translating down to the deprecated/unavailable/weak_import attributes. The end goal is to open this up to other platforms, and even extension to other "platforms" that are really libraries (say, through a #pragma clang define_system), but that hasn't yet been designed and we may want to shake out more issues with this narrower problem first. Addresses <rdar://problem/6690412>. As a drive-by bug-fix, if an entity is both deprecated and unavailable, we only emit the "unavailable" diagnostic. llvm-svn: 128127
2011-03-23 08:50:03 +08:00
case AR_Unavailable:
Availability = CXAvailability_NotAvailable;
break;
}
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Declaration))
if (Function->isDeleted())
Availability = CXAvailability_NotAvailable;
CursorKind = getCursorKindForDecl(Declaration);
if (CursorKind == CXCursor_UnexposedDecl) {
// FIXME: Forward declarations of Objective-C classes and protocols
// are not directly exposed, but we want code completion to treat them
// like a definition.
if (isa<ObjCInterfaceDecl>(Declaration))
CursorKind = CXCursor_ObjCInterfaceDecl;
else if (isa<ObjCProtocolDecl>(Declaration))
CursorKind = CXCursor_ObjCProtocolDecl;
else
CursorKind = CXCursor_NotImplemented;
}
break;
}
case RK_Macro:
Availability = CXAvailability_Available;
CursorKind = CXCursor_MacroDefinition;
break;
case RK_Keyword:
Availability = CXAvailability_Available;
CursorKind = CXCursor_NotImplemented;
break;
case RK_Pattern:
// Do nothing: Patterns can come with cursor kinds!
break;
}
if (!Accessible)
Availability = CXAvailability_NotAccessible;
}
/// \brief Retrieve the name that should be used to order a result.
///
/// If the name needs to be constructed as a string, that string will be
/// saved into Saved and the returned StringRef will refer to it.
static StringRef getOrderedName(const CodeCompletionResult &R,
std::string &Saved) {
switch (R.Kind) {
case CodeCompletionResult::RK_Keyword:
return R.Keyword;
case CodeCompletionResult::RK_Pattern:
return R.Pattern->getTypedText();
case CodeCompletionResult::RK_Macro:
return R.Macro->getName();
case CodeCompletionResult::RK_Declaration:
// Handle declarations below.
break;
}
DeclarationName Name = R.Declaration->getDeclName();
// If the name is a simple identifier (by far the common case), or a
// zero-argument selector, just return a reference to that identifier.
if (IdentifierInfo *Id = Name.getAsIdentifierInfo())
return Id->getName();
if (Name.isObjCZeroArgSelector())
if (IdentifierInfo *Id
= Name.getObjCSelector().getIdentifierInfoForSlot(0))
return Id->getName();
Saved = Name.getAsString();
return Saved;
}
bool clang::operator<(const CodeCompletionResult &X,
const CodeCompletionResult &Y) {
std::string XSaved, YSaved;
StringRef XStr = getOrderedName(X, XSaved);
StringRef YStr = getOrderedName(Y, YSaved);
int cmp = XStr.compare_lower(YStr);
if (cmp)
return cmp < 0;
// If case-insensitive comparison fails, try case-sensitive comparison.
cmp = XStr.compare(YStr);
if (cmp)
return cmp < 0;
return false;
}