llvm-project/mlir/lib/IR/AffineMap.cpp

262 lines
9.7 KiB
C++
Raw Normal View History

//===- AffineMap.cpp - MLIR Affine Map Classes ----------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/AffineMap.h"
#include "AffineMapDetail.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/Functional.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/StringRef.h"
using namespace mlir;
namespace {
// AffineExprConstantFolder evaluates an affine expression using constant
// operands passed in 'operandConsts'. Returns a pointer to an IntegerAttr
// attribute representing the constant value of the affine expression
// evaluated on constant 'operandConsts'.
class AffineExprConstantFolder {
public:
AffineExprConstantFolder(unsigned numDims, ArrayRef<Attribute> operandConsts)
: numDims(numDims), operandConsts(operandConsts) {}
/// Attempt to constant fold the specified affine expr, or return null on
/// failure.
IntegerAttr constantFold(AffineExpr expr) {
switch (expr.getKind()) {
case AffineExprKind::Add:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return lhs + rhs; });
case AffineExprKind::Mul:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return lhs * rhs; });
case AffineExprKind::Mod:
return constantFoldBinExpr(
expr, [](int64_t lhs, uint64_t rhs) { return mod(lhs, rhs); });
case AffineExprKind::FloorDiv:
return constantFoldBinExpr(
expr, [](int64_t lhs, uint64_t rhs) { return floorDiv(lhs, rhs); });
case AffineExprKind::CeilDiv:
return constantFoldBinExpr(
expr, [](int64_t lhs, uint64_t rhs) { return ceilDiv(lhs, rhs); });
case AffineExprKind::Constant:
return IntegerAttr::get(IndexType::get(expr.getContext()),
expr.cast<AffineConstantExpr>().getValue());
case AffineExprKind::DimId:
return operandConsts[expr.cast<AffineDimExpr>().getPosition()]
.dyn_cast_or_null<IntegerAttr>();
case AffineExprKind::SymbolId:
return operandConsts[numDims +
expr.cast<AffineSymbolExpr>().getPosition()]
.dyn_cast_or_null<IntegerAttr>();
}
}
private:
// TODO: Change these to operate on APInts too.
IntegerAttr
constantFoldBinExpr(AffineExpr expr,
std::function<uint64_t(int64_t, uint64_t)> op) {
auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
auto lhs = constantFold(binOpExpr.getLHS());
auto rhs = constantFold(binOpExpr.getRHS());
if (!lhs || !rhs)
return nullptr;
return IntegerAttr::get(lhs.getType(), op(lhs.getInt(), rhs.getInt()));
}
// The number of dimension operands in AffineMap containing this expression.
unsigned numDims;
// The constant valued operands used to evaluate this AffineExpr.
ArrayRef<Attribute> operandConsts;
};
} // end anonymous namespace
/// Returns a single constant result affine map.
AffineMap AffineMap::getConstantMap(int64_t val, MLIRContext *context) {
return get(/*dimCount=*/0, /*symbolCount=*/0,
{getAffineConstantExpr(val, context)}, {});
}
AffineMap AffineMap::getMultiDimIdentityMap(unsigned numDims,
MLIRContext *context) {
SmallVector<AffineExpr, 4> dimExprs;
dimExprs.reserve(numDims);
for (unsigned i = 0; i < numDims; ++i)
dimExprs.push_back(mlir::getAffineDimExpr(i, context));
return get(/*dimCount=*/numDims, /*symbolCount=*/0, dimExprs, {});
}
MLIRContext *AffineMap::getContext() const { return getResult(0).getContext(); }
bool AffineMap::isBounded() const {
assert(map && "uninitialized AffineMap");
return !map->rangeSizes.empty();
}
bool AffineMap::isIdentity() const {
if (getNumDims() != getNumResults())
return false;
ArrayRef<AffineExpr> results = getResults();
for (unsigned i = 0, numDims = getNumDims(); i < numDims; ++i) {
auto expr = results[i].dyn_cast<AffineDimExpr>();
if (!expr || expr.getPosition() != i)
return false;
}
return true;
}
bool AffineMap::isSingleConstant() const {
return getNumResults() == 1 && getResult(0).isa<AffineConstantExpr>();
}
int64_t AffineMap::getSingleConstantResult() const {
assert(isSingleConstant() && "map must have a single constant result");
return getResult(0).cast<AffineConstantExpr>().getValue();
}
unsigned AffineMap::getNumDims() const {
assert(map && "uninitialized map storage");
return map->numDims;
}
unsigned AffineMap::getNumSymbols() const {
assert(map && "uninitialized map storage");
return map->numSymbols;
}
unsigned AffineMap::getNumResults() const {
assert(map && "uninitialized map storage");
return map->results.size();
}
unsigned AffineMap::getNumInputs() const {
assert(map && "uninitialized map storage");
return map->numDims + map->numSymbols;
}
ArrayRef<AffineExpr> AffineMap::getResults() const {
assert(map && "uninitialized map storage");
return map->results;
}
AffineExpr AffineMap::getResult(unsigned idx) const {
assert(map && "uninitialized map storage");
return map->results[idx];
}
ArrayRef<AffineExpr> AffineMap::getRangeSizes() const {
assert(map && "uninitialized map storage");
return map->rangeSizes;
}
[RFC][MLIR] Use AffineExprRef in place of AffineExpr* in IR This CL starts by replacing AffineExpr* with value-type AffineExprRef in a few places in the IR. By a domino effect that is pretty telling of the inconsistencies in the codebase, const is removed where it makes sense. The rationale is that the decision was concisously made that unique'd types have pointer semantics without const specifier. This is fine but we should be consistent. In the end, the only logical invariant is that there should never be such a thing as a const AffineExpr*, const AffineMap* or const IntegerSet* in our codebase. This CL takes a number of shortcuts to killing const with fire, in particular forcing const AffineExprRef to return the underlying non-const AffineExpr*. This will be removed once AffineExpr* has disappeared in containers but for now such shortcuts allow a bit of sanity in this long quest for cleanups. The **only** places where const AffineExpr*, const AffineMap* or const IntegerSet* may still appear is by transitive needs from containers, comparison operators etc. There is still one major thing remaining here: figure out why cast/dyn_cast return me a const AffineXXX*, which in turn requires a bunch of ugly const_casts. I suspect this is due to the classof taking const AffineXXXExpr*. I wonder whether this is a side effect of 1., if it is coming from llvm itself (I'd doubt it) or something else (clattner@?) In light of this, the whole discussion about const makes total sense to me now and I would systematically apply the rule that in the end, we should never have any const XXX in our codebase for unique'd types (assuming we can remove them all in containers and no additional constness constraint is added on us from the outside world). PiperOrigin-RevId: 215811554
2018-10-05 06:10:33 +08:00
/// Folds the results of the application of an affine map on the provided
/// operands to a constant if possible. Returns false if the folding happens,
/// true otherwise.
bool AffineMap::constantFold(ArrayRef<Attribute> operandConstants,
SmallVectorImpl<Attribute> &results) const {
assert(getNumInputs() == operandConstants.size());
// Fold each of the result expressions.
AffineExprConstantFolder exprFolder(getNumDims(), operandConstants);
// Constant fold each AffineExpr in AffineMap and add to 'results'.
for (auto expr : getResults()) {
auto folded = exprFolder.constantFold(expr);
// If we didn't fold to a constant, then folding fails.
if (!folded)
return true;
results.push_back(folded);
}
assert(results.size() == getNumResults() &&
"constant folding produced the wrong number of results");
return false;
}
/// Walk all of the AffineExpr's in this mapping. The results are visited
/// first, and then the range sizes (if present). Each node in an expression
/// tree is visited in postorder.
void AffineMap::walkExprs(std::function<void(AffineExpr)> callback) const {
for (auto expr : getResults())
expr.walk(callback);
for (auto expr : getRangeSizes())
expr.walk(callback);
}
/// This method substitutes any uses of dimensions and symbols (e.g.
/// dim#0 with dimReplacements[0]) in subexpressions and returns the modified
/// expression mapping. Because this can be used to eliminate dims and
/// symbols, the client needs to specify the number of dims and symbols in
/// the result. The returned map always has the same number of results.
AffineMap AffineMap::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
ArrayRef<AffineExpr> symReplacements,
unsigned numResultDims,
unsigned numResultSyms) {
SmallVector<AffineExpr, 8> results;
results.reserve(getNumResults());
for (auto expr : getResults())
results.push_back(
expr.replaceDimsAndSymbols(dimReplacements, symReplacements));
SmallVector<AffineExpr, 8> resultRanges;
resultRanges.reserve(getRangeSizes().size());
for (auto expr : getRangeSizes())
resultRanges.push_back(
expr.replaceDimsAndSymbols(dimReplacements, symReplacements));
return get(numResultDims, numResultSyms, results, resultRanges);
}
AffineMap AffineMap::compose(AffineMap map) {
assert(getNumDims() == map.getNumResults() && "Number of results mismatch");
assert(getRangeSizes().empty() && "TODO: support bounded AffineMap");
assert(map.getRangeSizes().empty() && "TODO: support bounded AffineMap");
// Prepare `map` by concatenating the symbols and rewriting its exprs.
unsigned numDims = map.getNumDims();
unsigned numSymbolsThisMap = getNumSymbols();
unsigned numSymbols = numSymbolsThisMap + map.getNumSymbols();
SmallVector<AffineExpr, 8> newDims(numDims);
for (unsigned idx = 0; idx < numDims; ++idx) {
newDims[idx] = getAffineDimExpr(idx, getContext());
}
SmallVector<AffineExpr, 8> newSymbols(numSymbols);
for (unsigned idx = numSymbolsThisMap; idx < numSymbols; ++idx) {
newSymbols[idx - numSymbolsThisMap] =
getAffineSymbolExpr(idx, getContext());
}
auto newMap =
map.replaceDimsAndSymbols(newDims, newSymbols, numDims, numSymbols);
SmallVector<AffineExpr, 8> exprs;
exprs.reserve(getResults().size());
for (auto expr : getResults())
exprs.push_back(expr.compose(newMap));
return AffineMap::get(numDims, numSymbols, exprs, {});
}
AffineMap mlir::simplifyAffineMap(AffineMap map) {
SmallVector<AffineExpr, 8> exprs, sizes;
for (auto e : map.getResults()) {
exprs.push_back(
simplifyAffineExpr(e, map.getNumDims(), map.getNumSymbols()));
}
for (auto e : map.getRangeSizes()) {
sizes.push_back(
simplifyAffineExpr(e, map.getNumDims(), map.getNumSymbols()));
}
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), exprs, sizes);
}