llvm-project/compiler-rt/lib/asan/asan_allocator2.cc

592 lines
19 KiB
C++
Raw Normal View History

//===-- asan_allocator2.cc ------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Implementation of ASan's memory allocator, 2-nd version.
// This variant uses the allocator from sanitizer_common, i.e. the one shared
// with ThreadSanitizer and MemorySanitizer.
//
// Status: under development, not enabled by default yet.
//===----------------------------------------------------------------------===//
#include "asan_allocator.h"
#if ASAN_ALLOCATOR_VERSION == 2
#include "asan_mapping.h"
#include "asan_report.h"
#include "asan_thread.h"
#include "asan_thread_registry.h"
#include "sanitizer/asan_interface.h"
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_list.h"
namespace __asan {
struct AsanMapUnmapCallback {
void OnMap(uptr p, uptr size) const {
PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
// Statistics.
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
thread_stats.mmaps++;
thread_stats.mmaped += size;
// thread_stats.mmaped_by_size[size_class] += n_chunks;
}
void OnUnmap(uptr p, uptr size) const {
PoisonShadow(p, size, 0);
// Statistics.
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
thread_stats.munmaps++;
thread_stats.munmaped += size;
}
};
#if SANITIZER_WORDSIZE == 64
const uptr kAllocatorSpace = 0x600000000000ULL;
const uptr kAllocatorSize = 0x10000000000ULL; // 1T.
typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0 /*metadata*/,
DefaultSizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
#elif SANITIZER_WORDSIZE == 32
static const u64 kAddressSpaceSize = 1ULL << 32;
typedef SizeClassAllocator32<0, kAddressSpaceSize, 16,
CompactSizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
#endif
typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
typedef LargeMmapAllocator<AsanMapUnmapCallback> SecondaryAllocator;
typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
SecondaryAllocator> Allocator;
// We can not use THREADLOCAL because it is not supported on some of the
// platforms we care about (OSX 10.6, Android).
// static THREADLOCAL AllocatorCache cache;
AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
CHECK(ms);
CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator2_cache));
return reinterpret_cast<AllocatorCache *>(ms->allocator2_cache);
}
static Allocator allocator;
static const uptr kMaxAllowedMallocSize =
FIRST_32_SECOND_64(3UL << 30, 8UL << 30);
static const uptr kMaxThreadLocalQuarantine =
FIRST_32_SECOND_64(1 << 18, 1 << 20);
static const uptr kReturnOnZeroMalloc = 0x0123; // Zero page is protected.
static int inited = 0;
static void Init() {
if (inited) return;
__asan_init();
inited = true; // this must happen before any threads are created.
allocator.Init();
}
// Every chunk of memory allocated by this allocator can be in one of 3 states:
// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
enum {
CHUNK_AVAILABLE = 1,
CHUNK_ALLOCATED = 2,
CHUNK_QUARANTINE = 3
};
// The memory chunk allocated from the underlying allocator looks like this:
// L L L L L L H H U U U U U U R R
// L -- left redzone words (0 or more bytes)
// H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
// U -- user memory.
// R -- right redzone (0 or more bytes)
// ChunkBase consists of ChunkHeader and other bytes that overlap with user
// memory.
// If a memory chunk is allocated by memalign and we had to increase the
// allocation size to achieve the proper alignment, then we store this magic
// value in the first uptr word of the memory block and store the address of
// ChunkBase in the next uptr.
// M B ? ? ? L L L L L L H H U U U U U U
// M -- magic value kMemalignMagic
// B -- address of ChunkHeader pointing to the first 'H'
static const uptr kMemalignMagic = 0xCC6E96B9;
#if SANITIZER_WORDSIZE == 64
struct ChunkBase {
// 1-st 8 bytes.
uptr chunk_state : 8; // Must be first.
uptr alloc_tid : 24;
uptr free_tid : 24;
uptr from_memalign : 1;
// 2-nd 8 bytes
uptr user_requested_size;
// Header2 (intersects with user memory).
// 3-rd 8 bytes. These overlap with the user memory.
AsanChunk *next;
};
static const uptr kChunkHeaderSize = 16;
static const uptr kChunkHeader2Size = 8;
#elif SANITIZER_WORDSIZE == 32
struct ChunkBase {
// 1-st 8 bytes.
uptr chunk_state : 8; // Must be first.
uptr alloc_tid : 24;
uptr from_memalign : 1;
uptr free_tid : 24;
// 2-nd 8 bytes
uptr user_requested_size;
AsanChunk *next;
// Header2 empty.
};
static const uptr kChunkHeaderSize = 16;
static const uptr kChunkHeader2Size = 0;
#endif
COMPILER_CHECK(sizeof(ChunkBase) == kChunkHeaderSize + kChunkHeader2Size);
static uptr ComputeRZSize(uptr user_requested_size) {
// FIXME: implement adaptive redzones.
return flags()->redzone;
}
struct AsanChunk: ChunkBase {
uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
uptr UsedSize() { return user_requested_size; }
// We store the alloc/free stack traces in the chunk itself.
u32 *AllocStackBeg() {
return (u32*)(Beg() - ComputeRZSize(UsedSize()));
}
uptr AllocStackSize() {
return (ComputeRZSize(UsedSize()) - kChunkHeaderSize) / sizeof(u32);
}
u32 *FreeStackBeg() {
return (u32*)(Beg() + kChunkHeader2Size);
}
uptr FreeStackSize() {
uptr available = Max(RoundUpTo(UsedSize(), SHADOW_GRANULARITY),
ComputeRZSize(UsedSize()));
return (available - kChunkHeader2Size) / sizeof(u32);
}
};
uptr AsanChunkView::Beg() { return chunk_->Beg(); }
uptr AsanChunkView::End() { return Beg() + UsedSize(); }
uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
void AsanChunkView::GetAllocStack(StackTrace *stack) {
StackTrace::UncompressStack(stack, chunk_->AllocStackBeg(),
chunk_->AllocStackSize());
}
void AsanChunkView::GetFreeStack(StackTrace *stack) {
StackTrace::UncompressStack(stack, chunk_->FreeStackBeg(),
chunk_->FreeStackSize());
}
class Quarantine: public AsanChunkFifoList {
public:
void SwallowThreadLocalQuarantine(AsanThreadLocalMallocStorage *ms) {
AsanChunkFifoList *q = &ms->quarantine_;
if (!q->size()) return;
SpinMutexLock l(&mutex_);
PushList(q);
PopAndDeallocateLoop(ms);
}
void BypassThreadLocalQuarantine(AsanChunk *m) {
SpinMutexLock l(&mutex_);
Push(m);
}
private:
void PopAndDeallocateLoop(AsanThreadLocalMallocStorage *ms) {
while (size() > (uptr)flags()->quarantine_size) {
PopAndDeallocate(ms);
}
}
void PopAndDeallocate(AsanThreadLocalMallocStorage *ms) {
CHECK_GT(size(), 0);
AsanChunk *m = Pop();
CHECK(m);
CHECK(m->chunk_state == CHUNK_QUARANTINE);
m->chunk_state = CHUNK_AVAILABLE;
CHECK_NE(m->alloc_tid, kInvalidTid);
CHECK_NE(m->free_tid, kInvalidTid);
PoisonShadow(m->Beg(),
RoundUpTo(m->user_requested_size, SHADOW_GRANULARITY),
kAsanHeapLeftRedzoneMagic);
uptr alloc_beg = m->Beg() - ComputeRZSize(m->user_requested_size);
void *p = reinterpret_cast<void *>(alloc_beg);
if (m->from_memalign) {
p = allocator.GetBlockBegin(p);
uptr *memalign_magic = reinterpret_cast<uptr *>(p);
CHECK_EQ(memalign_magic[0], kMemalignMagic);
CHECK_EQ(memalign_magic[1], reinterpret_cast<uptr>(m));
}
// Statistics.
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
thread_stats.real_frees++;
thread_stats.really_freed += m->UsedSize();
allocator.Deallocate(GetAllocatorCache(ms), p);
}
SpinMutex mutex_;
};
static Quarantine quarantine;
void AsanChunkFifoList::PushList(AsanChunkFifoList *q) {
CHECK(q->size() > 0);
size_ += q->size();
append_back(q);
q->clear();
}
void AsanChunkFifoList::Push(AsanChunk *n) {
push_back(n);
size_ += n->UsedSize();
}
// Interesting performance observation: this function takes up to 15% of overal
// allocator time. That's because *first_ has been evicted from cache long time
// ago. Not sure if we can or want to do anything with this.
AsanChunk *AsanChunkFifoList::Pop() {
CHECK(first_);
AsanChunk *res = front();
size_ -= res->UsedSize();
pop_front();
return res;
}
static void *Allocate(uptr size, uptr alignment, StackTrace *stack) {
Init();
CHECK(stack);
if (alignment < 8) alignment = 8;
if (size == 0)
return reinterpret_cast<void *>(kReturnOnZeroMalloc);
CHECK(IsPowerOfTwo(alignment));
uptr rz_size = ComputeRZSize(size);
uptr rounded_size = RoundUpTo(size, rz_size);
uptr needed_size = rounded_size + rz_size;
if (alignment > rz_size)
needed_size += alignment;
CHECK(IsAligned(needed_size, rz_size));
if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
(void*)size);
return 0;
}
AsanThread *t = asanThreadRegistry().GetCurrent();
// Printf("t = %p\n", t);
CHECK(t); // FIXME
void *allocated = allocator.Allocate(
GetAllocatorCache(&t->malloc_storage()), needed_size, 8, false);
uptr alloc_beg = reinterpret_cast<uptr>(allocated);
uptr alloc_end = alloc_beg + needed_size;
uptr beg_plus_redzone = alloc_beg + rz_size;
uptr user_beg = beg_plus_redzone;
if (!IsAligned(user_beg, alignment))
user_beg = RoundUpTo(user_beg, alignment);
uptr user_end = user_beg + size;
CHECK_LE(user_end, alloc_end);
uptr chunk_beg = user_beg - kChunkHeaderSize;
AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
m->chunk_state = CHUNK_ALLOCATED;
u32 alloc_tid = t ? t->tid() : 0;
m->alloc_tid = alloc_tid;
CHECK_EQ(alloc_tid, m->alloc_tid); // Does alloc_tid fit into the bitfield?
m->free_tid = kInvalidTid;
m->from_memalign = user_beg != beg_plus_redzone;
if (m->from_memalign) {
CHECK_LE(beg_plus_redzone + 2 * sizeof(uptr), user_beg);
uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
memalign_magic[0] = kMemalignMagic;
memalign_magic[1] = chunk_beg;
}
m->user_requested_size = size;
StackTrace::CompressStack(stack, m->AllocStackBeg(), m->AllocStackSize());
uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
// Unpoison the bulk of the memory region.
if (size_rounded_down_to_granularity)
PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
// Deal with the end of the region if size is not aligned to granularity.
if (size != size_rounded_down_to_granularity && flags()->poison_heap) {
u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
*shadow = size & (SHADOW_GRANULARITY - 1);
}
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
thread_stats.mallocs++;
thread_stats.malloced += size;
void *res = reinterpret_cast<void *>(user_beg);
ASAN_MALLOC_HOOK(res, size);
return res;
}
static void Deallocate(void *ptr, StackTrace *stack) {
uptr p = reinterpret_cast<uptr>(ptr);
if (p == 0 || p == kReturnOnZeroMalloc) return;
uptr chunk_beg = p - kChunkHeaderSize;
AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
// Flip the chunk_state atomically to avoid race on double-free.
u8 old_chunk_state = atomic_exchange((atomic_uint8_t*)m, CHUNK_QUARANTINE,
memory_order_acq_rel);
if (old_chunk_state == CHUNK_QUARANTINE)
ReportDoubleFree((uptr)ptr, stack);
else if (old_chunk_state != CHUNK_ALLOCATED)
ReportFreeNotMalloced((uptr)ptr, stack);
CHECK(old_chunk_state == CHUNK_ALLOCATED);
CHECK_GE(m->alloc_tid, 0);
if (SANITIZER_WORDSIZE == 64) // On 32-bits this resides in user area.
CHECK_EQ(m->free_tid, kInvalidTid);
AsanThread *t = asanThreadRegistry().GetCurrent();
m->free_tid = t ? t->tid() : 0;
StackTrace::CompressStack(stack, m->FreeStackBeg(), m->FreeStackSize());
CHECK(m->chunk_state == CHUNK_QUARANTINE);
// Poison the region.
PoisonShadow(m->Beg(),
RoundUpTo(m->user_requested_size, SHADOW_GRANULARITY),
kAsanHeapFreeMagic);
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
thread_stats.frees++;
thread_stats.freed += m->UsedSize();
// Push into quarantine.
if (t) {
AsanChunkFifoList &q = t->malloc_storage().quarantine_;
q.Push(m);
if (q.size() > kMaxThreadLocalQuarantine)
quarantine.SwallowThreadLocalQuarantine(&t->malloc_storage());
} else {
quarantine.BypassThreadLocalQuarantine(m);
}
ASAN_FREE_HOOK(ptr);
}
static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
CHECK(old_ptr && new_size);
uptr p = reinterpret_cast<uptr>(old_ptr);
uptr chunk_beg = p - kChunkHeaderSize;
AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
CHECK(m->chunk_state == CHUNK_ALLOCATED);
uptr old_size = m->UsedSize();
uptr memcpy_size = Min(new_size, old_size);
void *new_ptr = Allocate(new_size, 8, stack);
if (new_ptr) {
CHECK(REAL(memcpy) != 0);
REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
Deallocate(old_ptr, stack);
}
return new_ptr;
}
static AsanChunk *GetAsanChunkByAddr(uptr p) {
uptr alloc_beg = reinterpret_cast<uptr>(
allocator.GetBlockBegin(reinterpret_cast<void *>(p)));
if (!alloc_beg) return 0;
uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
if (memalign_magic[0] == kMemalignMagic) {
AsanChunk *m = reinterpret_cast<AsanChunk *>(memalign_magic[1]);
CHECK(m->from_memalign);
return m;
}
uptr chunk_beg = alloc_beg + ComputeRZSize(0) - kChunkHeaderSize;
return reinterpret_cast<AsanChunk *>(chunk_beg);
}
static uptr AllocationSize(uptr p) {
AsanChunk *m = GetAsanChunkByAddr(p);
if (!m) return 0;
if (m->chunk_state != CHUNK_ALLOCATED) return 0;
if (m->Beg() != p) return 0;
return m->UsedSize();
}
// We have an address between two chunks, and we want to report just one.
AsanChunk *ChooseChunk(uptr addr,
AsanChunk *left_chunk, AsanChunk *right_chunk) {
// Prefer an allocated chunk or a chunk from quarantine.
if (left_chunk->chunk_state == CHUNK_AVAILABLE &&
right_chunk->chunk_state != CHUNK_AVAILABLE)
return right_chunk;
if (right_chunk->chunk_state == CHUNK_AVAILABLE &&
left_chunk->chunk_state != CHUNK_AVAILABLE)
return left_chunk;
// Choose based on offset.
uptr l_offset = 0, r_offset = 0;
CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
if (l_offset < r_offset)
return left_chunk;
return right_chunk;
}
AsanChunkView FindHeapChunkByAddress(uptr addr) {
AsanChunk *m1 = GetAsanChunkByAddr(addr);
if (!m1) return AsanChunkView(m1);
uptr offset = 0;
if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
// The address is in the chunk's left redzone, so maybe it is actually
// a right buffer overflow from the other chunk to the left.
// Search a bit to the left to see if there is another chunk.
AsanChunk *m2 = 0;
for (uptr l = 1; l < GetPageSizeCached(); l++) {
m2 = GetAsanChunkByAddr(addr - l);
if (m2 == m1) continue; // Still the same chunk.
Printf("m1 %p m2 %p l %zd\n", m1, m2, l);
break;
}
if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
m1 = ChooseChunk(addr, m2, m1);
}
return AsanChunkView(m1);
}
void AsanThreadLocalMallocStorage::CommitBack() {
quarantine.SwallowThreadLocalQuarantine(this);
allocator.SwallowCache(GetAllocatorCache(this));
}
SANITIZER_INTERFACE_ATTRIBUTE
void *asan_memalign(uptr alignment, uptr size, StackTrace *stack) {
return Allocate(size, alignment, stack);
}
SANITIZER_INTERFACE_ATTRIBUTE
void asan_free(void *ptr, StackTrace *stack) {
Deallocate(ptr, stack);
}
SANITIZER_INTERFACE_ATTRIBUTE
void *asan_malloc(uptr size, StackTrace *stack) {
return Allocate(size, 8, stack);
}
void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
void *ptr = Allocate(nmemb * size, 8, stack);
if (ptr)
REAL(memset)(ptr, 0, nmemb * size);
return ptr;
}
void *asan_realloc(void *p, uptr size, StackTrace *stack) {
if (p == 0)
return Allocate(size, 8, stack);
if (size == 0) {
Deallocate(p, stack);
return 0;
}
return Reallocate(p, size, stack);
}
void *asan_valloc(uptr size, StackTrace *stack) {
return Allocate(size, GetPageSizeCached(), stack);
}
void *asan_pvalloc(uptr size, StackTrace *stack) {
uptr PageSize = GetPageSizeCached();
size = RoundUpTo(size, PageSize);
if (size == 0) {
// pvalloc(0) should allocate one page.
size = PageSize;
}
return Allocate(size, PageSize, stack);
}
int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
StackTrace *stack) {
void *ptr = Allocate(size, alignment, stack);
CHECK(IsAligned((uptr)ptr, alignment));
*memptr = ptr;
return 0;
}
uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
CHECK(stack);
if (ptr == 0) return 0;
uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
if (flags()->check_malloc_usable_size && (usable_size == 0))
ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
return usable_size;
}
uptr asan_mz_size(const void *ptr) {
UNIMPLEMENTED();
return 0;
}
void asan_mz_force_lock() {
UNIMPLEMENTED();
}
void asan_mz_force_unlock() {
UNIMPLEMENTED();
}
} // namespace __asan
// ---------------------- Interface ---------------- {{{1
using namespace __asan; // NOLINT
// ASan allocator doesn't reserve extra bytes, so normally we would
// just return "size". We don't want to expose our redzone sizes, etc here.
uptr __asan_get_estimated_allocated_size(uptr size) {
return size;
}
bool __asan_get_ownership(const void *p) {
return AllocationSize(reinterpret_cast<uptr>(p)) > 0;
}
uptr __asan_get_allocated_size(const void *p) {
if (p == 0) return 0;
uptr allocated_size = AllocationSize(reinterpret_cast<uptr>(p));
// Die if p is not malloced or if it is already freed.
if (allocated_size == 0) {
GET_STACK_TRACE_FATAL_HERE;
ReportAsanGetAllocatedSizeNotOwned(reinterpret_cast<uptr>(p), &stack);
}
return allocated_size;
}
#if !SANITIZER_SUPPORTS_WEAK_HOOKS
// Provide default (no-op) implementation of malloc hooks.
extern "C" {
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
void __asan_malloc_hook(void *ptr, uptr size) {
(void)ptr;
(void)size;
}
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
void __asan_free_hook(void *ptr) {
(void)ptr;
}
} // extern "C"
#endif
#endif // ASAN_ALLOCATOR_VERSION