llvm-project/llvm/lib/Target/Hexagon/RDFCopy.cpp

241 lines
6.8 KiB
C++
Raw Normal View History

//===--- RDFCopy.cpp ------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// RDF-based copy propagation.
#include "RDFCopy.h"
#include "RDFGraph.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
using namespace rdf;
#ifndef NDEBUG
static cl::opt<unsigned> CpLimit("rdf-cp-limit", cl::init(0), cl::Hidden);
static unsigned CpCount = 0;
#endif
bool CopyPropagation::interpretAsCopy(const MachineInstr *MI, EqualityMap &EM) {
unsigned Opc = MI->getOpcode();
switch (Opc) {
case TargetOpcode::COPY: {
const MachineOperand &Dst = MI->getOperand(0);
const MachineOperand &Src = MI->getOperand(1);
RegisterRef DstR = DFG.makeRegRef(Dst.getReg(), Dst.getSubReg());
RegisterRef SrcR = DFG.makeRegRef(Src.getReg(), Src.getSubReg());
assert(TargetRegisterInfo::isPhysicalRegister(DstR.Reg));
assert(TargetRegisterInfo::isPhysicalRegister(SrcR.Reg));
const TargetRegisterInfo &TRI = DFG.getTRI();
if (TRI.getMinimalPhysRegClass(DstR.Reg) !=
TRI.getMinimalPhysRegClass(SrcR.Reg))
return false;
EM.insert(std::make_pair(DstR, SrcR));
return true;
}
case TargetOpcode::REG_SEQUENCE:
llvm_unreachable("Unexpected REG_SEQUENCE");
}
return false;
}
void CopyPropagation::recordCopy(NodeAddr<StmtNode*> SA, EqualityMap &EM) {
CopyMap.insert(std::make_pair(SA.Id, EM));
Copies.push_back(SA.Id);
for (auto I : EM) {
auto FS = DefM.find(I.second.Reg);
if (FS == DefM.end() || FS->second.empty())
continue; // Undefined source
RDefMap[I.second][SA.Id] = FS->second.top()->Id;
// Insert DstR into the map.
RDefMap[I.first];
}
}
void CopyPropagation::updateMap(NodeAddr<InstrNode*> IA) {
RegisterSet RRs;
for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
RRs.insert(RA.Addr->getRegRef(DFG));
bool Common = false;
for (auto &R : RDefMap) {
if (!RRs.count(R.first))
continue;
Common = true;
break;
}
if (!Common)
return;
for (auto &R : RDefMap) {
if (!RRs.count(R.first))
continue;
auto F = DefM.find(R.first.Reg);
if (F == DefM.end() || F->second.empty())
continue;
R.second[IA.Id] = F->second.top()->Id;
}
}
bool CopyPropagation::scanBlock(MachineBasicBlock *B) {
bool Changed = false;
auto BA = DFG.getFunc().Addr->findBlock(B, DFG);
DFG.markBlock(BA.Id, DefM);
for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
if (DFG.IsCode<NodeAttrs::Stmt>(IA)) {
NodeAddr<StmtNode*> SA = IA;
EqualityMap EM;
if (interpretAsCopy(SA.Addr->getCode(), EM))
recordCopy(SA, EM);
}
updateMap(IA);
DFG.pushAllDefs(IA, DefM);
}
MachineDomTreeNode *N = MDT.getNode(B);
for (auto I : *N)
Changed |= scanBlock(I->getBlock());
DFG.releaseBlock(BA.Id, DefM);
return Changed;
}
bool CopyPropagation::run() {
scanBlock(&DFG.getMF().front());
if (trace()) {
dbgs() << "Copies:\n";
for (auto I : Copies) {
dbgs() << "Instr: " << *DFG.addr<StmtNode*>(I).Addr->getCode();
dbgs() << " eq: {";
for (auto J : CopyMap[I])
dbgs() << ' ' << Print<RegisterRef>(J.first, DFG) << '='
<< Print<RegisterRef>(J.second, DFG);
dbgs() << " }\n";
}
dbgs() << "\nRDef map:\n";
for (auto R : RDefMap) {
dbgs() << Print<RegisterRef>(R.first, DFG) << " -> {";
for (auto &M : R.second)
dbgs() << ' ' << Print<NodeId>(M.first, DFG) << ':'
<< Print<NodeId>(M.second, DFG);
dbgs() << " }\n";
}
}
bool Changed = false;
#ifndef NDEBUG
bool HasLimit = CpLimit.getNumOccurrences() > 0;
#endif
auto MinPhysReg = [this] (RegisterRef RR) -> unsigned {
const TargetRegisterInfo &TRI = DFG.getTRI();
const TargetRegisterClass &RC = *TRI.getMinimalPhysRegClass(RR.Reg);
if ((RC.LaneMask & RR.Mask) == RC.LaneMask)
return RR.Reg;
for (MCSubRegIndexIterator S(RR.Reg, &TRI); S.isValid(); ++S)
if (RR.Mask == TRI.getSubRegIndexLaneMask(S.getSubRegIndex()))
return S.getSubReg();
llvm_unreachable("Should have found a register");
return 0;
};
for (auto C : Copies) {
#ifndef NDEBUG
if (HasLimit && CpCount >= CpLimit)
break;
#endif
auto SA = DFG.addr<InstrNode*>(C);
auto FS = CopyMap.find(SA.Id);
if (FS == CopyMap.end())
continue;
EqualityMap &EM = FS->second;
for (NodeAddr<DefNode*> DA : SA.Addr->members_if(DFG.IsDef, DFG)) {
RegisterRef DR = DA.Addr->getRegRef(DFG);
auto FR = EM.find(DR);
if (FR == EM.end())
continue;
RegisterRef SR = FR->second;
if (DR == SR)
continue;
auto &RDefSR = RDefMap[SR];
NodeId RDefSR_SA = RDefSR[SA.Id];
for (NodeId N = DA.Addr->getReachedUse(), NextN; N; N = NextN) {
auto UA = DFG.addr<UseNode*>(N);
NextN = UA.Addr->getSibling();
uint16_t F = UA.Addr->getFlags();
if ((F & NodeAttrs::PhiRef) || (F & NodeAttrs::Fixed))
continue;
if (UA.Addr->getRegRef(DFG) != DR)
continue;
NodeAddr<InstrNode*> IA = UA.Addr->getOwner(DFG);
assert(DFG.IsCode<NodeAttrs::Stmt>(IA));
if (RDefSR[IA.Id] != RDefSR_SA)
continue;
MachineOperand &Op = UA.Addr->getOp();
if (Op.isTied())
continue;
if (trace()) {
dbgs() << "Can replace " << Print<RegisterRef>(DR, DFG)
<< " with " << Print<RegisterRef>(SR, DFG) << " in "
<< *NodeAddr<StmtNode*>(IA).Addr->getCode();
}
unsigned NewReg = MinPhysReg(SR);
Op.setReg(NewReg);
Op.setSubReg(0);
DFG.unlinkUse(UA, false);
if (RDefSR_SA != 0) {
UA.Addr->linkToDef(UA.Id, DFG.addr<DefNode*>(RDefSR_SA));
} else {
UA.Addr->setReachingDef(0);
UA.Addr->setSibling(0);
}
Changed = true;
#ifndef NDEBUG
if (HasLimit && CpCount >= CpLimit)
break;
CpCount++;
#endif
auto FC = CopyMap.find(IA.Id);
if (FC != CopyMap.end()) {
// Update the EM map in the copy's entry.
auto &M = FC->second;
for (auto &J : M) {
if (J.second != DR)
continue;
J.second = SR;
break;
}
}
} // for (N in reached-uses)
} // for (DA in defs)
} // for (C in Copies)
return Changed;
}