llvm-project/lld/ELF/ARMErrataFix.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

536 lines
22 KiB
C++
Raw Normal View History

//===- ARMErrataFix.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file implements Section Patching for the purpose of working around the
// Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions
// can result in an incorrect instruction fetch or processor deadlock." The
// erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the
// Cortex-A8. A high level description of the patching technique is given in
// the opening comment of AArch64ErrataFix.cpp.
//===----------------------------------------------------------------------===//
#include "ARMErrataFix.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/CommonLinkerContext.h"
#include "lld/Common/Strings.h"
#include "llvm/Support/Endian.h"
#include <algorithm>
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::elf;
// The documented title for Erratum 657417 is:
// "A 32bit branch instruction that spans two 4K regions can result in an
// incorrect instruction fetch or processor deadlock". Graphically using a
// 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff
// xxxxxx000 // Memory region 1 start
// target:
// ...
// xxxxxxffe f7fe // First halfword of branch to target:
// xxxxxx000 // Memory region 2 start
// xxxxxx002 bfff // Second halfword of branch to target:
//
// The specific trigger conditions that can be detected at link time are:
// - There is a 32-bit Thumb-2 branch instruction with an address of the form
// xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the
// second 2 bytes are in region 2.
// - The branch instruction is one of BLX, BL, B.w BCC.w
// - The instruction preceding the branch is a 32-bit non-branch instruction.
// - The target of the branch is in region 1.
//
// The linker mitigation for the fix is to redirect any branch that meets the
// erratum conditions to a patch section containing a branch to the target.
//
// As adding patch sections may move branches onto region boundaries the patch
// must iterate until no more patches are added.
//
// Example, before:
// 00000FFA func: NOP.w // 32-bit Thumb function
// 00000FFE B.W func // 32-bit branch spanning 2 regions, dest in 1st.
// Example, after:
// 00000FFA func: NOP.w // 32-bit Thumb function
// 00000FFE B.w __CortexA8657417_00000FFE
// 00001002 2 - bytes padding
// 00001004 __CortexA8657417_00000FFE: B.w func
class elf::Patch657417Section : public SyntheticSection {
public:
Patch657417Section(InputSection *p, uint64_t off, uint32_t instr, bool isARM);
void writeTo(uint8_t *buf) override;
size_t getSize() const override { return 4; }
// Get the virtual address of the branch instruction at patcheeOffset.
uint64_t getBranchAddr() const;
static bool classof(const SectionBase *d) {
return d->kind() == InputSectionBase::Synthetic && d->name ==".text.patch";
}
// The Section we are patching.
const InputSection *patchee;
// The offset of the instruction in the Patchee section we are patching.
uint64_t patcheeOffset;
// A label for the start of the Patch that we can use as a relocation target.
Symbol *patchSym;
// A decoding of the branch instruction at patcheeOffset.
uint32_t instr;
// True If the patch is to be written in ARM state, otherwise the patch will
// be written in Thumb state.
bool isARM;
};
// Return true if the half-word, when taken as the first of a pair of halfwords
// is the first half of a 32-bit instruction.
// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
// section A6.3: 32-bit Thumb instruction encoding
// | HW1 | HW2 |
// | 1 1 1 | op1 (2) | op2 (7) | x (4) |op| x (15) |
// With op1 == 0b00, a 16-bit instruction is encoded.
//
// We test only the first halfword, looking for op != 0b00.
static bool is32bitInstruction(uint16_t hw) {
return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000;
}
// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
// section A6.3.4 Branches and miscellaneous control.
// | HW1 | HW2 |
// | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) |
// op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W)
// op1 == 0x1 | Branch (B.W)
// op1 == 1x0 | Branch with Link and Exchange (BLX.w)
// op1 == 1x1 | Branch with Link (BL.W)
static bool isBcc(uint32_t instr) {
return (instr & 0xf800d000) == 0xf0008000 &&
(instr & 0x03800000) != 0x03800000;
}
static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; }
static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; }
static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; }
static bool is32bitBranch(uint32_t instr) {
return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr);
}
Patch657417Section::Patch657417Section(InputSection *p, uint64_t off,
uint32_t instr, bool isARM)
: SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
".text.patch"),
patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) {
parent = p->getParent();
patchSym = addSyntheticLocal(
saver().save("__CortexA8657417_" + utohexstr(getBranchAddr())), STT_FUNC,
isARM ? 0 : 1, getSize(), *this);
addSyntheticLocal(saver().save(isARM ? "$a" : "$t"), STT_NOTYPE, 0, 0, *this);
}
uint64_t Patch657417Section::getBranchAddr() const {
return patchee->getVA(patcheeOffset);
}
// Given a branch instruction instr at sourceAddr work out its destination
// address. This is only used when the branch instruction has no relocation.
static uint64_t getThumbDestAddr(uint64_t sourceAddr, uint32_t instr) {
uint8_t buf[4];
write16le(buf, instr >> 16);
write16le(buf + 2, instr & 0x0000ffff);
int64_t offset;
if (isBcc(instr))
offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP19);
else if (isB(instr))
offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP24);
else
offset = target->getImplicitAddend(buf, R_ARM_THM_CALL);
// A BLX instruction from Thumb to Arm may have an address that is
// not 4-byte aligned. As Arm instructions are always 4-byte aligned
// the instruction is calculated (from Arm ARM):
// targetAddress = Align(PC, 4) + imm32
// where
// Align(x, y) = y * (x Div y)
// which corresponds to alignDown.
if (isBLX(instr))
sourceAddr = alignDown(sourceAddr, 4);
return sourceAddr + offset + 4;
}
void Patch657417Section::writeTo(uint8_t *buf) {
// The base instruction of the patch is always a 32-bit unconditional branch.
if (isARM)
write32le(buf, 0xea000000);
else
write32le(buf, 0x9000f000);
// If we have a relocation then apply it.
if (!relocations.empty()) {
relocateAlloc(buf, buf + getSize());
return;
}
// If we don't have a relocation then we must calculate and write the offset
// ourselves.
// Get the destination offset from the addend in the branch instruction.
// We cannot use the instruction in the patchee section as this will have
// been altered to point to us!
uint64_t s = getThumbDestAddr(getBranchAddr(), instr);
// A BLX changes the state of the branch in the patch to Arm state, which
// has a PC Bias of 8, whereas in all other cases the branch is in Thumb
// state with a PC Bias of 4.
uint64_t pcBias = isBLX(instr) ? 8 : 4;
uint64_t p = getVA(pcBias);
target->relocateNoSym(buf, isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24, s - p);
}
// Given a branch instruction spanning two 4KiB regions, at offset off from the
// start of isec, return true if the destination of the branch is within the
// first of the two 4Kib regions.
static bool branchDestInFirstRegion(const InputSection *isec, uint64_t off,
uint32_t instr, const Relocation *r) {
uint64_t sourceAddr = isec->getVA(0) + off;
assert((sourceAddr & 0xfff) == 0xffe);
uint64_t destAddr;
// If there is a branch relocation at the same offset we must use this to
// find the destination address as the branch could be indirected via a thunk
// or the PLT.
if (r) {
uint64_t dst = (r->expr == R_PLT_PC) ? r->sym->getPltVA() : r->sym->getVA();
// Account for Thumb PC bias, usually cancelled to 0 by addend of -4.
destAddr = dst + r->addend + 4;
} else {
// If there is no relocation, we must have an intra-section branch
// We must extract the offset from the addend manually.
destAddr = getThumbDestAddr(sourceAddr, instr);
}
return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000);
}
// Return true if a branch can reach a patch section placed after isec.
// The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB.
static bool patchInRange(const InputSection *isec, uint64_t off,
uint32_t instr) {
// We need the branch at source to reach a patch section placed immediately
// after isec. As there can be more than one patch in the patch section we
// add 0x100 as contingency to account for worst case of 1 branch every 4KiB
// for a 1 MiB range.
return target->inBranchRange(
isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, isec->getVA(off),
isec->getVA() + isec->getSize() + 0x100);
}
struct ScanResult {
// Offset of branch within its InputSection.
uint64_t off;
// Cached decoding of the branch instruction.
uint32_t instr;
// Branch relocation at off. Will be nullptr if no relocation exists.
Relocation *rel;
};
// Detect the erratum sequence, returning the offset of the branch instruction
// and a decoding of the branch. If the erratum sequence is not found then
// return an offset of 0 for the branch. 0 is a safe value to use for no patch
// as there must be at least one 32-bit non-branch instruction before the
// branch so the minimum offset for a patch is 4.
static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off,
uint64_t limit) {
uint64_t isecAddr = isec->getVA(0);
// Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We
// need to check for a 32-bit instruction immediately before a 32-bit branch
// at 0xffe modulo 0x1000.
off = alignTo(isecAddr + off, 0x1000, 0xffa) - isecAddr;
if (off >= limit || limit - off < 8) {
// Need at least 2 4-byte sized instructions to trigger erratum.
off = limit;
return {0, 0, nullptr};
}
ScanResult scanRes = {0, 0, nullptr};
const uint8_t *buf = isec->data().begin();
// ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive
// little-endian halfwords.
const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off);
uint16_t hw11 = *instBuf++;
uint16_t hw12 = *instBuf++;
uint16_t hw21 = *instBuf++;
uint16_t hw22 = *instBuf++;
if (is32bitInstruction(hw11) && is32bitInstruction(hw21)) {
uint32_t instr1 = (hw11 << 16) | hw12;
uint32_t instr2 = (hw21 << 16) | hw22;
if (!is32bitBranch(instr1) && is32bitBranch(instr2)) {
// Find a relocation for the branch if it exists. This will be used
// to determine the target.
uint64_t branchOff = off + 4;
auto relIt = llvm::find_if(isec->relocations, [=](const Relocation &r) {
return r.offset == branchOff &&
(r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 ||
r.type == R_ARM_THM_CALL);
});
if (relIt != isec->relocations.end())
scanRes.rel = &(*relIt);
if (branchDestInFirstRegion(isec, branchOff, instr2, scanRes.rel)) {
if (patchInRange(isec, branchOff, instr2)) {
scanRes.off = branchOff;
scanRes.instr = instr2;
} else {
warn(toString(isec->file) +
": skipping cortex-a8 657417 erratum sequence, section " +
isec->name + " is too large to patch");
}
}
}
}
off += 0x1000;
return scanRes;
}
void ARMErr657417Patcher::init() {
// The Arm ABI permits a mix of ARM, Thumb and Data in the same
// InputSection. We must only scan Thumb instructions to avoid false
// matches. We use the mapping symbols in the InputObjects to identify this
// data, caching the results in sectionMap so we don't have to recalculate
// it each pass.
// The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe
// half open intervals [Symbol Value, Next Symbol Value) of code and data
// within sections. If there is no next symbol then the half open interval is
// [Symbol Value, End of section). The type, code or data, is determined by
// the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data.
auto isArmMapSymbol = [](const Symbol *s) {
return s->getName() == "$a" || s->getName().startswith("$a.");
};
auto isThumbMapSymbol = [](const Symbol *s) {
return s->getName() == "$t" || s->getName().startswith("$t.");
};
auto isDataMapSymbol = [](const Symbol *s) {
return s->getName() == "$d" || s->getName().startswith("$d.");
};
// Collect mapping symbols for every executable InputSection.
for (ELFFileBase *file : objectFiles) {
for (Symbol *s : file->getLocalSymbols()) {
auto *def = dyn_cast<Defined>(s);
if (!def)
continue;
if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) &&
!isDataMapSymbol(def))
continue;
if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
if (sec->flags & SHF_EXECINSTR)
sectionMap[sec].push_back(def);
}
}
// For each InputSection make sure the mapping symbols are in sorted in
// ascending order and are in alternating Thumb, non-Thumb order.
for (auto &kv : sectionMap) {
std::vector<const Defined *> &mapSyms = kv.second;
llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
return a->value < b->value;
});
mapSyms.erase(std::unique(mapSyms.begin(), mapSyms.end(),
[=](const Defined *a, const Defined *b) {
return (isThumbMapSymbol(a) ==
isThumbMapSymbol(b));
}),
mapSyms.end());
// Always start with a Thumb Mapping Symbol
if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front()))
mapSyms.erase(mapSyms.begin());
}
initialized = true;
}
void ARMErr657417Patcher::insertPatches(
InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) {
uint64_t spacing = 0x100000 - 0x7500;
uint64_t isecLimit;
uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
uint64_t patchUpperBound = prevIsecLimit + spacing;
uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
// Set the outSecOff of patches to the place where we want to insert them.
// We use a similar strategy to initial thunk placement, using 1 MiB as the
// range of the Thumb-2 conditional branch with a contingency accounting for
// thunk generation.
auto patchIt = patches.begin();
auto patchEnd = patches.end();
for (const InputSection *isec : isd.sections) {
isecLimit = isec->outSecOff + isec->getSize();
if (isecLimit > patchUpperBound) {
for (; patchIt != patchEnd; ++patchIt) {
if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit)
break;
(*patchIt)->outSecOff = prevIsecLimit;
}
patchUpperBound = prevIsecLimit + spacing;
}
prevIsecLimit = isecLimit;
}
for (; patchIt != patchEnd; ++patchIt)
(*patchIt)->outSecOff = isecLimit;
// Merge all patch sections. We use the outSecOff assigned above to
// determine the insertion point. This is ok as we only merge into an
// InputSectionDescription once per pass, and at the end of the pass
// assignAddresses() will recalculate all the outSecOff values.
SmallVector<InputSection *, 0> tmp;
tmp.reserve(isd.sections.size() + patches.size());
auto mergeCmp = [](const InputSection *a, const InputSection *b) {
if (a->outSecOff != b->outSecOff)
return a->outSecOff < b->outSecOff;
return isa<Patch657417Section>(a) && !isa<Patch657417Section>(b);
};
std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
patches.end(), std::back_inserter(tmp), mergeCmp);
isd.sections = std::move(tmp);
}
// Given a branch instruction described by ScanRes redirect it to a patch
// section containing an unconditional branch instruction to the target.
// Ensure that this patch section is 4-byte aligned so that the branch cannot
// span two 4 KiB regions. Place the patch section so that it is always after
// isec so the branch we are patching always goes forwards.
static void implementPatch(ScanResult sr, InputSection *isec,
std::vector<Patch657417Section *> &patches) {
log("detected cortex-a8-657419 erratum sequence starting at " +
utohexstr(isec->getVA(sr.off)) + " in unpatched output.");
Patch657417Section *psec;
// We have two cases to deal with.
// Case 1. There is a relocation at patcheeOffset to a symbol. The
// unconditional branch in the patch must have a relocation so that any
// further redirection via the PLT or a Thunk happens as normal. At
// patcheeOffset we redirect the existing relocation to a Symbol defined at
// the start of the patch section.
//
// Case 2. There is no relocation at patcheeOffset. We are unlikely to have
// a symbol that we can use as a target for a relocation in the patch section.
// Luckily we know that the destination cannot be indirected via the PLT or
// a Thunk so we can just write the destination directly.
if (sr.rel) {
// Case 1. We have an existing relocation to redirect to patch and a
// Symbol target.
// Create a branch relocation for the unconditional branch in the patch.
// This can be redirected via the PLT or Thunks.
RelType patchRelType = R_ARM_THM_JUMP24;
int64_t patchRelAddend = sr.rel->addend;
bool destIsARM = false;
if (isBL(sr.instr) || isBLX(sr.instr)) {
// The final target of the branch may be ARM or Thumb, if the target
// is ARM then we write the patch in ARM state to avoid a state change
// Thunk from the patch to the target.
uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC) ? sr.rel->sym->getPltVA()
: sr.rel->sym->getVA();
destIsARM = (dstSymAddr & 1) == 0;
}
psec = make<Patch657417Section>(isec, sr.off, sr.instr, destIsARM);
if (destIsARM) {
// The patch will be in ARM state. Use an ARM relocation and account for
// the larger ARM PC-bias of 8 rather than Thumb's 4.
patchRelType = R_ARM_JUMP24;
patchRelAddend -= 4;
}
psec->relocations.push_back(
Relocation{sr.rel->expr, patchRelType, 0, patchRelAddend, sr.rel->sym});
// Redirect the existing branch relocation to the patch.
sr.rel->expr = R_PC;
sr.rel->addend = -4;
sr.rel->sym = psec->patchSym;
} else {
// Case 2. We do not have a relocation to the patch. Add a relocation of the
// appropriate type to the patch at patcheeOffset.
// The destination is ARM if we have a BLX.
psec = make<Patch657417Section>(isec, sr.off, sr.instr, isBLX(sr.instr));
RelType type;
if (isBcc(sr.instr))
type = R_ARM_THM_JUMP19;
else if (isB(sr.instr))
type = R_ARM_THM_JUMP24;
else
type = R_ARM_THM_CALL;
isec->relocations.push_back(
Relocation{R_PC, type, sr.off, -4, psec->patchSym});
}
patches.push_back(psec);
}
// Scan all the instructions in InputSectionDescription, for each instance of
// the erratum sequence create a Patch657417Section. We return the list of
// Patch657417Sections that need to be applied to the InputSectionDescription.
std::vector<Patch657417Section *>
ARMErr657417Patcher::patchInputSectionDescription(
InputSectionDescription &isd) {
std::vector<Patch657417Section *> patches;
for (InputSection *isec : isd.sections) {
// LLD doesn't use the erratum sequence in SyntheticSections.
if (isa<SyntheticSection>(isec))
continue;
// Use sectionMap to make sure we only scan Thumb code and not Arm or inline
// data. We have already sorted mapSyms in ascending order and removed
// consecutive mapping symbols of the same type. Our range of executable
// instructions to scan is therefore [thumbSym->value, nonThumbSym->value)
// or [thumbSym->value, section size).
std::vector<const Defined *> &mapSyms = sectionMap[isec];
auto thumbSym = mapSyms.begin();
while (thumbSym != mapSyms.end()) {
auto nonThumbSym = std::next(thumbSym);
uint64_t off = (*thumbSym)->value;
uint64_t limit = (nonThumbSym == mapSyms.end()) ? isec->data().size()
: (*nonThumbSym)->value;
while (off < limit) {
ScanResult sr = scanCortexA8Errata657417(isec, off, limit);
if (sr.off)
implementPatch(sr, isec, patches);
}
if (nonThumbSym == mapSyms.end())
break;
thumbSym = std::next(nonThumbSym);
}
}
return patches;
}
bool ARMErr657417Patcher::createFixes() {
if (!initialized)
init();
bool addressesChanged = false;
for (OutputSection *os : outputSections) {
if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
continue;
for (SectionCommand *cmd : os->commands)
if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
std::vector<Patch657417Section *> patches =
patchInputSectionDescription(*isd);
if (!patches.empty()) {
insertPatches(*isd, patches);
addressesChanged = true;
}
}
}
return addressesChanged;
}