2010-03-22 05:17:34 +08:00
|
|
|
//===-- LLVMContextImpl.cpp - Implement LLVMContextImpl -------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements the opaque LLVMContextImpl.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "LLVMContextImpl.h"
|
2012-12-04 00:50:05 +08:00
|
|
|
#include "llvm/ADT/STLExtras.h"
|
2013-01-02 19:36:10 +08:00
|
|
|
#include "llvm/IR/Attributes.h"
|
2014-05-22 22:19:46 +08:00
|
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
2013-01-02 19:36:10 +08:00
|
|
|
#include "llvm/IR/Module.h"
|
2016-04-23 06:06:11 +08:00
|
|
|
#include "llvm/IR/OptBisect.h"
|
|
|
|
#include "llvm/Support/ManagedStatic.h"
|
2010-03-22 13:23:37 +08:00
|
|
|
#include <algorithm>
|
2010-04-16 01:08:50 +08:00
|
|
|
using namespace llvm;
|
2010-03-22 05:17:34 +08:00
|
|
|
|
|
|
|
LLVMContextImpl::LLVMContextImpl(LLVMContext &C)
|
2014-04-09 14:08:46 +08:00
|
|
|
: TheTrueVal(nullptr), TheFalseVal(nullptr),
|
2010-03-22 05:17:34 +08:00
|
|
|
VoidTy(C, Type::VoidTyID),
|
|
|
|
LabelTy(C, Type::LabelTyID),
|
2011-12-17 08:04:22 +08:00
|
|
|
HalfTy(C, Type::HalfTyID),
|
2010-03-22 05:17:34 +08:00
|
|
|
FloatTy(C, Type::FloatTyID),
|
|
|
|
DoubleTy(C, Type::DoubleTyID),
|
|
|
|
MetadataTy(C, Type::MetadataTyID),
|
2015-08-14 13:09:07 +08:00
|
|
|
TokenTy(C, Type::TokenTyID),
|
2010-03-22 05:17:34 +08:00
|
|
|
X86_FP80Ty(C, Type::X86_FP80TyID),
|
|
|
|
FP128Ty(C, Type::FP128TyID),
|
|
|
|
PPC_FP128Ty(C, Type::PPC_FP128TyID),
|
2010-09-11 04:55:01 +08:00
|
|
|
X86_MMXTy(C, Type::X86_MMXTyID),
|
2010-03-22 05:17:34 +08:00
|
|
|
Int1Ty(C, 1),
|
|
|
|
Int8Ty(C, 8),
|
|
|
|
Int16Ty(C, 16),
|
|
|
|
Int32Ty(C, 32),
|
2015-04-17 23:32:15 +08:00
|
|
|
Int64Ty(C, 64),
|
|
|
|
Int128Ty(C, 128) {
|
2014-04-09 14:08:46 +08:00
|
|
|
InlineAsmDiagHandler = nullptr;
|
|
|
|
InlineAsmDiagContext = nullptr;
|
|
|
|
DiagnosticHandler = nullptr;
|
|
|
|
DiagnosticContext = nullptr;
|
2014-10-02 02:36:03 +08:00
|
|
|
RespectDiagnosticFilters = false;
|
2016-07-16 01:23:20 +08:00
|
|
|
DiagnosticHotnessRequested = false;
|
2014-05-16 10:33:15 +08:00
|
|
|
YieldCallback = nullptr;
|
|
|
|
YieldOpaqueHandle = nullptr;
|
Land the long talked about "type system rewrite" patch. This
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
llvm-svn: 134829
2011-07-10 01:41:24 +08:00
|
|
|
NamedStructTypesUniqueID = 0;
|
2010-03-22 05:17:34 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
LLVMContextImpl::~LLVMContextImpl() {
|
2014-04-22 05:27:19 +08:00
|
|
|
// NOTE: We need to delete the contents of OwnedModules, but Module's dtor
|
|
|
|
// will call LLVMContextImpl::removeModule, thus invalidating iterators into
|
|
|
|
// the container. Avoid iterators during this operation:
|
|
|
|
while (!OwnedModules.empty())
|
|
|
|
delete *OwnedModules.begin();
|
2015-01-15 05:58:17 +08:00
|
|
|
|
|
|
|
// Drop references for MDNodes. Do this before Values get deleted to avoid
|
|
|
|
// unnecessary RAUW when nodes are still unresolved.
|
|
|
|
for (auto *I : DistinctMDNodes)
|
|
|
|
I->dropAllReferences();
|
2015-08-04 01:26:41 +08:00
|
|
|
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
|
2015-01-20 09:18:32 +08:00
|
|
|
for (auto *I : CLASS##s) \
|
2015-01-15 05:58:17 +08:00
|
|
|
I->dropAllReferences();
|
2015-01-20 09:18:32 +08:00
|
|
|
#include "llvm/IR/Metadata.def"
|
2015-01-15 05:58:17 +08:00
|
|
|
|
|
|
|
// Also drop references that come from the Value bridges.
|
|
|
|
for (auto &Pair : ValuesAsMetadata)
|
|
|
|
Pair.second->dropUsers();
|
|
|
|
for (auto &Pair : MetadataAsValues)
|
|
|
|
Pair.second->dropUse();
|
|
|
|
|
|
|
|
// Destroy MDNodes.
|
2015-01-20 07:13:14 +08:00
|
|
|
for (MDNode *I : DistinctMDNodes)
|
2015-01-15 05:58:17 +08:00
|
|
|
I->deleteAsSubclass();
|
2015-08-04 01:26:41 +08:00
|
|
|
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
|
|
|
|
for (CLASS * I : CLASS##s) \
|
2015-01-15 05:58:17 +08:00
|
|
|
delete I;
|
2015-01-20 09:18:32 +08:00
|
|
|
#include "llvm/IR/Metadata.def"
|
2015-01-15 05:58:17 +08:00
|
|
|
|
2015-01-23 05:43:01 +08:00
|
|
|
// Free the constants.
|
2016-04-07 01:56:08 +08:00
|
|
|
for (auto *I : ExprConstants)
|
|
|
|
I->dropAllReferences();
|
|
|
|
for (auto *I : ArrayConstants)
|
|
|
|
I->dropAllReferences();
|
|
|
|
for (auto *I : StructConstants)
|
|
|
|
I->dropAllReferences();
|
|
|
|
for (auto *I : VectorConstants)
|
|
|
|
I->dropAllReferences();
|
2010-03-22 05:17:34 +08:00
|
|
|
ExprConstants.freeConstants();
|
|
|
|
ArrayConstants.freeConstants();
|
|
|
|
StructConstants.freeConstants();
|
|
|
|
VectorConstants.freeConstants();
|
|
|
|
InlineAsms.freeConstants();
|
2016-10-11 00:26:13 +08:00
|
|
|
|
|
|
|
CAZConstants.clear();
|
|
|
|
CPNConstants.clear();
|
|
|
|
UVConstants.clear();
|
|
|
|
IntConstants.clear();
|
|
|
|
FPConstants.clear();
|
2016-06-26 22:10:56 +08:00
|
|
|
|
|
|
|
for (auto &CDSConstant : CDSConstants)
|
|
|
|
delete CDSConstant.second;
|
2012-01-24 06:57:10 +08:00
|
|
|
CDSConstants.clear();
|
2012-09-27 05:07:29 +08:00
|
|
|
|
|
|
|
// Destroy attributes.
|
2012-12-20 09:36:59 +08:00
|
|
|
for (FoldingSetIterator<AttributeImpl> I = AttrsSet.begin(),
|
2012-11-20 13:09:20 +08:00
|
|
|
E = AttrsSet.end(); I != E; ) {
|
2012-12-20 09:36:59 +08:00
|
|
|
FoldingSetIterator<AttributeImpl> Elem = I++;
|
2012-10-14 16:48:40 +08:00
|
|
|
delete &*Elem;
|
|
|
|
}
|
|
|
|
|
2012-11-20 13:09:20 +08:00
|
|
|
// Destroy attribute lists.
|
Rename AttributeSet to AttributeList
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
2017-03-22 00:57:19 +08:00
|
|
|
for (FoldingSetIterator<AttributeListImpl> I = AttrsLists.begin(),
|
|
|
|
E = AttrsLists.end();
|
|
|
|
I != E;) {
|
|
|
|
FoldingSetIterator<AttributeListImpl> Elem = I++;
|
2012-11-20 13:09:20 +08:00
|
|
|
delete &*Elem;
|
|
|
|
}
|
|
|
|
|
2013-01-24 08:14:46 +08:00
|
|
|
// Destroy attribute node lists.
|
|
|
|
for (FoldingSetIterator<AttributeSetNode> I = AttrsSetNodes.begin(),
|
|
|
|
E = AttrsSetNodes.end(); I != E; ) {
|
|
|
|
FoldingSetIterator<AttributeSetNode> Elem = I++;
|
|
|
|
delete &*Elem;
|
|
|
|
}
|
|
|
|
|
IR: Split Metadata from Value
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
llvm-svn: 223802
2014-12-10 02:38:53 +08:00
|
|
|
// Destroy MetadataAsValues.
|
|
|
|
{
|
|
|
|
SmallVector<MetadataAsValue *, 8> MDVs;
|
|
|
|
MDVs.reserve(MetadataAsValues.size());
|
|
|
|
for (auto &Pair : MetadataAsValues)
|
|
|
|
MDVs.push_back(Pair.second);
|
|
|
|
MetadataAsValues.clear();
|
|
|
|
for (auto *V : MDVs)
|
|
|
|
delete V;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Destroy ValuesAsMetadata.
|
|
|
|
for (auto &Pair : ValuesAsMetadata)
|
|
|
|
delete Pair.second;
|
2010-03-22 05:17:34 +08:00
|
|
|
}
|
2011-12-20 10:50:00 +08:00
|
|
|
|
2015-01-21 03:24:59 +08:00
|
|
|
void LLVMContextImpl::dropTriviallyDeadConstantArrays() {
|
|
|
|
bool Changed;
|
|
|
|
do {
|
|
|
|
Changed = false;
|
|
|
|
|
2016-04-07 01:56:08 +08:00
|
|
|
for (auto I = ArrayConstants.begin(), E = ArrayConstants.end(); I != E;) {
|
|
|
|
auto *C = *I++;
|
2015-01-21 03:24:59 +08:00
|
|
|
if (C->use_empty()) {
|
|
|
|
Changed = true;
|
|
|
|
C->destroyConstant();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} while (Changed);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Module::dropTriviallyDeadConstantArrays() {
|
|
|
|
Context.pImpl->dropTriviallyDeadConstantArrays();
|
|
|
|
}
|
|
|
|
|
2015-01-20 06:53:18 +08:00
|
|
|
namespace llvm {
|
|
|
|
/// \brief Make MDOperand transparent for hashing.
|
|
|
|
///
|
|
|
|
/// This overload of an implementation detail of the hashing library makes
|
|
|
|
/// MDOperand hash to the same value as a \a Metadata pointer.
|
|
|
|
///
|
|
|
|
/// Note that overloading \a hash_value() as follows:
|
|
|
|
///
|
|
|
|
/// \code
|
|
|
|
/// size_t hash_value(const MDOperand &X) { return hash_value(X.get()); }
|
|
|
|
/// \endcode
|
|
|
|
///
|
|
|
|
/// does not cause MDOperand to be transparent. In particular, a bare pointer
|
|
|
|
/// doesn't get hashed before it's combined, whereas \a MDOperand would.
|
|
|
|
static const Metadata *get_hashable_data(const MDOperand &X) { return X.get(); }
|
2015-06-23 17:49:53 +08:00
|
|
|
}
|
2015-01-20 06:53:18 +08:00
|
|
|
|
2015-01-20 08:01:43 +08:00
|
|
|
unsigned MDNodeOpsKey::calculateHash(MDNode *N, unsigned Offset) {
|
|
|
|
unsigned Hash = hash_combine_range(N->op_begin() + Offset, N->op_end());
|
2015-01-20 06:53:18 +08:00
|
|
|
#ifndef NDEBUG
|
|
|
|
{
|
2015-01-20 08:01:43 +08:00
|
|
|
SmallVector<Metadata *, 8> MDs(N->op_begin() + Offset, N->op_end());
|
2015-01-20 06:53:18 +08:00
|
|
|
unsigned RawHash = calculateHash(MDs);
|
|
|
|
assert(Hash == RawHash &&
|
|
|
|
"Expected hash of MDOperand to equal hash of Metadata*");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return Hash;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned MDNodeOpsKey::calculateHash(ArrayRef<Metadata *> Ops) {
|
|
|
|
return hash_combine_range(Ops.begin(), Ops.end());
|
|
|
|
}
|
|
|
|
|
2015-09-25 03:14:18 +08:00
|
|
|
StringMapEntry<uint32_t> *LLVMContextImpl::getOrInsertBundleTag(StringRef Tag) {
|
|
|
|
uint32_t NewIdx = BundleTagCache.size();
|
|
|
|
return &*(BundleTagCache.insert(std::make_pair(Tag, NewIdx)).first);
|
|
|
|
}
|
|
|
|
|
|
|
|
void LLVMContextImpl::getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const {
|
|
|
|
Tags.resize(BundleTagCache.size());
|
|
|
|
for (const auto &T : BundleTagCache)
|
|
|
|
Tags[T.second] = T.first();
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t LLVMContextImpl::getOperandBundleTagID(StringRef Tag) const {
|
|
|
|
auto I = BundleTagCache.find(Tag);
|
|
|
|
assert(I != BundleTagCache.end() && "Unknown tag!");
|
|
|
|
return I->second;
|
|
|
|
}
|
|
|
|
|
2016-04-23 06:06:11 +08:00
|
|
|
/// Singleton instance of the OptBisect class.
|
|
|
|
///
|
|
|
|
/// This singleton is accessed via the LLVMContext::getOptBisect() function. It
|
|
|
|
/// provides a mechanism to disable passes and individual optimizations at
|
|
|
|
/// compile time based on a command line option (-opt-bisect-limit) in order to
|
|
|
|
/// perform a bisecting search for optimization-related problems.
|
|
|
|
///
|
|
|
|
/// Even if multiple LLVMContext objects are created, they will all return the
|
|
|
|
/// same instance of OptBisect in order to provide a single bisect count. Any
|
|
|
|
/// code that uses the OptBisect object should be serialized when bisection is
|
|
|
|
/// enabled in order to enable a consistent bisect count.
|
|
|
|
static ManagedStatic<OptBisect> OptBisector;
|
|
|
|
|
|
|
|
OptBisect &LLVMContextImpl::getOptBisect() {
|
|
|
|
return *OptBisector;
|
|
|
|
}
|