llvm-project/lldb/source/Plugins/SymbolFile/DWARF/DWARFDebugInfo.cpp

765 lines
24 KiB
C++
Raw Normal View History

//===-- DWARFDebugInfo.cpp --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SymbolFileDWARF.h"
#include <algorithm>
#include <set>
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/Stream.h"
#include "lldb/Symbol/ObjectFile.h"
#include "DWARFDebugAranges.h"
#include "DWARFDebugInfo.h"
#include "DWARFCompileUnit.h"
#include "DWARFDebugAranges.h"
#include "DWARFDebugInfoEntry.h"
#include "DWARFFormValue.h"
#include "LogChannelDWARF.h"
using namespace lldb;
using namespace lldb_private;
using namespace std;
//----------------------------------------------------------------------
// Constructor
//----------------------------------------------------------------------
DWARFDebugInfo::DWARFDebugInfo() :
m_dwarf2Data(NULL),
m_compile_units(),
m_cu_aranges_ap ()
{
}
//----------------------------------------------------------------------
// SetDwarfData
//----------------------------------------------------------------------
void
DWARFDebugInfo::SetDwarfData(SymbolFileDWARF* dwarf2Data)
{
m_dwarf2Data = dwarf2Data;
m_compile_units.clear();
}
DWARFDebugAranges &
DWARFDebugInfo::GetCompileUnitAranges ()
{
if (m_cu_aranges_ap.get() == NULL && m_dwarf2Data)
{
Log *log (LogChannelDWARF::GetLogIfAll(DWARF_LOG_DEBUG_ARANGES));
m_cu_aranges_ap.reset (new DWARFDebugAranges());
const DWARFDataExtractor &debug_aranges_data = m_dwarf2Data->get_debug_aranges_data();
if (debug_aranges_data.GetByteSize() > 0)
{
if (log)
log->Printf ("DWARFDebugInfo::GetCompileUnitAranges() for \"%s\" from .debug_aranges",
m_dwarf2Data->GetObjectFile()->GetFileSpec().GetPath().c_str());
m_cu_aranges_ap->Extract (debug_aranges_data);
}
// Make a list of all CUs represented by the arange data in the file.
std::set<dw_offset_t> cus_with_data;
for (size_t n=0;n<m_cu_aranges_ap.get()->GetNumRanges();n++)
{
dw_offset_t offset = m_cu_aranges_ap.get()->OffsetAtIndex(n);
if (offset != DW_INVALID_OFFSET)
cus_with_data.insert (offset);
}
// Manually build arange data for everything that wasn't in the .debug_aranges table.
bool printed = false;
const size_t num_compile_units = GetNumCompileUnits();
for (size_t idx = 0; idx < num_compile_units; ++idx)
{
DWARFCompileUnit* cu = GetCompileUnitAtIndex(idx);
dw_offset_t offset = cu->GetOffset();
if (cus_with_data.find(offset) == cus_with_data.end())
{
if (log)
{
if (!printed)
log->Printf ("DWARFDebugInfo::GetCompileUnitAranges() for \"%s\" by parsing",
m_dwarf2Data->GetObjectFile()->GetFileSpec().GetPath().c_str());
printed = true;
}
cu->BuildAddressRangeTable (m_dwarf2Data, m_cu_aranges_ap.get());
}
}
const bool minimize = true;
m_cu_aranges_ap->Sort (minimize);
}
return *m_cu_aranges_ap.get();
}
//----------------------------------------------------------------------
// LookupAddress
//----------------------------------------------------------------------
bool
DWARFDebugInfo::LookupAddress
(
const dw_addr_t address,
const dw_offset_t hint_die_offset,
DWARFCompileUnitSP& cu_sp,
DWARFDebugInfoEntry** function_die,
DWARFDebugInfoEntry** block_die
)
{
if (hint_die_offset != DW_INVALID_OFFSET)
cu_sp = GetCompileUnit(hint_die_offset);
else
{
DWARFDebugAranges &cu_aranges = GetCompileUnitAranges ();
const dw_offset_t cu_offset = cu_aranges.FindAddress (address);
cu_sp = GetCompileUnit(cu_offset);
}
if (cu_sp.get())
{
if (cu_sp->LookupAddress(address, function_die, block_die))
return true;
cu_sp.reset();
}
else
{
// The hint_die_offset may have been a pointer to the actual item that
// we are looking for
DWARFDebugInfoEntry* die_ptr = GetDIEPtr(hint_die_offset, &cu_sp);
if (die_ptr)
{
if (cu_sp.get())
{
if (function_die || block_die)
return die_ptr->LookupAddress(address, m_dwarf2Data, cu_sp.get(), function_die, block_die);
// We only wanted the compile unit that contained this address
return true;
}
}
}
return false;
}
void
DWARFDebugInfo::ParseCompileUnitHeadersIfNeeded()
{
if (m_compile_units.empty())
{
if (m_dwarf2Data != NULL)
{
lldb::offset_t offset = 0;
const DWARFDataExtractor &debug_info_data = m_dwarf2Data->get_debug_info_data();
while (debug_info_data.ValidOffset(offset))
{
DWARFCompileUnitSP cu_sp(new DWARFCompileUnit(m_dwarf2Data));
// Out of memory?
if (cu_sp.get() == NULL)
break;
if (cu_sp->Extract(debug_info_data, &offset) == false)
break;
m_compile_units.push_back(cu_sp);
offset = cu_sp->GetNextCompileUnitOffset();
}
}
}
}
size_t
DWARFDebugInfo::GetNumCompileUnits()
{
ParseCompileUnitHeadersIfNeeded();
return m_compile_units.size();
}
DWARFCompileUnit*
DWARFDebugInfo::GetCompileUnitAtIndex(uint32_t idx)
{
DWARFCompileUnit* cu = NULL;
if (idx < GetNumCompileUnits())
cu = m_compile_units[idx].get();
return cu;
}
bool
DWARFDebugInfo::ContainsCompileUnit (const DWARFCompileUnit *cu) const
{
// Not a verify efficient function, but it is handy for use in assertions
// to make sure that a compile unit comes from a debug information file.
CompileUnitColl::const_iterator end_pos = m_compile_units.end();
CompileUnitColl::const_iterator pos;
for (pos = m_compile_units.begin(); pos != end_pos; ++pos)
{
if (pos->get() == cu)
return true;
}
return false;
}
static int
CompareDWARFCompileUnitSPOffset (const void *key, const void *arrmem)
{
const dw_offset_t key_cu_offset = *(dw_offset_t*) key;
const dw_offset_t cu_offset = ((DWARFCompileUnitSP *)arrmem)->get()->GetOffset();
if (key_cu_offset < cu_offset)
return -1;
if (key_cu_offset > cu_offset)
return 1;
return 0;
}
DWARFCompileUnitSP
DWARFDebugInfo::GetCompileUnit(dw_offset_t cu_offset, uint32_t* idx_ptr)
{
DWARFCompileUnitSP cu_sp;
uint32_t cu_idx = DW_INVALID_INDEX;
if (cu_offset != DW_INVALID_OFFSET)
{
ParseCompileUnitHeadersIfNeeded();
DWARFCompileUnitSP* match = (DWARFCompileUnitSP*)bsearch(&cu_offset, &m_compile_units[0], m_compile_units.size(), sizeof(DWARFCompileUnitSP), CompareDWARFCompileUnitSPOffset);
if (match)
{
cu_sp = *match;
cu_idx = match - &m_compile_units[0];
}
}
if (idx_ptr)
*idx_ptr = cu_idx;
return cu_sp;
}
DWARFCompileUnitSP
DWARFDebugInfo::GetCompileUnitContainingDIE(dw_offset_t die_offset)
{
DWARFCompileUnitSP cu_sp;
if (die_offset != DW_INVALID_OFFSET)
{
ParseCompileUnitHeadersIfNeeded();
CompileUnitColl::const_iterator end_pos = m_compile_units.end();
CompileUnitColl::const_iterator pos;
for (pos = m_compile_units.begin(); pos != end_pos; ++pos)
{
dw_offset_t cu_start_offset = (*pos)->GetOffset();
dw_offset_t cu_end_offset = (*pos)->GetNextCompileUnitOffset();
if (cu_start_offset <= die_offset && die_offset < cu_end_offset)
{
cu_sp = *pos;
break;
}
}
}
return cu_sp;
}
//----------------------------------------------------------------------
// GetDIE()
//
// Get the DIE (Debug Information Entry) with the specified offset.
//----------------------------------------------------------------------
DWARFDebugInfoEntry*
DWARFDebugInfo::GetDIEPtr(dw_offset_t die_offset, DWARFCompileUnitSP* cu_sp_ptr)
{
DWARFCompileUnitSP cu_sp(GetCompileUnitContainingDIE(die_offset));
if (cu_sp_ptr)
*cu_sp_ptr = cu_sp;
if (cu_sp.get())
return cu_sp->GetDIEPtr(die_offset);
return NULL; // Not found in any compile units
}
DWARFDebugInfoEntry*
DWARFDebugInfo::GetDIEPtrWithCompileUnitHint (dw_offset_t die_offset, DWARFCompileUnit**cu_handle)
{
assert (cu_handle);
DWARFDebugInfoEntry* die = NULL;
if (*cu_handle)
die = (*cu_handle)->GetDIEPtr(die_offset);
if (die == NULL)
{
DWARFCompileUnitSP cu_sp (GetCompileUnitContainingDIE(die_offset));
if (cu_sp.get())
{
*cu_handle = cu_sp.get();
die = cu_sp->GetDIEPtr(die_offset);
}
}
if (die == NULL)
*cu_handle = NULL;
return die;
}
const DWARFDebugInfoEntry*
DWARFDebugInfo::GetDIEPtrContainingOffset(dw_offset_t die_offset, DWARFCompileUnitSP* cu_sp_ptr)
{
DWARFCompileUnitSP cu_sp(GetCompileUnitContainingDIE(die_offset));
if (cu_sp_ptr)
*cu_sp_ptr = cu_sp;
if (cu_sp.get())
return cu_sp->GetDIEPtrContainingOffset(die_offset);
return NULL; // Not found in any compile units
}
//----------------------------------------------------------------------
// AddCompileUnit
//----------------------------------------------------------------------
void
DWARFDebugInfo::AddCompileUnit(DWARFCompileUnitSP& cu)
{
m_compile_units.push_back(cu);
}
/*
void
DWARFDebugInfo::AddDIE(DWARFDebugInfoEntry& die)
{
m_die_array.push_back(die);
}
*/
//----------------------------------------------------------------------
// Parse
//
// Parses the .debug_info section and uses the .debug_abbrev section
// and various other sections in the SymbolFileDWARF class and calls the
// supplied callback function each time a compile unit header, or debug
// information entry is successfully parsed. This function can be used
// for different tasks such as parsing the file contents into a
// structured data, dumping, verifying and much more.
//----------------------------------------------------------------------
void
DWARFDebugInfo::Parse(SymbolFileDWARF* dwarf2Data, Callback callback, void* userData)
{
if (dwarf2Data)
{
lldb::offset_t offset = 0;
uint32_t depth = 0;
DWARFCompileUnitSP cu(new DWARFCompileUnit(dwarf2Data));
if (cu.get() == NULL)
return;
DWARFDebugInfoEntry die;
while (cu->Extract(dwarf2Data->get_debug_info_data(), &offset))
{
const dw_offset_t next_cu_offset = cu->GetNextCompileUnitOffset();
depth = 0;
// Call the callback function with no DIE pointer for the compile unit
// and get the offset that we are to continue to parse from
offset = callback(dwarf2Data, cu, NULL, offset, depth, userData);
// Make sure we are within our compile unit
if (offset < next_cu_offset)
{
// We are in our compile unit, parse starting at the offset
// we were told to parse
bool done = false;
while (!done && die.Extract(dwarf2Data, cu.get(), &offset))
{
// Call the callback function with DIE pointer that falls within the compile unit
offset = callback(dwarf2Data, cu, &die, offset, depth, userData);
if (die.IsNULL())
{
if (depth)
--depth;
else
done = true; // We are done with this compile unit!
}
else if (die.HasChildren())
++depth;
}
}
// Make sure the offset returned is valid, and if not stop parsing.
// Returning DW_INVALID_OFFSET from this callback is a good way to end
// all parsing
if (!dwarf2Data->get_debug_info_data().ValidOffset(offset))
break;
// See if during the callback anyone retained a copy of the compile
// unit other than ourselves and if so, let whomever did own the object
// and create a new one for our own use!
if (!cu.unique())
cu.reset(new DWARFCompileUnit(dwarf2Data));
// Make sure we start on a proper
offset = next_cu_offset;
}
}
}
typedef struct DumpInfo
{
DumpInfo(Stream* init_strm, uint32_t off, uint32_t depth) :
strm(init_strm),
die_offset(off),
recurse_depth(depth),
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
found_depth(UINT32_MAX),
found_die(false),
ancestors()
{
}
Stream* strm;
const uint32_t die_offset;
const uint32_t recurse_depth;
uint32_t found_depth;
bool found_die;
std::vector<DWARFDebugInfoEntry> ancestors;
DISALLOW_COPY_AND_ASSIGN(DumpInfo);
} DumpInfo;
//----------------------------------------------------------------------
// DumpCallback
//
// A callback function for the static DWARFDebugInfo::Parse() function
// that gets called each time a compile unit header or debug information
// entry is successfully parsed.
//
// This function dump DWARF information and obey recurse depth and
// whether a single DIE is to be dumped (or all of the data).
//----------------------------------------------------------------------
static dw_offset_t DumpCallback
(
SymbolFileDWARF* dwarf2Data,
DWARFCompileUnitSP& cu_sp,
DWARFDebugInfoEntry* die,
const dw_offset_t next_offset,
const uint32_t curr_depth,
void* userData
)
{
DumpInfo* dumpInfo = (DumpInfo*)userData;
const DWARFCompileUnit* cu = cu_sp.get();
Stream *s = dumpInfo->strm;
bool show_parents = s->GetFlags().Test(DWARFDebugInfo::eDumpFlag_ShowAncestors);
if (die)
{
// Are we dumping everything?
if (dumpInfo->die_offset == DW_INVALID_OFFSET)
{
// Yes we are dumping everything. Obey our recurse level though
if (curr_depth < dumpInfo->recurse_depth)
die->Dump(dwarf2Data, cu, *s, 0);
}
else
{
// We are dumping a specific DIE entry by offset
if (dumpInfo->die_offset == die->GetOffset())
{
// We found the DIE we were looking for, dump it!
if (show_parents)
{
s->SetIndentLevel(0);
const uint32_t num_ancestors = dumpInfo->ancestors.size();
if (num_ancestors > 0)
{
for (uint32_t i=0; i<num_ancestors-1; ++i)
{
dumpInfo->ancestors[i].Dump(dwarf2Data, cu, *s, 0);
s->IndentMore();
}
}
}
dumpInfo->found_depth = curr_depth;
die->Dump(dwarf2Data, cu, *s, 0);
// Note that we found the DIE we were looking for
dumpInfo->found_die = true;
// Since we are dumping a single DIE, if there are no children we are done!
if (!die->HasChildren() || dumpInfo->recurse_depth == 0)
return DW_INVALID_OFFSET; // Return an invalid address to end parsing
}
else if (dumpInfo->found_die)
{
// Are we done with all the children?
if (curr_depth <= dumpInfo->found_depth)
return DW_INVALID_OFFSET;
// We have already found our DIE and are printing it's children. Obey
// our recurse depth and return an invalid offset if we get done
2014-07-09 02:05:41 +08:00
// dumping all of the children
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
if (dumpInfo->recurse_depth == UINT32_MAX || curr_depth <= dumpInfo->found_depth + dumpInfo->recurse_depth)
die->Dump(dwarf2Data, cu, *s, 0);
}
else if (dumpInfo->die_offset > die->GetOffset())
{
if (show_parents)
dumpInfo->ancestors.back() = *die;
}
}
// Keep up with our indent level
if (die->IsNULL())
{
if (show_parents)
dumpInfo->ancestors.pop_back();
if (curr_depth <= 1)
return cu->GetNextCompileUnitOffset();
else
s->IndentLess();
}
else if (die->HasChildren())
{
if (show_parents)
{
DWARFDebugInfoEntry null_die;
dumpInfo->ancestors.push_back(null_die);
}
s->IndentMore();
}
}
else
{
if (cu == NULL)
s->PutCString("NULL - cu");
// We have a compile unit, reset our indent level to zero just in case
s->SetIndentLevel(0);
// See if we are dumping everything?
if (dumpInfo->die_offset == DW_INVALID_OFFSET)
{
// We are dumping everything
if (cu)
cu->Dump(s);
return cu->GetFirstDIEOffset(); // Return true to parse all DIEs in this Compile Unit
}
else
{
if (show_parents)
{
dumpInfo->ancestors.clear();
dumpInfo->ancestors.resize(1);
}
// We are dumping only a single DIE possibly with it's children and
// we must find it's compile unit before we can dump it properly
if (cu && dumpInfo->die_offset < cu->GetFirstDIEOffset())
{
// Not found, maybe the DIE offset provided wasn't correct?
// *ostrm_ptr << "DIE at offset " << HEX32 << dumpInfo->die_offset << " was not found." << endl;
return DW_INVALID_OFFSET;
}
else
{
// See if the DIE is in this compile unit?
if (dumpInfo->die_offset < cu->GetNextCompileUnitOffset())
{
// This DIE is in this compile unit!
if (s->GetVerbose())
cu->Dump(s); // Dump the compile unit for the DIE in verbose mode
return next_offset;
// // We found our compile unit that contains our DIE, just skip to dumping the requested DIE...
// return dumpInfo->die_offset;
}
else
{
// Skip to the next compile unit as the DIE isn't in the current one!
return cu->GetNextCompileUnitOffset();
}
}
}
}
// Just return the current offset to parse the next CU or DIE entry
return next_offset;
}
//----------------------------------------------------------------------
// Dump
//
// Dump the information in the .debug_info section to the specified
// ostream. If die_offset is valid, a single DIE will be dumped. If the
// die_offset is invalid, all the DWARF information will be dumped. Both
// cases will obey a "recurse_depth" or how deep to traverse into the
// children of each DIE entry. A recurse_depth of zero will dump all
// compile unit headers. A recurse_depth of 1 will dump all compile unit
// headers and the DW_TAG_compile unit tags. A depth of 2 will also
// dump all types and functions.
//----------------------------------------------------------------------
void
DWARFDebugInfo::Dump
(
Stream *s,
SymbolFileDWARF* dwarf2Data,
const uint32_t die_offset,
const uint32_t recurse_depth
)
{
DumpInfo dumpInfo(s, die_offset, recurse_depth);
s->PutCString(".debug_info contents");
if (dwarf2Data->get_debug_info_data().GetByteSize() > 0)
{
if (die_offset == DW_INVALID_OFFSET)
s->PutCString(":\n");
else
{
s->Printf(" for DIE entry at .debug_info[0x%8.8x]", die_offset);
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
if (recurse_depth != UINT32_MAX)
s->Printf(" recursing %u levels deep.", recurse_depth);
s->EOL();
}
}
else
{
s->PutCString(": < EMPTY >\n");
return;
}
DWARFDebugInfo::Parse(dwarf2Data, DumpCallback, &dumpInfo);
}
//----------------------------------------------------------------------
// Dump
//
// Dump the contents of this DWARFDebugInfo object as has been parsed
// and/or modified after it has been parsed.
//----------------------------------------------------------------------
void
DWARFDebugInfo::Dump (Stream *s, const uint32_t die_offset, const uint32_t recurse_depth)
{
DumpInfo dumpInfo(s, die_offset, recurse_depth);
s->PutCString("Dumping .debug_info section from internal representation\n");
CompileUnitColl::const_iterator pos;
uint32_t curr_depth = 0;
ParseCompileUnitHeadersIfNeeded();
for (pos = m_compile_units.begin(); pos != m_compile_units.end(); ++pos)
{
const DWARFCompileUnitSP& cu_sp = *pos;
DumpCallback(m_dwarf2Data, (DWARFCompileUnitSP&)cu_sp, NULL, 0, curr_depth, &dumpInfo);
const DWARFDebugInfoEntry* die = cu_sp->DIE();
if (die)
die->Dump(m_dwarf2Data, cu_sp.get(), *s, recurse_depth);
}
}
//----------------------------------------------------------------------
// FindCallbackString
//
// A callback function for the static DWARFDebugInfo::Parse() function
// that gets called each time a compile unit header or debug information
// entry is successfully parsed.
//
// This function will find the die_offset of any items whose DW_AT_name
// matches the given string
//----------------------------------------------------------------------
typedef struct FindCallbackStringInfoTag
{
const char* name;
bool ignore_case;
RegularExpression* regex;
vector<dw_offset_t>& die_offsets;
} FindCallbackStringInfo;
static dw_offset_t FindCallbackString
(
SymbolFileDWARF* dwarf2Data,
DWARFCompileUnitSP& cu_sp,
DWARFDebugInfoEntry* die,
const dw_offset_t next_offset,
const uint32_t curr_depth,
void* userData
)
{
FindCallbackStringInfo* info = (FindCallbackStringInfo*)userData;
const DWARFCompileUnit* cu = cu_sp.get();
if (die)
{
const char* die_name = die->GetName(dwarf2Data, cu);
if (die_name)
{
if (info->regex)
{
if (info->regex->Execute(die_name))
info->die_offsets.push_back(die->GetOffset());
}
else
{
if ((info->ignore_case ? strcasecmp(die_name, info->name) : strcmp(die_name, info->name)) == 0)
info->die_offsets.push_back(die->GetOffset());
}
}
}
// Just return the current offset to parse the next CU or DIE entry
return next_offset;
}
//----------------------------------------------------------------------
// Find
//
// Finds all DIE that have a specific DW_AT_name attribute by manually
// searching through the debug information (not using the
// .debug_pubnames section). The string must match the entire name
// and case sensitive searches are an option.
//----------------------------------------------------------------------
bool
DWARFDebugInfo::Find(const char* name, bool ignore_case, vector<dw_offset_t>& die_offsets) const
{
die_offsets.clear();
if (name && name[0])
{
FindCallbackStringInfo info = { name, ignore_case, NULL, die_offsets };
DWARFDebugInfo::Parse(m_dwarf2Data, FindCallbackString, &info);
}
return !die_offsets.empty();
}
//----------------------------------------------------------------------
// Find
//
// Finds all DIE that have a specific DW_AT_name attribute by manually
// searching through the debug information (not using the
// .debug_pubnames section). The string must match the supplied regular
// expression.
//----------------------------------------------------------------------
bool
DWARFDebugInfo::Find(RegularExpression& re, vector<dw_offset_t>& die_offsets) const
{
die_offsets.clear();
FindCallbackStringInfo info = { NULL, false, &re, die_offsets };
DWARFDebugInfo::Parse(m_dwarf2Data, FindCallbackString, &info);
return !die_offsets.empty();
}