llvm-project/lldb/source/Commands/CommandObjectPlatform.cpp

1915 lines
72 KiB
C++
Raw Normal View History

Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
//===-- CommandObjectPlatform.cpp -------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
#include <mutex>
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
// Other libraries and framework includes
// Project includes
#include "CommandObjectPlatform.h"
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
#include "lldb/Core/Debugger.h"
<rdar://problem/11757916> Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes: - Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file". - modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly - Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was. - modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile() Cleaned up header includes a bit as well. llvm-svn: 162860
2012-08-30 05:13:06 +08:00
#include "lldb/Core/Module.h"
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
#include "lldb/Core/PluginManager.h"
#include "lldb/Host/OptionParser.h"
#include "lldb/Host/StringConvert.h"
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/CommandOptionValidators.h"
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Interpreter/OptionGroupFile.h"
Centralized a lot of the status information for processes, threads, and stack frame down in the lldb_private::Process, lldb_private::Thread, lldb_private::StackFrameList and the lldb_private::StackFrame classes. We had some command line commands that had duplicate versions of the process status output ("thread list" and "process status" for example). Removed the "file" command and placed it where it should have been: "target create". Made an alias for "file" to "target create" so we stay compatible with GDB commands. We can now have multple usable targets in lldb at the same time. This is nice for comparing two runs of a program or debugging more than one binary at the same time. The new command is "target select <target-idx>" and also to see a list of the current targets you can use the new "target list" command. The flow in a debug session can be: (lldb) target create /path/to/exe/a.out (lldb) breakpoint set --name main (lldb) run ... hit breakpoint (lldb) target create /bin/ls (lldb) run /tmp Process 36001 exited with status = 0 (0x00000000) (lldb) target list Current targets: target #0: /tmp/args/a.out ( arch=x86_64-apple-darwin, platform=localhost, pid=35999, state=stopped ) * target #1: /bin/ls ( arch=x86_64-apple-darwin, platform=localhost, pid=36001, state=exited ) (lldb) target select 0 Current targets: * target #0: /tmp/args/a.out ( arch=x86_64-apple-darwin, platform=localhost, pid=35999, state=stopped ) target #1: /bin/ls ( arch=x86_64-apple-darwin, platform=localhost, pid=36001, state=exited ) (lldb) bt * thread #1: tid = 0x2d03, 0x0000000100000b9a a.out`main + 42 at main.c:16, stop reason = breakpoint 1.1 frame #0: 0x0000000100000b9a a.out`main + 42 at main.c:16 frame #1: 0x0000000100000b64 a.out`start + 52 Above we created a target for "a.out" and ran and hit a breakpoint at "main". Then we created a new target for /bin/ls and ran it. Then we listed the targest and selected our original "a.out" program, so we showed two concurent debug sessions going on at the same time. llvm-svn: 129695
2011-04-18 16:33:37 +08:00
#include "lldb/Interpreter/OptionGroupPlatform.h"
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Platform.h"
#include "lldb/Target/Process.h"
#include "lldb/Utility/Args.h"
#include "lldb/Utility/DataExtractor.h"
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/Threading.h"
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
using namespace lldb;
using namespace lldb_private;
static mode_t ParsePermissionString(const char *) = delete;
static mode_t ParsePermissionString(llvm::StringRef permissions) {
if (permissions.size() != 9)
return (mode_t)(-1);
bool user_r, user_w, user_x, group_r, group_w, group_x, world_r, world_w,
world_x;
user_r = (permissions[0] == 'r');
user_w = (permissions[1] == 'w');
user_x = (permissions[2] == 'x');
group_r = (permissions[3] == 'r');
group_w = (permissions[4] == 'w');
group_x = (permissions[5] == 'x');
world_r = (permissions[6] == 'r');
world_w = (permissions[7] == 'w');
world_x = (permissions[8] == 'x');
mode_t user, group, world;
user = (user_r ? 4 : 0) | (user_w ? 2 : 0) | (user_x ? 1 : 0);
group = (group_r ? 4 : 0) | (group_w ? 2 : 0) | (group_x ? 1 : 0);
world = (world_r ? 4 : 0) | (world_w ? 2 : 0) | (world_x ? 1 : 0);
return user | group | world;
}
static OptionDefinition g_permissions_options[] = {
// clang-format off
{LLDB_OPT_SET_ALL, false, "permissions-value", 'v', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypePermissionsNumber, "Give out the numeric value for permissions (e.g. 757)"},
{LLDB_OPT_SET_ALL, false, "permissions-string", 's', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypePermissionsString, "Give out the string value for permissions (e.g. rwxr-xr--)."},
{LLDB_OPT_SET_ALL, false, "user-read", 'r', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Allow user to read."},
{LLDB_OPT_SET_ALL, false, "user-write", 'w', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Allow user to write."},
{LLDB_OPT_SET_ALL, false, "user-exec", 'x', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Allow user to execute."},
{LLDB_OPT_SET_ALL, false, "group-read", 'R', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Allow group to read."},
{LLDB_OPT_SET_ALL, false, "group-write", 'W', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Allow group to write."},
{LLDB_OPT_SET_ALL, false, "group-exec", 'X', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Allow group to execute."},
{LLDB_OPT_SET_ALL, false, "world-read", 'd', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Allow world to read."},
{LLDB_OPT_SET_ALL, false, "world-write", 't', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Allow world to write."},
{LLDB_OPT_SET_ALL, false, "world-exec", 'e', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Allow world to execute."},
// clang-format on
};
class OptionPermissions : public OptionGroup {
public:
OptionPermissions() {}
~OptionPermissions() override = default;
lldb_private::Status
SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
ExecutionContext *execution_context) override {
Status error;
char short_option = (char)GetDefinitions()[option_idx].short_option;
switch (short_option) {
case 'v': {
if (option_arg.getAsInteger(8, m_permissions)) {
m_permissions = 0777;
error.SetErrorStringWithFormat("invalid value for permissions: %s",
option_arg.str().c_str());
}
} break;
case 's': {
mode_t perms = ParsePermissionString(option_arg);
if (perms == (mode_t)-1)
error.SetErrorStringWithFormat("invalid value for permissions: %s",
option_arg.str().c_str());
else
m_permissions = perms;
} break;
case 'r':
m_permissions |= lldb::eFilePermissionsUserRead;
break;
case 'w':
m_permissions |= lldb::eFilePermissionsUserWrite;
break;
case 'x':
m_permissions |= lldb::eFilePermissionsUserExecute;
break;
case 'R':
m_permissions |= lldb::eFilePermissionsGroupRead;
break;
case 'W':
m_permissions |= lldb::eFilePermissionsGroupWrite;
break;
case 'X':
m_permissions |= lldb::eFilePermissionsGroupExecute;
break;
case 'd':
m_permissions |= lldb::eFilePermissionsWorldRead;
break;
case 't':
m_permissions |= lldb::eFilePermissionsWorldWrite;
break;
case 'e':
m_permissions |= lldb::eFilePermissionsWorldExecute;
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
break;
}
return error;
}
void OptionParsingStarting(ExecutionContext *execution_context) override {
m_permissions = 0;
}
llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
return llvm::makeArrayRef(g_permissions_options);
}
// Instance variables to hold the values for command options.
uint32_t m_permissions;
private:
DISALLOW_COPY_AND_ASSIGN(OptionPermissions);
};
Added two new classes for command options: lldb_private::OptionGroup lldb_private::OptionGroupOptions OptionGroup lets you define a class that encapsulates settings that you want to reuse in multiple commands. It contains only the option definitions and the ability to set the option values, but it doesn't directly interface with the lldb_private::Options class that is the front end to all of the CommandObject option parsing. For that the OptionGroupOptions class can be used. It aggregates one or more OptionGroup objects and directs the option setting to the appropriate OptionGroup class. For an example of this, take a look at the CommandObjectFile and how it uses its "m_option_group" object shown below to be able to set values in both the FileOptionGroup and PlatformOptionGroup classes. The members used in CommandObjectFile are: OptionGroupOptions m_option_group; FileOptionGroup m_file_options; PlatformOptionGroup m_platform_options; Then in the constructor for CommandObjectFile you can combine the option settings. The code below shows a simplified version of the constructor: CommandObjectFile::CommandObjectFile(CommandInterpreter &interpreter) : CommandObject (...), m_option_group (interpreter), m_file_options (), m_platform_options(true) { m_option_group.Append (&m_file_options); m_option_group.Append (&m_platform_options); m_option_group.Finalize(); } We append the m_file_options and then the m_platform_options and then tell the option group the finalize the results. This allows the m_option_group to become the organizer of our prefs and after option parsing we end up with valid preference settings in both the m_file_options and m_platform_options objects. This also allows any other commands to use the FileOptionGroup and PlatformOptionGroup classes to implement options for their commands. Renamed: virtual void Options::ResetOptionValues(); to: virtual void Options::OptionParsingStarting(); And implemented a new callback named: virtual Error Options::OptionParsingFinished(); This allows Options subclasses to verify that the options all go together after all of the options have been specified and gives the chance for the command object to return an error. It also gives a chance to take all of the option values and produce or initialize objects after all options have completed parsing. Modfied: virtual Error SetOptionValue (int option_idx, const char *option_arg) = 0; to be: virtual Error SetOptionValue (uint32_t option_idx, const char *option_arg) = 0; (option_idx is now unsigned). llvm-svn: 129415
2011-04-13 08:18:08 +08:00
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
//----------------------------------------------------------------------
Centralized a lot of the status information for processes, threads, and stack frame down in the lldb_private::Process, lldb_private::Thread, lldb_private::StackFrameList and the lldb_private::StackFrame classes. We had some command line commands that had duplicate versions of the process status output ("thread list" and "process status" for example). Removed the "file" command and placed it where it should have been: "target create". Made an alias for "file" to "target create" so we stay compatible with GDB commands. We can now have multple usable targets in lldb at the same time. This is nice for comparing two runs of a program or debugging more than one binary at the same time. The new command is "target select <target-idx>" and also to see a list of the current targets you can use the new "target list" command. The flow in a debug session can be: (lldb) target create /path/to/exe/a.out (lldb) breakpoint set --name main (lldb) run ... hit breakpoint (lldb) target create /bin/ls (lldb) run /tmp Process 36001 exited with status = 0 (0x00000000) (lldb) target list Current targets: target #0: /tmp/args/a.out ( arch=x86_64-apple-darwin, platform=localhost, pid=35999, state=stopped ) * target #1: /bin/ls ( arch=x86_64-apple-darwin, platform=localhost, pid=36001, state=exited ) (lldb) target select 0 Current targets: * target #0: /tmp/args/a.out ( arch=x86_64-apple-darwin, platform=localhost, pid=35999, state=stopped ) target #1: /bin/ls ( arch=x86_64-apple-darwin, platform=localhost, pid=36001, state=exited ) (lldb) bt * thread #1: tid = 0x2d03, 0x0000000100000b9a a.out`main + 42 at main.c:16, stop reason = breakpoint 1.1 frame #0: 0x0000000100000b9a a.out`main + 42 at main.c:16 frame #1: 0x0000000100000b64 a.out`start + 52 Above we created a target for "a.out" and ran and hit a breakpoint at "main". Then we created a new target for /bin/ls and ran it. Then we listed the targest and selected our original "a.out" program, so we showed two concurent debug sessions going on at the same time. llvm-svn: 129695
2011-04-18 16:33:37 +08:00
// "platform select <platform-name>"
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
//----------------------------------------------------------------------
class CommandObjectPlatformSelect : public CommandObjectParsed {
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
public:
CommandObjectPlatformSelect(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "platform select",
"Create a platform if needed and select it as the "
"current platform.",
"platform select <platform-name>", 0),
m_option_group(),
m_platform_options(
false) // Don't include the "--platform" option by passing false
{
m_option_group.Append(&m_platform_options, LLDB_OPT_SET_ALL, 1);
m_option_group.Finalize();
}
~CommandObjectPlatformSelect() override = default;
int HandleCompletion(Args &input, int &cursor_index,
int &cursor_char_position, int match_start_point,
int max_return_elements, bool &word_complete,
StringList &matches) override {
std::string completion_str(input.GetArgumentAtIndex(cursor_index));
completion_str.erase(cursor_char_position);
CommandCompletions::PlatformPluginNames(
GetCommandInterpreter(), completion_str.c_str(), match_start_point,
max_return_elements, nullptr, word_complete, matches);
return matches.GetSize();
}
Options *GetOptions() override { return &m_option_group; }
protected:
bool DoExecute(Args &args, CommandReturnObject &result) override {
if (args.GetArgumentCount() == 1) {
const char *platform_name = args.GetArgumentAtIndex(0);
if (platform_name && platform_name[0]) {
const bool select = true;
m_platform_options.SetPlatformName(platform_name);
Status error;
ArchSpec platform_arch;
PlatformSP platform_sp(m_platform_options.CreatePlatformWithOptions(
m_interpreter, ArchSpec(), select, error, platform_arch));
if (platform_sp) {
m_interpreter.GetDebugger().GetPlatformList().SetSelectedPlatform(
platform_sp);
platform_sp->GetStatus(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
result.AppendError(error.AsCString());
result.SetStatus(eReturnStatusFailed);
}
} else {
result.AppendError("invalid platform name");
result.SetStatus(eReturnStatusFailed);
}
} else {
result.AppendError(
"platform create takes a platform name as an argument\n");
result.SetStatus(eReturnStatusFailed);
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
}
return result.Succeeded();
}
Centralized a lot of the status information for processes, threads, and stack frame down in the lldb_private::Process, lldb_private::Thread, lldb_private::StackFrameList and the lldb_private::StackFrame classes. We had some command line commands that had duplicate versions of the process status output ("thread list" and "process status" for example). Removed the "file" command and placed it where it should have been: "target create". Made an alias for "file" to "target create" so we stay compatible with GDB commands. We can now have multple usable targets in lldb at the same time. This is nice for comparing two runs of a program or debugging more than one binary at the same time. The new command is "target select <target-idx>" and also to see a list of the current targets you can use the new "target list" command. The flow in a debug session can be: (lldb) target create /path/to/exe/a.out (lldb) breakpoint set --name main (lldb) run ... hit breakpoint (lldb) target create /bin/ls (lldb) run /tmp Process 36001 exited with status = 0 (0x00000000) (lldb) target list Current targets: target #0: /tmp/args/a.out ( arch=x86_64-apple-darwin, platform=localhost, pid=35999, state=stopped ) * target #1: /bin/ls ( arch=x86_64-apple-darwin, platform=localhost, pid=36001, state=exited ) (lldb) target select 0 Current targets: * target #0: /tmp/args/a.out ( arch=x86_64-apple-darwin, platform=localhost, pid=35999, state=stopped ) target #1: /bin/ls ( arch=x86_64-apple-darwin, platform=localhost, pid=36001, state=exited ) (lldb) bt * thread #1: tid = 0x2d03, 0x0000000100000b9a a.out`main + 42 at main.c:16, stop reason = breakpoint 1.1 frame #0: 0x0000000100000b9a a.out`main + 42 at main.c:16 frame #1: 0x0000000100000b64 a.out`start + 52 Above we created a target for "a.out" and ran and hit a breakpoint at "main". Then we created a new target for /bin/ls and ran it. Then we listed the targest and selected our original "a.out" program, so we showed two concurent debug sessions going on at the same time. llvm-svn: 129695
2011-04-18 16:33:37 +08:00
OptionGroupOptions m_option_group;
OptionGroupPlatform m_platform_options;
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
};
//----------------------------------------------------------------------
// "platform list"
//----------------------------------------------------------------------
class CommandObjectPlatformList : public CommandObjectParsed {
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
public:
CommandObjectPlatformList(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "platform list",
"List all platforms that are available.", nullptr,
0) {}
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
~CommandObjectPlatformList() override = default;
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
protected:
bool DoExecute(Args &args, CommandReturnObject &result) override {
Stream &ostrm = result.GetOutputStream();
ostrm.Printf("Available platforms:\n");
PlatformSP host_platform_sp(Platform::GetHostPlatform());
ostrm.Printf("%s: %s\n", host_platform_sp->GetPluginName().GetCString(),
host_platform_sp->GetDescription());
uint32_t idx;
for (idx = 0; 1; ++idx) {
const char *plugin_name =
PluginManager::GetPlatformPluginNameAtIndex(idx);
if (plugin_name == nullptr)
break;
const char *plugin_desc =
PluginManager::GetPlatformPluginDescriptionAtIndex(idx);
if (plugin_desc == nullptr)
break;
ostrm.Printf("%s: %s\n", plugin_name, plugin_desc);
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
}
if (idx == 0) {
result.AppendError("no platforms are available\n");
result.SetStatus(eReturnStatusFailed);
} else
result.SetStatus(eReturnStatusSuccessFinishResult);
return result.Succeeded();
}
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
};
//----------------------------------------------------------------------
// "platform status"
//----------------------------------------------------------------------
class CommandObjectPlatformStatus : public CommandObjectParsed {
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
public:
CommandObjectPlatformStatus(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "platform status",
"Display status for the current platform.", nullptr,
0) {}
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
~CommandObjectPlatformStatus() override = default;
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
protected:
bool DoExecute(Args &args, CommandReturnObject &result) override {
Stream &ostrm = result.GetOutputStream();
Target *target = m_interpreter.GetDebugger().GetSelectedTarget().get();
PlatformSP platform_sp;
if (target) {
platform_sp = target->GetPlatform();
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
}
if (!platform_sp) {
platform_sp =
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform();
}
if (platform_sp) {
platform_sp->GetStatus(ostrm);
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
result.AppendError("no platform is currently selected\n");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
};
//----------------------------------------------------------------------
// "platform connect <connect-url>"
//----------------------------------------------------------------------
class CommandObjectPlatformConnect : public CommandObjectParsed {
public:
CommandObjectPlatformConnect(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "platform connect",
"Select the current platform by providing a connection URL.",
"platform connect <connect-url>", 0) {}
~CommandObjectPlatformConnect() override = default;
protected:
bool DoExecute(Args &args, CommandReturnObject &result) override {
Stream &ostrm = result.GetOutputStream();
PlatformSP platform_sp(
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform());
if (platform_sp) {
Status error(platform_sp->ConnectRemote(args));
if (error.Success()) {
platform_sp->GetStatus(ostrm);
result.SetStatus(eReturnStatusSuccessFinishResult);
platform_sp->ConnectToWaitingProcesses(m_interpreter.GetDebugger(),
error);
if (error.Fail()) {
result.AppendError(error.AsCString());
result.SetStatus(eReturnStatusFailed);
}
} else {
result.AppendErrorWithFormat("%s\n", error.AsCString());
result.SetStatus(eReturnStatusFailed);
}
} else {
result.AppendError("no platform is currently selected\n");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
Options *GetOptions() override {
PlatformSP platform_sp(
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform());
OptionGroupOptions *m_platform_options = nullptr;
if (platform_sp) {
m_platform_options = platform_sp->GetConnectionOptions(m_interpreter);
if (m_platform_options != nullptr && !m_platform_options->m_did_finalize)
m_platform_options->Finalize();
}
return m_platform_options;
}
};
//----------------------------------------------------------------------
// "platform disconnect"
//----------------------------------------------------------------------
class CommandObjectPlatformDisconnect : public CommandObjectParsed {
public:
CommandObjectPlatformDisconnect(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "platform disconnect",
"Disconnect from the current platform.",
"platform disconnect", 0) {}
~CommandObjectPlatformDisconnect() override = default;
protected:
bool DoExecute(Args &args, CommandReturnObject &result) override {
PlatformSP platform_sp(
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform());
if (platform_sp) {
if (args.GetArgumentCount() == 0) {
Status error;
if (platform_sp->IsConnected()) {
// Cache the instance name if there is one since we are about to
// disconnect and the name might go with it.
const char *hostname_cstr = platform_sp->GetHostname();
std::string hostname;
if (hostname_cstr)
hostname.assign(hostname_cstr);
error = platform_sp->DisconnectRemote();
if (error.Success()) {
Stream &ostrm = result.GetOutputStream();
if (hostname.empty())
ostrm.Printf("Disconnected from \"%s\"\n",
platform_sp->GetPluginName().GetCString());
else
ostrm.Printf("Disconnected from \"%s\"\n", hostname.c_str());
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
result.AppendErrorWithFormat("%s", error.AsCString());
result.SetStatus(eReturnStatusFailed);
}
} else {
// Not connected...
result.AppendErrorWithFormat(
"not connected to '%s'",
platform_sp->GetPluginName().GetCString());
result.SetStatus(eReturnStatusFailed);
}
} else {
// Bad args
result.AppendError(
"\"platform disconnect\" doesn't take any arguments");
result.SetStatus(eReturnStatusFailed);
}
} else {
result.AppendError("no platform is currently selected");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
};
//----------------------------------------------------------------------
// "platform settings"
//----------------------------------------------------------------------
class CommandObjectPlatformSettings : public CommandObjectParsed {
public:
CommandObjectPlatformSettings(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "platform settings",
"Set settings for the current target's platform, "
"or for a platform by name.",
"platform settings", 0),
m_options(),
m_option_working_dir(LLDB_OPT_SET_1, false, "working-dir", 'w', 0,
eArgTypePath,
"The working directory for the platform.") {
m_options.Append(&m_option_working_dir, LLDB_OPT_SET_ALL, LLDB_OPT_SET_1);
}
~CommandObjectPlatformSettings() override = default;
protected:
bool DoExecute(Args &args, CommandReturnObject &result) override {
PlatformSP platform_sp(
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform());
if (platform_sp) {
if (m_option_working_dir.GetOptionValue().OptionWasSet())
platform_sp->SetWorkingDirectory(
m_option_working_dir.GetOptionValue().GetCurrentValue());
} else {
result.AppendError("no platform is currently selected");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
Options *GetOptions() override {
if (!m_options.DidFinalize())
m_options.Finalize();
return &m_options;
}
protected:
OptionGroupOptions m_options;
OptionGroupFile m_option_working_dir;
};
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
//----------------------------------------------------------------------
// "platform mkdir"
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
//----------------------------------------------------------------------
class CommandObjectPlatformMkDir : public CommandObjectParsed {
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
public:
CommandObjectPlatformMkDir(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "platform mkdir",
"Make a new directory on the remote end.", nullptr,
0),
m_options() {}
~CommandObjectPlatformMkDir() override = default;
bool DoExecute(Args &args, CommandReturnObject &result) override {
PlatformSP platform_sp(
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform());
if (platform_sp) {
std::string cmd_line;
args.GetCommandString(cmd_line);
uint32_t mode;
const OptionPermissions *options_permissions =
(const OptionPermissions *)m_options.GetGroupWithOption('r');
if (options_permissions)
mode = options_permissions->m_permissions;
else
mode = lldb::eFilePermissionsUserRWX | lldb::eFilePermissionsGroupRWX |
lldb::eFilePermissionsWorldRX;
Status error =
platform_sp->MakeDirectory(FileSpec{cmd_line, false}, mode);
if (error.Success()) {
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
result.AppendError(error.AsCString());
result.SetStatus(eReturnStatusFailed);
}
} else {
result.AppendError("no platform currently selected\n");
result.SetStatus(eReturnStatusFailed);
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
}
return result.Succeeded();
}
Options *GetOptions() override {
if (!m_options.DidFinalize()) {
m_options.Append(new OptionPermissions());
m_options.Finalize();
}
return &m_options;
}
OptionGroupOptions m_options;
};
//----------------------------------------------------------------------
// "platform fopen"
//----------------------------------------------------------------------
class CommandObjectPlatformFOpen : public CommandObjectParsed {
public:
CommandObjectPlatformFOpen(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "platform file open",
"Open a file on the remote end.", nullptr, 0),
m_options() {}
~CommandObjectPlatformFOpen() override = default;
bool DoExecute(Args &args, CommandReturnObject &result) override {
PlatformSP platform_sp(
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform());
if (platform_sp) {
Status error;
std::string cmd_line;
args.GetCommandString(cmd_line);
mode_t perms;
const OptionPermissions *options_permissions =
(const OptionPermissions *)m_options.GetGroupWithOption('r');
if (options_permissions)
perms = options_permissions->m_permissions;
else
perms = lldb::eFilePermissionsUserRW | lldb::eFilePermissionsGroupRW |
lldb::eFilePermissionsWorldRead;
lldb::user_id_t fd = platform_sp->OpenFile(
FileSpec(cmd_line, false),
File::eOpenOptionRead | File::eOpenOptionWrite |
File::eOpenOptionAppend | File::eOpenOptionCanCreate,
perms, error);
if (error.Success()) {
result.AppendMessageWithFormat("File Descriptor = %" PRIu64 "\n", fd);
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
result.AppendError(error.AsCString());
result.SetStatus(eReturnStatusFailed);
}
} else {
result.AppendError("no platform currently selected\n");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
Options *GetOptions() override {
if (!m_options.DidFinalize()) {
m_options.Append(new OptionPermissions());
m_options.Finalize();
}
return &m_options;
}
OptionGroupOptions m_options;
};
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
//----------------------------------------------------------------------
// "platform fclose"
//----------------------------------------------------------------------
class CommandObjectPlatformFClose : public CommandObjectParsed {
public:
CommandObjectPlatformFClose(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "platform file close",
"Close a file on the remote end.", nullptr, 0) {}
~CommandObjectPlatformFClose() override = default;
bool DoExecute(Args &args, CommandReturnObject &result) override {
PlatformSP platform_sp(
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform());
if (platform_sp) {
std::string cmd_line;
args.GetCommandString(cmd_line);
const lldb::user_id_t fd =
StringConvert::ToUInt64(cmd_line.c_str(), UINT64_MAX);
Status error;
bool success = platform_sp->CloseFile(fd, error);
if (success) {
result.AppendMessageWithFormat("file %" PRIu64 " closed.\n", fd);
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
result.AppendError(error.AsCString());
result.SetStatus(eReturnStatusFailed);
}
} else {
result.AppendError("no platform currently selected\n");
result.SetStatus(eReturnStatusFailed);
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
}
return result.Succeeded();
}
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
};
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
//----------------------------------------------------------------------
// "platform fread"
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
//----------------------------------------------------------------------
static OptionDefinition g_platform_fread_options[] = {
// clang-format off
{ LLDB_OPT_SET_1, false, "offset", 'o', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex, "Offset into the file at which to start reading." },
{ LLDB_OPT_SET_1, false, "count", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeCount, "Number of bytes to read from the file." },
// clang-format on
};
class CommandObjectPlatformFRead : public CommandObjectParsed {
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
public:
CommandObjectPlatformFRead(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "platform file read",
"Read data from a file on the remote end.", nullptr,
0),
m_options() {}
~CommandObjectPlatformFRead() override = default;
bool DoExecute(Args &args, CommandReturnObject &result) override {
PlatformSP platform_sp(
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform());
if (platform_sp) {
std::string cmd_line;
args.GetCommandString(cmd_line);
const lldb::user_id_t fd =
StringConvert::ToUInt64(cmd_line.c_str(), UINT64_MAX);
std::string buffer(m_options.m_count, 0);
Status error;
uint32_t retcode = platform_sp->ReadFile(
fd, m_options.m_offset, &buffer[0], m_options.m_count, error);
result.AppendMessageWithFormat("Return = %d\n", retcode);
result.AppendMessageWithFormat("Data = \"%s\"\n", buffer.c_str());
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
result.AppendError("no platform currently selected\n");
result.SetStatus(eReturnStatusFailed);
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
}
return result.Succeeded();
}
Options *GetOptions() override { return &m_options; }
protected:
class CommandOptions : public Options {
public:
CommandOptions() : Options() {}
~CommandOptions() override = default;
Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
ExecutionContext *execution_context) override {
Status error;
char short_option = (char)m_getopt_table[option_idx].val;
switch (short_option) {
case 'o':
if (option_arg.getAsInteger(0, m_offset))
error.SetErrorStringWithFormat("invalid offset: '%s'",
option_arg.str().c_str());
break;
case 'c':
if (option_arg.getAsInteger(0, m_count))
error.SetErrorStringWithFormat("invalid offset: '%s'",
option_arg.str().c_str());
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'",
short_option);
break;
}
return error;
}
void OptionParsingStarting(ExecutionContext *execution_context) override {
m_offset = 0;
m_count = 1;
}
llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
return llvm::makeArrayRef(g_platform_fread_options);
}
// Instance variables to hold the values for command options.
uint32_t m_offset;
uint32_t m_count;
};
CommandOptions m_options;
};
//----------------------------------------------------------------------
// "platform fwrite"
//----------------------------------------------------------------------
static OptionDefinition g_platform_fwrite_options[] = {
// clang-format off
{ LLDB_OPT_SET_1, false, "offset", 'o', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex, "Offset into the file at which to start reading." },
{ LLDB_OPT_SET_1, false, "data", 'd', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue, "Text to write to the file." },
// clang-format on
};
class CommandObjectPlatformFWrite : public CommandObjectParsed {
public:
CommandObjectPlatformFWrite(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "platform file write",
"Write data to a file on the remote end.", nullptr,
0),
m_options() {}
~CommandObjectPlatformFWrite() override = default;
bool DoExecute(Args &args, CommandReturnObject &result) override {
PlatformSP platform_sp(
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform());
if (platform_sp) {
std::string cmd_line;
args.GetCommandString(cmd_line);
Status error;
const lldb::user_id_t fd =
StringConvert::ToUInt64(cmd_line.c_str(), UINT64_MAX);
uint32_t retcode =
platform_sp->WriteFile(fd, m_options.m_offset, &m_options.m_data[0],
m_options.m_data.size(), error);
result.AppendMessageWithFormat("Return = %d\n", retcode);
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
result.AppendError("no platform currently selected\n");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
Options *GetOptions() override { return &m_options; }
protected:
class CommandOptions : public Options {
public:
CommandOptions() : Options() {}
~CommandOptions() override = default;
Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
ExecutionContext *execution_context) override {
Status error;
char short_option = (char)m_getopt_table[option_idx].val;
switch (short_option) {
case 'o':
if (option_arg.getAsInteger(0, m_offset))
error.SetErrorStringWithFormat("invalid offset: '%s'",
option_arg.str().c_str());
break;
case 'd':
m_data.assign(option_arg);
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'",
short_option);
break;
}
return error;
}
void OptionParsingStarting(ExecutionContext *execution_context) override {
m_offset = 0;
m_data.clear();
}
llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
return llvm::makeArrayRef(g_platform_fwrite_options);
}
// Instance variables to hold the values for command options.
uint32_t m_offset;
std::string m_data;
};
CommandOptions m_options;
};
class CommandObjectPlatformFile : public CommandObjectMultiword {
public:
//------------------------------------------------------------------
// Constructors and Destructors
//------------------------------------------------------------------
CommandObjectPlatformFile(CommandInterpreter &interpreter)
: CommandObjectMultiword(
interpreter, "platform file",
"Commands to access files on the current platform.",
"platform file [open|close|read|write] ...") {
LoadSubCommand(
"open", CommandObjectSP(new CommandObjectPlatformFOpen(interpreter)));
LoadSubCommand(
"close", CommandObjectSP(new CommandObjectPlatformFClose(interpreter)));
LoadSubCommand(
"read", CommandObjectSP(new CommandObjectPlatformFRead(interpreter)));
LoadSubCommand(
"write", CommandObjectSP(new CommandObjectPlatformFWrite(interpreter)));
}
~CommandObjectPlatformFile() override = default;
private:
//------------------------------------------------------------------
// For CommandObjectPlatform only
//------------------------------------------------------------------
DISALLOW_COPY_AND_ASSIGN(CommandObjectPlatformFile);
};
//----------------------------------------------------------------------
// "platform get-file remote-file-path host-file-path"
//----------------------------------------------------------------------
class CommandObjectPlatformGetFile : public CommandObjectParsed {
public:
CommandObjectPlatformGetFile(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "platform get-file",
"Transfer a file from the remote end to the local host.",
"platform get-file <remote-file-spec> <local-file-spec>", 0) {
SetHelpLong(
R"(Examples:
(lldb) platform get-file /the/remote/file/path /the/local/file/path
Transfer a file from the remote end with file path /the/remote/file/path to the local host.)");
CommandArgumentEntry arg1, arg2;
CommandArgumentData file_arg_remote, file_arg_host;
// Define the first (and only) variant of this arg.
file_arg_remote.arg_type = eArgTypeFilename;
file_arg_remote.arg_repetition = eArgRepeatPlain;
// There is only one variant this argument could be; put it into the
// argument entry.
arg1.push_back(file_arg_remote);
// Define the second (and only) variant of this arg.
file_arg_host.arg_type = eArgTypeFilename;
file_arg_host.arg_repetition = eArgRepeatPlain;
// There is only one variant this argument could be; put it into the
// argument entry.
arg2.push_back(file_arg_host);
// Push the data for the first and the second arguments into the
// m_arguments vector.
m_arguments.push_back(arg1);
m_arguments.push_back(arg2);
}
~CommandObjectPlatformGetFile() override = default;
bool DoExecute(Args &args, CommandReturnObject &result) override {
// If the number of arguments is incorrect, issue an error message.
if (args.GetArgumentCount() != 2) {
result.GetErrorStream().Printf("error: required arguments missing; "
"specify both the source and destination "
"file paths\n");
result.SetStatus(eReturnStatusFailed);
return false;
}
PlatformSP platform_sp(
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform());
if (platform_sp) {
const char *remote_file_path = args.GetArgumentAtIndex(0);
const char *local_file_path = args.GetArgumentAtIndex(1);
Status error = platform_sp->GetFile(FileSpec(remote_file_path, false),
FileSpec(local_file_path, false));
if (error.Success()) {
result.AppendMessageWithFormat(
"successfully get-file from %s (remote) to %s (host)\n",
remote_file_path, local_file_path);
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
result.AppendMessageWithFormat("get-file failed: %s\n",
error.AsCString());
result.SetStatus(eReturnStatusFailed);
}
} else {
result.AppendError("no platform currently selected\n");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
};
//----------------------------------------------------------------------
// "platform get-size remote-file-path"
//----------------------------------------------------------------------
class CommandObjectPlatformGetSize : public CommandObjectParsed {
public:
CommandObjectPlatformGetSize(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "platform get-size",
"Get the file size from the remote end.",
"platform get-size <remote-file-spec>", 0) {
SetHelpLong(
R"(Examples:
(lldb) platform get-size /the/remote/file/path
Get the file size from the remote end with path /the/remote/file/path.)");
CommandArgumentEntry arg1;
CommandArgumentData file_arg_remote;
// Define the first (and only) variant of this arg.
file_arg_remote.arg_type = eArgTypeFilename;
file_arg_remote.arg_repetition = eArgRepeatPlain;
// There is only one variant this argument could be; put it into the
// argument entry.
arg1.push_back(file_arg_remote);
// Push the data for the first argument into the m_arguments vector.
m_arguments.push_back(arg1);
}
~CommandObjectPlatformGetSize() override = default;
bool DoExecute(Args &args, CommandReturnObject &result) override {
// If the number of arguments is incorrect, issue an error message.
if (args.GetArgumentCount() != 1) {
result.GetErrorStream().Printf("error: required argument missing; "
"specify the source file path as the only "
"argument\n");
result.SetStatus(eReturnStatusFailed);
return false;
}
PlatformSP platform_sp(
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform());
if (platform_sp) {
std::string remote_file_path(args.GetArgumentAtIndex(0));
user_id_t size =
platform_sp->GetFileSize(FileSpec(remote_file_path, false));
if (size != UINT64_MAX) {
result.AppendMessageWithFormat("File size of %s (remote): %" PRIu64
"\n",
remote_file_path.c_str(), size);
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
result.AppendMessageWithFormat(
"Error getting file size of %s (remote)\n",
remote_file_path.c_str());
result.SetStatus(eReturnStatusFailed);
}
} else {
result.AppendError("no platform currently selected\n");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
};
//----------------------------------------------------------------------
// "platform put-file"
//----------------------------------------------------------------------
class CommandObjectPlatformPutFile : public CommandObjectParsed {
public:
CommandObjectPlatformPutFile(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "platform put-file",
"Transfer a file from this system to the remote end.", nullptr, 0) {
}
~CommandObjectPlatformPutFile() override = default;
bool DoExecute(Args &args, CommandReturnObject &result) override {
const char *src = args.GetArgumentAtIndex(0);
const char *dst = args.GetArgumentAtIndex(1);
FileSpec src_fs(src, true);
FileSpec dst_fs(dst ? dst : src_fs.GetFilename().GetCString(), false);
PlatformSP platform_sp(
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform());
if (platform_sp) {
Status error(platform_sp->PutFile(src_fs, dst_fs));
if (error.Success()) {
result.SetStatus(eReturnStatusSuccessFinishNoResult);
} else {
result.AppendError(error.AsCString());
result.SetStatus(eReturnStatusFailed);
}
} else {
result.AppendError("no platform currently selected\n");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
};
//----------------------------------------------------------------------
// "platform process launch"
//----------------------------------------------------------------------
class CommandObjectPlatformProcessLaunch : public CommandObjectParsed {
public:
CommandObjectPlatformProcessLaunch(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "platform process launch",
"Launch a new process on a remote platform.",
"platform process launch program",
eCommandRequiresTarget | eCommandTryTargetAPILock),
m_options() {}
~CommandObjectPlatformProcessLaunch() override = default;
Options *GetOptions() override { return &m_options; }
protected:
bool DoExecute(Args &args, CommandReturnObject &result) override {
Target *target = m_interpreter.GetDebugger().GetSelectedTarget().get();
PlatformSP platform_sp;
if (target) {
platform_sp = target->GetPlatform();
}
if (!platform_sp) {
platform_sp =
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform();
}
if (platform_sp) {
Status error;
const size_t argc = args.GetArgumentCount();
Target *target = m_exe_ctx.GetTargetPtr();
Module *exe_module = target->GetExecutableModulePointer();
if (exe_module) {
m_options.launch_info.GetExecutableFile() = exe_module->GetFileSpec();
llvm::SmallString<PATH_MAX> exe_path;
m_options.launch_info.GetExecutableFile().GetPath(exe_path);
if (!exe_path.empty())
m_options.launch_info.GetArguments().AppendArgument(exe_path);
m_options.launch_info.GetArchitecture() = exe_module->GetArchitecture();
}
if (argc > 0) {
if (m_options.launch_info.GetExecutableFile()) {
// We already have an executable file, so we will use this and all
// arguments to this function are extra arguments
m_options.launch_info.GetArguments().AppendArguments(args);
} else {
// We don't have any file yet, so the first argument is our
// executable, and the rest are program arguments
const bool first_arg_is_executable = true;
m_options.launch_info.SetArguments(args, first_arg_is_executable);
}
}
if (m_options.launch_info.GetExecutableFile()) {
Debugger &debugger = m_interpreter.GetDebugger();
if (argc == 0)
target->GetRunArguments(m_options.launch_info.GetArguments());
ProcessSP process_sp(platform_sp->DebugProcess(
m_options.launch_info, debugger, target, error));
if (process_sp && process_sp->IsAlive()) {
result.SetStatus(eReturnStatusSuccessFinishNoResult);
return true;
}
if (error.Success())
result.AppendError("process launch failed");
else
result.AppendError(error.AsCString());
result.SetStatus(eReturnStatusFailed);
} else {
result.AppendError("'platform process launch' uses the current target "
"file and arguments, or the executable and its "
"arguments can be specified in this command");
result.SetStatus(eReturnStatusFailed);
return false;
}
} else {
result.AppendError("no platform is selected\n");
}
return result.Succeeded();
}
protected:
ProcessLaunchCommandOptions m_options;
};
//----------------------------------------------------------------------
// "platform process list"
//----------------------------------------------------------------------
OptionDefinition g_platform_process_list_options[] = {
// clang-format off
{ LLDB_OPT_SET_1, false, "pid", 'p', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypePid, "List the process info for a specific process ID." },
{ LLDB_OPT_SET_2, true, "name", 'n', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeProcessName, "Find processes with executable basenames that match a string." },
{ LLDB_OPT_SET_3, true, "ends-with", 'e', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeProcessName, "Find processes with executable basenames that end with a string." },
{ LLDB_OPT_SET_4, true, "starts-with", 's', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeProcessName, "Find processes with executable basenames that start with a string." },
{ LLDB_OPT_SET_5, true, "contains", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeProcessName, "Find processes with executable basenames that contain a string." },
{ LLDB_OPT_SET_6, true, "regex", 'r', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeRegularExpression, "Find processes with executable basenames that match a regular expression." },
{ LLDB_OPT_SET_FROM_TO(2, 6), false, "parent", 'P', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypePid, "Find processes that have a matching parent process ID." },
{ LLDB_OPT_SET_FROM_TO(2, 6), false, "uid", 'u', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeUnsignedInteger, "Find processes that have a matching user ID." },
{ LLDB_OPT_SET_FROM_TO(2, 6), false, "euid", 'U', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeUnsignedInteger, "Find processes that have a matching effective user ID." },
{ LLDB_OPT_SET_FROM_TO(2, 6), false, "gid", 'g', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeUnsignedInteger, "Find processes that have a matching group ID." },
{ LLDB_OPT_SET_FROM_TO(2, 6), false, "egid", 'G', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeUnsignedInteger, "Find processes that have a matching effective group ID." },
{ LLDB_OPT_SET_FROM_TO(2, 6), false, "arch", 'a', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeArchitecture, "Find processes that have a matching architecture." },
{ LLDB_OPT_SET_FROM_TO(1, 6), false, "show-args", 'A', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Show process arguments instead of the process executable basename." },
{ LLDB_OPT_SET_FROM_TO(1, 6), false, "verbose", 'v', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Enable verbose output." },
// clang-format on
};
class CommandObjectPlatformProcessList : public CommandObjectParsed {
public:
CommandObjectPlatformProcessList(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "platform process list",
"List processes on a remote platform by name, pid, "
"or many other matching attributes.",
"platform process list", 0),
m_options() {}
~CommandObjectPlatformProcessList() override = default;
Options *GetOptions() override { return &m_options; }
protected:
bool DoExecute(Args &args, CommandReturnObject &result) override {
Target *target = m_interpreter.GetDebugger().GetSelectedTarget().get();
PlatformSP platform_sp;
if (target) {
platform_sp = target->GetPlatform();
}
if (!platform_sp) {
platform_sp =
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform();
}
if (platform_sp) {
Status error;
if (args.GetArgumentCount() == 0) {
if (platform_sp) {
Stream &ostrm = result.GetOutputStream();
lldb::pid_t pid =
m_options.match_info.GetProcessInfo().GetProcessID();
if (pid != LLDB_INVALID_PROCESS_ID) {
ProcessInstanceInfo proc_info;
if (platform_sp->GetProcessInfo(pid, proc_info)) {
ProcessInstanceInfo::DumpTableHeader(ostrm, platform_sp.get(),
m_options.show_args,
m_options.verbose);
proc_info.DumpAsTableRow(ostrm, platform_sp.get(),
m_options.show_args, m_options.verbose);
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
result.AppendErrorWithFormat(
"no process found with pid = %" PRIu64 "\n", pid);
result.SetStatus(eReturnStatusFailed);
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
}
} else {
ProcessInstanceInfoList proc_infos;
const uint32_t matches =
platform_sp->FindProcesses(m_options.match_info, proc_infos);
const char *match_desc = nullptr;
const char *match_name =
m_options.match_info.GetProcessInfo().GetName();
if (match_name && match_name[0]) {
switch (m_options.match_info.GetNameMatchType()) {
case NameMatch::Ignore:
break;
case NameMatch::Equals:
match_desc = "matched";
break;
case NameMatch::Contains:
match_desc = "contained";
break;
case NameMatch::StartsWith:
match_desc = "started with";
break;
case NameMatch::EndsWith:
match_desc = "ended with";
break;
case NameMatch::RegularExpression:
match_desc = "matched the regular expression";
break;
}
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
}
if (matches == 0) {
if (match_desc)
result.AppendErrorWithFormat(
"no processes were found that %s \"%s\" on the \"%s\" "
"platform\n",
match_desc, match_name,
platform_sp->GetPluginName().GetCString());
else
result.AppendErrorWithFormat(
"no processes were found on the \"%s\" platform\n",
platform_sp->GetPluginName().GetCString());
result.SetStatus(eReturnStatusFailed);
} else {
result.AppendMessageWithFormat(
"%u matching process%s found on \"%s\"", matches,
matches > 1 ? "es were" : " was",
platform_sp->GetName().GetCString());
if (match_desc)
result.AppendMessageWithFormat(" whose name %s \"%s\"",
match_desc, match_name);
result.AppendMessageWithFormat("\n");
ProcessInstanceInfo::DumpTableHeader(ostrm, platform_sp.get(),
m_options.show_args,
m_options.verbose);
for (uint32_t i = 0; i < matches; ++i) {
proc_infos.GetProcessInfoAtIndex(i).DumpAsTableRow(
ostrm, platform_sp.get(), m_options.show_args,
m_options.verbose);
}
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
}
}
}
} else {
result.AppendError("invalid args: process list takes only options\n");
result.SetStatus(eReturnStatusFailed);
}
} else {
result.AppendError("no platform is selected\n");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
class CommandOptions : public Options {
public:
CommandOptions()
: Options(), match_info(), show_args(false), verbose(false) {
static llvm::once_flag g_once_flag;
llvm::call_once(g_once_flag, []() {
PosixPlatformCommandOptionValidator *posix_validator =
new PosixPlatformCommandOptionValidator();
for (auto &Option : g_platform_process_list_options) {
switch (Option.short_option) {
case 'u':
case 'U':
case 'g':
case 'G':
Option.validator = posix_validator;
break;
default:
break;
}
}
});
}
~CommandOptions() override = default;
Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
ExecutionContext *execution_context) override {
Status error;
const int short_option = m_getopt_table[option_idx].val;
bool success = false;
uint32_t id = LLDB_INVALID_PROCESS_ID;
success = !option_arg.getAsInteger(0, id);
switch (short_option) {
case 'p': {
match_info.GetProcessInfo().SetProcessID(id);
if (!success)
error.SetErrorStringWithFormat("invalid process ID string: '%s'",
option_arg.str().c_str());
break;
}
case 'P':
match_info.GetProcessInfo().SetParentProcessID(id);
if (!success)
error.SetErrorStringWithFormat(
"invalid parent process ID string: '%s'",
option_arg.str().c_str());
break;
case 'u':
match_info.GetProcessInfo().SetUserID(success ? id : UINT32_MAX);
if (!success)
error.SetErrorStringWithFormat("invalid user ID string: '%s'",
option_arg.str().c_str());
break;
case 'U':
match_info.GetProcessInfo().SetEffectiveUserID(success ? id
: UINT32_MAX);
if (!success)
error.SetErrorStringWithFormat(
"invalid effective user ID string: '%s'",
option_arg.str().c_str());
break;
case 'g':
match_info.GetProcessInfo().SetGroupID(success ? id : UINT32_MAX);
if (!success)
error.SetErrorStringWithFormat("invalid group ID string: '%s'",
option_arg.str().c_str());
break;
case 'G':
match_info.GetProcessInfo().SetEffectiveGroupID(success ? id
: UINT32_MAX);
if (!success)
error.SetErrorStringWithFormat(
"invalid effective group ID string: '%s'",
option_arg.str().c_str());
break;
case 'a': {
TargetSP target_sp =
execution_context ? execution_context->GetTargetSP() : TargetSP();
DebuggerSP debugger_sp =
target_sp ? target_sp->GetDebugger().shared_from_this()
: DebuggerSP();
PlatformSP platform_sp =
debugger_sp ? debugger_sp->GetPlatformList().GetSelectedPlatform()
: PlatformSP();
match_info.GetProcessInfo().GetArchitecture() =
Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg);
} break;
case 'n':
match_info.GetProcessInfo().GetExecutableFile().SetFile(
option_arg, false, FileSpec::Style::native);
match_info.SetNameMatchType(NameMatch::Equals);
break;
case 'e':
match_info.GetProcessInfo().GetExecutableFile().SetFile(
option_arg, false, FileSpec::Style::native);
match_info.SetNameMatchType(NameMatch::EndsWith);
break;
case 's':
match_info.GetProcessInfo().GetExecutableFile().SetFile(
option_arg, false, FileSpec::Style::native);
match_info.SetNameMatchType(NameMatch::StartsWith);
break;
case 'c':
match_info.GetProcessInfo().GetExecutableFile().SetFile(
option_arg, false, FileSpec::Style::native);
match_info.SetNameMatchType(NameMatch::Contains);
break;
case 'r':
match_info.GetProcessInfo().GetExecutableFile().SetFile(
option_arg, false, FileSpec::Style::native);
match_info.SetNameMatchType(NameMatch::RegularExpression);
break;
case 'A':
show_args = true;
break;
case 'v':
verbose = true;
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'",
short_option);
break;
}
return error;
}
void OptionParsingStarting(ExecutionContext *execution_context) override {
match_info.Clear();
show_args = false;
verbose = false;
}
llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
return llvm::makeArrayRef(g_platform_process_list_options);
}
// Instance variables to hold the values for command options.
ProcessInstanceInfoMatch match_info;
bool show_args;
bool verbose;
};
CommandOptions m_options;
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
};
//----------------------------------------------------------------------
// "platform process info"
//----------------------------------------------------------------------
class CommandObjectPlatformProcessInfo : public CommandObjectParsed {
public:
CommandObjectPlatformProcessInfo(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "platform process info",
"Get detailed information for one or more process by process ID.",
"platform process info <pid> [<pid> <pid> ...]", 0) {
CommandArgumentEntry arg;
CommandArgumentData pid_args;
// Define the first (and only) variant of this arg.
pid_args.arg_type = eArgTypePid;
pid_args.arg_repetition = eArgRepeatStar;
// There is only one variant this argument could be; put it into the
// argument entry.
arg.push_back(pid_args);
// Push the data for the first argument into the m_arguments vector.
m_arguments.push_back(arg);
}
~CommandObjectPlatformProcessInfo() override = default;
protected:
bool DoExecute(Args &args, CommandReturnObject &result) override {
Target *target = m_interpreter.GetDebugger().GetSelectedTarget().get();
PlatformSP platform_sp;
if (target) {
platform_sp = target->GetPlatform();
}
if (!platform_sp) {
platform_sp =
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform();
}
if (platform_sp) {
const size_t argc = args.GetArgumentCount();
if (argc > 0) {
Status error;
if (platform_sp->IsConnected()) {
Stream &ostrm = result.GetOutputStream();
for (auto &entry : args.entries()) {
lldb::pid_t pid;
if (entry.ref.getAsInteger(0, pid)) {
result.AppendErrorWithFormat("invalid process ID argument '%s'",
entry.ref.str().c_str());
result.SetStatus(eReturnStatusFailed);
break;
} else {
ProcessInstanceInfo proc_info;
if (platform_sp->GetProcessInfo(pid, proc_info)) {
ostrm.Printf("Process information for process %" PRIu64 ":\n",
pid);
proc_info.Dump(ostrm, platform_sp.get());
} else {
ostrm.Printf("error: no process information is available for "
"process %" PRIu64 "\n",
pid);
}
ostrm.EOL();
}
}
} else {
// Not connected...
result.AppendErrorWithFormat(
"not connected to '%s'",
platform_sp->GetPluginName().GetCString());
result.SetStatus(eReturnStatusFailed);
}
} else {
// No args
result.AppendError("one or more process id(s) must be specified");
result.SetStatus(eReturnStatusFailed);
}
} else {
result.AppendError("no platform is currently selected");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
};
static OptionDefinition g_platform_process_attach_options[] = {
// clang-format off
{ LLDB_OPT_SET_ALL, false, "plugin", 'P', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypePlugin, "Name of the process plugin you want to use." },
{ LLDB_OPT_SET_1, false, "pid", 'p', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypePid, "The process ID of an existing process to attach to." },
{ LLDB_OPT_SET_2, false, "name", 'n', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeProcessName, "The name of the process to attach to." },
{ LLDB_OPT_SET_2, false, "waitfor", 'w', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Wait for the process with <process-name> to launch." },
// clang-format on
};
class CommandObjectPlatformProcessAttach : public CommandObjectParsed {
public:
class CommandOptions : public Options {
public:
CommandOptions() : Options() {
// Keep default values of all options in one place: OptionParsingStarting
// ()
OptionParsingStarting(nullptr);
}
~CommandOptions() override = default;
Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
ExecutionContext *execution_context) override {
Status error;
char short_option = (char)m_getopt_table[option_idx].val;
switch (short_option) {
case 'p': {
lldb::pid_t pid = LLDB_INVALID_PROCESS_ID;
if (option_arg.getAsInteger(0, pid)) {
error.SetErrorStringWithFormat("invalid process ID '%s'",
option_arg.str().c_str());
} else {
attach_info.SetProcessID(pid);
}
} break;
case 'P':
attach_info.SetProcessPluginName(option_arg);
break;
case 'n':
attach_info.GetExecutableFile().SetFile(option_arg, false,
FileSpec::Style::native);
break;
case 'w':
attach_info.SetWaitForLaunch(true);
break;
default:
error.SetErrorStringWithFormat("invalid short option character '%c'",
short_option);
break;
}
return error;
}
void OptionParsingStarting(ExecutionContext *execution_context) override {
attach_info.Clear();
}
llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
return llvm::makeArrayRef(g_platform_process_attach_options);
}
bool HandleOptionArgumentCompletion(
Args &input, int cursor_index, int char_pos,
OptionElementVector &opt_element_vector, int opt_element_index,
int match_start_point, int max_return_elements,
CommandInterpreter &interpreter, bool &word_complete,
StringList &matches) override {
int opt_arg_pos = opt_element_vector[opt_element_index].opt_arg_pos;
int opt_defs_index = opt_element_vector[opt_element_index].opt_defs_index;
// We are only completing the name option for now...
if (GetDefinitions()[opt_defs_index].short_option == 'n') {
// Are we in the name?
// Look to see if there is a -P argument provided, and if so use that
// plugin, otherwise use the default plugin.
const char *partial_name = nullptr;
partial_name = input.GetArgumentAtIndex(opt_arg_pos);
PlatformSP platform_sp(interpreter.GetPlatform(true));
if (platform_sp) {
ProcessInstanceInfoList process_infos;
ProcessInstanceInfoMatch match_info;
if (partial_name) {
match_info.GetProcessInfo().GetExecutableFile().SetFile(
partial_name, false, FileSpec::Style::native);
match_info.SetNameMatchType(NameMatch::StartsWith);
}
platform_sp->FindProcesses(match_info, process_infos);
const uint32_t num_matches = process_infos.GetSize();
if (num_matches > 0) {
for (uint32_t i = 0; i < num_matches; ++i) {
matches.AppendString(
process_infos.GetProcessNameAtIndex(i),
process_infos.GetProcessNameLengthAtIndex(i));
}
}
}
}
return false;
}
// Options table: Required for subclasses of Options.
static OptionDefinition g_option_table[];
// Instance variables to hold the values for command options.
ProcessAttachInfo attach_info;
};
CommandObjectPlatformProcessAttach(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "platform process attach",
"Attach to a process.",
"platform process attach <cmd-options>"),
m_options() {}
~CommandObjectPlatformProcessAttach() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
PlatformSP platform_sp(
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform());
if (platform_sp) {
Status err;
ProcessSP remote_process_sp = platform_sp->Attach(
m_options.attach_info, m_interpreter.GetDebugger(), nullptr, err);
if (err.Fail()) {
result.AppendError(err.AsCString());
result.SetStatus(eReturnStatusFailed);
} else if (!remote_process_sp) {
result.AppendError("could not attach: unknown reason");
result.SetStatus(eReturnStatusFailed);
} else
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
result.AppendError("no platform is currently selected");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
Options *GetOptions() override { return &m_options; }
protected:
CommandOptions m_options;
};
class CommandObjectPlatformProcess : public CommandObjectMultiword {
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
public:
//------------------------------------------------------------------
// Constructors and Destructors
//------------------------------------------------------------------
CommandObjectPlatformProcess(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "platform process",
"Commands to query, launch and attach to "
"processes on the current platform.",
"platform process [attach|launch|list] ...") {
LoadSubCommand(
"attach",
CommandObjectSP(new CommandObjectPlatformProcessAttach(interpreter)));
LoadSubCommand(
"launch",
CommandObjectSP(new CommandObjectPlatformProcessLaunch(interpreter)));
LoadSubCommand("info", CommandObjectSP(new CommandObjectPlatformProcessInfo(
interpreter)));
LoadSubCommand("list", CommandObjectSP(new CommandObjectPlatformProcessList(
interpreter)));
}
~CommandObjectPlatformProcess() override = default;
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
private:
//------------------------------------------------------------------
// For CommandObjectPlatform only
//------------------------------------------------------------------
DISALLOW_COPY_AND_ASSIGN(CommandObjectPlatformProcess);
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
};
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
//----------------------------------------------------------------------
// "platform shell"
//----------------------------------------------------------------------
static OptionDefinition g_platform_shell_options[] = {
// clang-format off
{ LLDB_OPT_SET_ALL, false, "timeout", 't', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue, "Seconds to wait for the remote host to finish running the command." },
// clang-format on
};
class CommandObjectPlatformShell : public CommandObjectRaw {
public:
class CommandOptions : public Options {
public:
CommandOptions() : Options() {}
~CommandOptions() override = default;
llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
return llvm::makeArrayRef(g_platform_shell_options);
}
Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
ExecutionContext *execution_context) override {
Status error;
const char short_option = (char)GetDefinitions()[option_idx].short_option;
switch (short_option) {
case 't':
uint32_t timeout_sec;
if (option_arg.getAsInteger(10, timeout_sec))
error.SetErrorStringWithFormat(
"could not convert \"%s\" to a numeric value.",
option_arg.str().c_str());
else
timeout = std::chrono::seconds(timeout_sec);
break;
default:
error.SetErrorStringWithFormat("invalid short option character '%c'",
short_option);
break;
}
return error;
}
void OptionParsingStarting(ExecutionContext *execution_context) override {}
Timeout<std::micro> timeout = std::chrono::seconds(10);
};
CommandObjectPlatformShell(CommandInterpreter &interpreter)
: CommandObjectRaw(interpreter, "platform shell",
"Run a shell command on the current platform.",
"platform shell <shell-command>", 0),
m_options() {}
~CommandObjectPlatformShell() override = default;
Options *GetOptions() override { return &m_options; }
bool DoExecute(const char *raw_command_line,
CommandReturnObject &result) override {
ExecutionContext exe_ctx = GetCommandInterpreter().GetExecutionContext();
m_options.NotifyOptionParsingStarting(&exe_ctx);
const char *expr = nullptr;
// Print out an usage syntax on an empty command line.
if (raw_command_line[0] == '\0') {
result.GetOutputStream().Printf("%s\n", this->GetSyntax().str().c_str());
return true;
}
if (raw_command_line[0] == '-') {
// We have some options and these options MUST end with --.
const char *end_options = nullptr;
const char *s = raw_command_line;
while (s && s[0]) {
end_options = ::strstr(s, "--");
if (end_options) {
end_options += 2; // Get past the "--"
if (::isspace(end_options[0])) {
expr = end_options;
while (::isspace(*expr))
++expr;
break;
}
}
s = end_options;
}
if (end_options) {
Args args(
llvm::StringRef(raw_command_line, end_options - raw_command_line));
if (!ParseOptions(args, result))
return false;
}
}
if (expr == nullptr)
expr = raw_command_line;
PlatformSP platform_sp(
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform());
Status error;
if (platform_sp) {
FileSpec working_dir{};
std::string output;
int status = -1;
int signo = -1;
error = (platform_sp->RunShellCommand(expr, working_dir, &status, &signo,
&output, m_options.timeout));
if (!output.empty())
result.GetOutputStream().PutCString(output);
if (status > 0) {
if (signo > 0) {
const char *signo_cstr = Host::GetSignalAsCString(signo);
if (signo_cstr)
result.GetOutputStream().Printf(
"error: command returned with status %i and signal %s\n",
status, signo_cstr);
else
result.GetOutputStream().Printf(
"error: command returned with status %i and signal %i\n",
status, signo);
} else
result.GetOutputStream().Printf(
"error: command returned with status %i\n", status);
}
} else {
result.GetOutputStream().Printf(
"error: cannot run remote shell commands without a platform\n");
error.SetErrorString(
"error: cannot run remote shell commands without a platform");
}
if (error.Fail()) {
result.AppendError(error.AsCString());
result.SetStatus(eReturnStatusFailed);
} else {
result.SetStatus(eReturnStatusSuccessFinishResult);
}
return true;
}
CommandOptions m_options;
};
//----------------------------------------------------------------------
// "platform install" - install a target to a remote end
//----------------------------------------------------------------------
class CommandObjectPlatformInstall : public CommandObjectParsed {
public:
CommandObjectPlatformInstall(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "platform target-install",
"Install a target (bundle or executable file) to the remote end.",
"platform target-install <local-thing> <remote-sandbox>", 0) {}
~CommandObjectPlatformInstall() override = default;
bool DoExecute(Args &args, CommandReturnObject &result) override {
if (args.GetArgumentCount() != 2) {
result.AppendError("platform target-install takes two arguments");
result.SetStatus(eReturnStatusFailed);
return false;
}
// TODO: move the bulk of this code over to the platform itself
FileSpec src(args.GetArgumentAtIndex(0), true);
FileSpec dst(args.GetArgumentAtIndex(1), false);
if (!src.Exists()) {
result.AppendError("source location does not exist or is not accessible");
result.SetStatus(eReturnStatusFailed);
return false;
}
PlatformSP platform_sp(
m_interpreter.GetDebugger().GetPlatformList().GetSelectedPlatform());
if (!platform_sp) {
result.AppendError("no platform currently selected");
result.SetStatus(eReturnStatusFailed);
return false;
}
Status error = platform_sp->Install(src, dst);
if (error.Success()) {
result.SetStatus(eReturnStatusSuccessFinishNoResult);
} else {
result.AppendErrorWithFormat("install failed: %s", error.AsCString());
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
};
CommandObjectPlatform::CommandObjectPlatform(CommandInterpreter &interpreter)
: CommandObjectMultiword(
interpreter, "platform", "Commands to manage and create platforms.",
"platform [connect|disconnect|info|list|status|select] ...") {
LoadSubCommand("select",
CommandObjectSP(new CommandObjectPlatformSelect(interpreter)));
LoadSubCommand("list",
CommandObjectSP(new CommandObjectPlatformList(interpreter)));
LoadSubCommand("status",
CommandObjectSP(new CommandObjectPlatformStatus(interpreter)));
LoadSubCommand("connect", CommandObjectSP(
new CommandObjectPlatformConnect(interpreter)));
LoadSubCommand(
"disconnect",
CommandObjectSP(new CommandObjectPlatformDisconnect(interpreter)));
LoadSubCommand("settings", CommandObjectSP(new CommandObjectPlatformSettings(
interpreter)));
LoadSubCommand("mkdir",
CommandObjectSP(new CommandObjectPlatformMkDir(interpreter)));
LoadSubCommand("file",
CommandObjectSP(new CommandObjectPlatformFile(interpreter)));
LoadSubCommand("get-file", CommandObjectSP(new CommandObjectPlatformGetFile(
interpreter)));
LoadSubCommand("get-size", CommandObjectSP(new CommandObjectPlatformGetSize(
interpreter)));
LoadSubCommand("put-file", CommandObjectSP(new CommandObjectPlatformPutFile(
interpreter)));
LoadSubCommand("process", CommandObjectSP(
new CommandObjectPlatformProcess(interpreter)));
LoadSubCommand("shell",
CommandObjectSP(new CommandObjectPlatformShell(interpreter)));
LoadSubCommand(
"target-install",
CommandObjectSP(new CommandObjectPlatformInstall(interpreter)));
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
}
CommandObjectPlatform::~CommandObjectPlatform() = default;