llvm-project/llvm/test/CodeGen/PowerPC/ppc64-align-long-double.ll

37 lines
1.3 KiB
LLVM
Raw Normal View History

; RUN: llc -verify-machineinstrs -mcpu=pwr7 -O0 -fast-isel=false -mattr=-vsx < %s | FileCheck %s
; RUN: llc -verify-machineinstrs -mcpu=pwr7 -O0 -fast-isel=false -mattr=+vsx < %s | FileCheck -check-prefix=CHECK-VSX %s
; Verify internal alignment of long double in a struct. The double
; argument comes in in GPR3; GPR4 is skipped; GPRs 5 and 6 contain
; the long double. Check that these are stored to proper locations
; in the parameter save area and loaded from there for return in FPR1/2.
target datalayout = "E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128-v128:128:128-n32:64"
target triple = "powerpc64-unknown-linux-gnu"
%struct.S = type { double, ppc_fp128 }
define ppc_fp128 @test(%struct.S* byval %x) nounwind {
entry:
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b = getelementptr inbounds %struct.S, %struct.S* %x, i32 0, i32 1
%0 = load ppc_fp128, ppc_fp128* %b, align 16
ret ppc_fp128 %0
}
Fix Load Control Dependence in MemCpy Generation In Memcpy lowering we had missed a dependence from the load of the operation to successor operations. This causes us to potentially construct an in initial DAG with a memory dependence not fully represented in the chain sub-DAG but rather require looking at the entire DAG breaking alias analysis by allowing incorrect repositioning of memory operations. To work around this, r200033 changed DAGCombiner::GatherAllAliases to be conservative if any possible issues to happen. Unfortunately this check forbade many non-problematic situations as well. For example, it's common for incoming argument lowering to add a non-aliasing load hanging off of EntryNode. Then, if GatherAllAliases visited EntryNode, it would find that other (unvisited) use of the EntryNode chain, and just give up entirely. Furthermore, the check was incomplete: it would not actually detect all such potentially problematic DAG constructions, because GatherAllAliases did not guarantee to visit all chain nodes going up to the root EntryNode. This is in general fine -- giving up early will just miss a potential optimization, not generate incorrect results. But, for this non-chain dependency detection code, it's possible that you could have a load attached to a higher-up chain node than any which were visited. If that load aliases your store, but the only dependency is through the value operand of a non-aliasing store, it would've been missed by this code, and potentially reordered. With the dependence added, this check can be removed and Alias Analysis can be much more aggressive. This fixes code quality regression in the Consecutive Store Merge cleanup (D14834). Test Change: ppc64-align-long-double.ll now may see multiple serializations of its stores Differential Revision: http://reviews.llvm.org/D18062 llvm-svn: 265836
2016-04-09 03:44:40 +08:00
; CHECK-DAG: std 6, 72(1)
; CHECK-DAG: std 5, 64(1)
; CHECK-DAG: std 4, 56(1)
; CHECK-DAG: std 3, 48(1)
; CHECK: lfd 1, 64(1)
; CHECK: lfd 2, 72(1)
Fix Load Control Dependence in MemCpy Generation In Memcpy lowering we had missed a dependence from the load of the operation to successor operations. This causes us to potentially construct an in initial DAG with a memory dependence not fully represented in the chain sub-DAG but rather require looking at the entire DAG breaking alias analysis by allowing incorrect repositioning of memory operations. To work around this, r200033 changed DAGCombiner::GatherAllAliases to be conservative if any possible issues to happen. Unfortunately this check forbade many non-problematic situations as well. For example, it's common for incoming argument lowering to add a non-aliasing load hanging off of EntryNode. Then, if GatherAllAliases visited EntryNode, it would find that other (unvisited) use of the EntryNode chain, and just give up entirely. Furthermore, the check was incomplete: it would not actually detect all such potentially problematic DAG constructions, because GatherAllAliases did not guarantee to visit all chain nodes going up to the root EntryNode. This is in general fine -- giving up early will just miss a potential optimization, not generate incorrect results. But, for this non-chain dependency detection code, it's possible that you could have a load attached to a higher-up chain node than any which were visited. If that load aliases your store, but the only dependency is through the value operand of a non-aliasing store, it would've been missed by this code, and potentially reordered. With the dependence added, this check can be removed and Alias Analysis can be much more aggressive. This fixes code quality regression in the Consecutive Store Merge cleanup (D14834). Test Change: ppc64-align-long-double.ll now may see multiple serializations of its stores Differential Revision: http://reviews.llvm.org/D18062 llvm-svn: 265836
2016-04-09 03:44:40 +08:00
; CHECK-VSX-DAG: std 6, 72(1)
; CHECK-VSX-DAG: std 5, 64(1)
; CHECK-VSX-DAG: std 4, 56(1)
; CHECK-VSX-DAG: std 3, 48(1)
; CHECK-VSX: li 3, 16
; CHECK-VSX: addi 4, 1, 48
; CHECK-VSX: lxsdx 1, 4, 3
; CHECK-VSX: li 3, 24
; CHECK-VSX: lxsdx 2, 4, 3