llvm-project/clang/Analysis/LiveVariables.cpp

439 lines
13 KiB
C++
Raw Normal View History

//==- LiveVariables.cpp - Live Variable Analysis for Source CFGs -*- C++ --*-==//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Ted Kremenek and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements Live Variables analysis for source-level CFGs.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/LiveVariables.h"
#include "clang/Basic/SourceManager.h"
#include "clang/AST/Expr.h"
#include "clang/AST/CFG.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Lex/IdentifierTable.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <string.h>
#include <stdio.h>
using namespace clang;
//===----------------------------------------------------------------------===//
// RegisterDecls - Utility class to create VarInfo objects for all
// Decls referenced in a function.
//
namespace {
class RegisterDecls : public StmtVisitor<RegisterDecls,void> {
LiveVariables& L;
const CFG& cfg;
public:
RegisterDecls(LiveVariables& l, const CFG& c)
: L(l), cfg(c) {}
void VisitStmt(Stmt* S);
void VisitDeclRefExpr(DeclRefExpr* DR);
void Register(Decl* D);
void RegisterUsedDecls();
};
void RegisterDecls::VisitStmt(Stmt* S) {
for (Stmt::child_iterator I = S->child_begin(),E = S->child_end(); I != E;++I)
Visit(*I);
}
void RegisterDecls::VisitDeclRefExpr(DeclRefExpr* DR) {
for (Decl* D = DR->getDecl() ; D != NULL ; D = D->getNextDeclarator())
Register(D);
}
void RegisterDecls::Register(Decl* D) {
LiveVariables::VPair& VP = L.getVarInfoMap()[const_cast<const Decl*>(D)];
VP.V.AliveBlocks.reserve(cfg.getNumBlockIDs());
VP.Idx = L.getNumDecls()++;
}
void RegisterDecls::RegisterUsedDecls() {
for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI)
for (CFGBlock::const_iterator SI=BI->begin(),SE = BI->end();SI != SE;++SI)
Visit(const_cast<Stmt*>(*SI));
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// WorkList - Data structure representing the liveness algorithm worklist.
//
namespace {
class WorkListTy {
typedef llvm::SmallPtrSet<const CFGBlock*,20> BlockSet;
BlockSet wlist;
public:
void enqueue(const CFGBlock* B) { wlist.insert(B); }
const CFGBlock* dequeue() {
assert (!wlist.empty());
const CFGBlock* B = *wlist.begin();
wlist.erase(B);
return B;
}
bool isEmpty() const { return wlist.empty(); }
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// TFuncs
//
namespace {
class LivenessTFuncs : public StmtVisitor<LivenessTFuncs,void> {
LiveVariables& L;
llvm::BitVector Live;
llvm::BitVector KilledAtLeastOnce;
Stmt* CurrentStmt;
const CFGBlock* CurrentBlock;
bool blockPreviouslyProcessed;
LiveVariablesAuditor* Auditor;
public:
LivenessTFuncs(LiveVariables& l, LiveVariablesAuditor* A = NULL)
: L(l), CurrentStmt(NULL), CurrentBlock(NULL),
blockPreviouslyProcessed(false), Auditor(A)
{
Live.resize(l.getNumDecls());
KilledAtLeastOnce.resize(l.getNumDecls());
}
void VisitStmt(Stmt* S);
void VisitDeclRefExpr(DeclRefExpr* DR);
void VisitBinaryOperator(BinaryOperator* B);
void VisitAssign(BinaryOperator* B);
void VisitStmtExpr(StmtExpr* S);
void VisitDeclStmt(DeclStmt* DS);
void VisitUnaryOperator(UnaryOperator* U);
unsigned getIdx(const Decl* D) {
LiveVariables::VarInfoMap& V = L.getVarInfoMap();
LiveVariables::VarInfoMap::iterator I = V.find(D);
assert (I != V.end());
return I->second.Idx;
}
bool ProcessBlock(const CFGBlock* B);
llvm::BitVector* getBlockEntryLiveness(const CFGBlock* B);
LiveVariables::VarInfo& KillVar(Decl* D);
};
void LivenessTFuncs::VisitStmt(Stmt* S) {
if (Auditor)
Auditor->AuditStmt(S,L,Live);
// Evaluate the transfer functions for all subexpressions. Note that
// each invocation of "Visit" will have a side-effect: "Liveness" and "Kills"
// will be updated.
for (Stmt::child_iterator I = S->child_begin(),E = S->child_end(); I != E;++I)
Visit(*I);
}
void LivenessTFuncs::VisitDeclRefExpr(DeclRefExpr* DR) {
if (Auditor)
Auditor->AuditStmt(DR,L,Live);
// Register a use of the variable.
Live.set(getIdx(DR->getDecl()));
}
void LivenessTFuncs::VisitStmtExpr(StmtExpr* S) {
// Do nothing. The substatements of S are segmented into separate
// statements in the CFG.
}
void LivenessTFuncs::VisitBinaryOperator(BinaryOperator* B) {
switch (B->getOpcode()) {
case BinaryOperator::LAnd:
case BinaryOperator::LOr:
case BinaryOperator::Comma:
// Do nothing. These operations are broken up into multiple
// statements in the CFG. All these expressions do is return
// the value of their subexpressions, but these subexpressions will
// be evalualated elsewhere in the CFG.
break;
// FIXME: handle '++' and '--'
default:
if (B->isAssignmentOp()) VisitAssign(B);
else VisitStmt(B);
}
}
void LivenessTFuncs::VisitUnaryOperator(UnaryOperator* U) {
switch (U->getOpcode()) {
case UnaryOperator::PostInc:
case UnaryOperator::PostDec:
case UnaryOperator::PreInc:
case UnaryOperator::PreDec:
case UnaryOperator::AddrOf:
// Walk through the subexpressions, blasting through ParenExprs until
// we either find a DeclRefExpr or some non-DeclRefExpr expression.
for (Stmt* S = U->getSubExpr() ; ; ) {
if (ParenExpr* P = dyn_cast<ParenExpr>(S)) {
S = P->getSubExpr();
continue;
}
else if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(S)) {
// Treat the --/++/& operator as a kill.
LiveVariables::VarInfo& V = KillVar(DR->getDecl());
if (!blockPreviouslyProcessed)
V.AddKill(CurrentStmt,DR);
VisitDeclRefExpr(DR);
}
else
Visit(S);
break;
}
break;
default:
VisitStmt(U->getSubExpr());
break;
}
}
LiveVariables::VarInfo& LivenessTFuncs::KillVar(Decl* D) {
LiveVariables::VarInfoMap::iterator I = L.getVarInfoMap().find(D);
assert (I != L.getVarInfoMap().end() &&
"Declaration not managed by variable map in LiveVariables");
// Mark the variable dead, and remove the current block from
// the set of blocks where the variable may be alive the entire time.
Live.reset(I->second.Idx);
I->second.V.AliveBlocks.reset(CurrentBlock->getBlockID());
return I->second.V;
}
void LivenessTFuncs::VisitAssign(BinaryOperator* B) {
if (Auditor)
Auditor->AuditStmt(B,L,Live);
// Check if we are assigning to a variable.
Stmt* LHS = B->getLHS();
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(LHS)) {
LiveVariables::VarInfo& V = KillVar(DR->getDecl());
// We only need to register kills once, so we check if this block
// has been previously processed.
if (!blockPreviouslyProcessed)
V.AddKill(CurrentStmt,DR);
}
else
Visit(LHS);
Visit(B->getRHS());
}
void LivenessTFuncs::VisitDeclStmt(DeclStmt* DS) {
if (Auditor)
Auditor->AuditStmt(DS,L,Live);
// Declarations effectively "kill" a variable since they cannot possibly
// be live before they are declared. Declarations, however, are not kills
// in the sense that the value is obliterated, so we do not register
// DeclStmts as a "kill site" for a variable.
for (Decl* D = DS->getDecl(); D != NULL ; D = D->getNextDeclarator())
KillVar(D);
}
llvm::BitVector* LivenessTFuncs::getBlockEntryLiveness(const CFGBlock* B) {
LiveVariables::BlockLivenessMap& BMap = L.getLiveAtBlockEntryMap();
LiveVariables::BlockLivenessMap::iterator I = BMap.find(B);
return (I == BMap.end()) ? NULL : &(I->second);
}
bool LivenessTFuncs::ProcessBlock(const CFGBlock* B) {
CurrentBlock = B;
Live.reset();
KilledAtLeastOnce.reset();
// Check if this block has been previously processed.
LiveVariables::BlockLivenessMap& BMap = L.getLiveAtBlockEntryMap();
LiveVariables::BlockLivenessMap::iterator BI = BMap.find(B);
blockPreviouslyProcessed = BI != BMap.end();
// Merge liveness information from all predecessors.
for (CFGBlock::const_succ_iterator I=B->succ_begin(),E=B->succ_end();I!=E;++I)
if (llvm::BitVector* V = getBlockEntryLiveness(*I))
Live |= *V;
if (Auditor)
Auditor->AuditBlockExit(B,L,Live);
// Tentatively mark all variables alive at the end of the current block
// as being alive during the whole block. We then cull these out as
// we process the statements of this block.
for (LiveVariables::VarInfoMap::iterator
I=L.getVarInfoMap().begin(), E=L.getVarInfoMap().end(); I != E; ++I)
if (Live[I->second.Idx])
I->second.V.AliveBlocks.set(B->getBlockID());
// March up the statements and process the transfer functions.
for (CFGBlock::const_reverse_iterator I=B->rbegin(), E=B->rend(); I!=E; ++I) {
CurrentStmt = *I;
Visit(CurrentStmt);
}
// Compare the computed "Live" values with what we already have
// for the entry to this block.
bool hasChanged = false;
if (!blockPreviouslyProcessed) {
// We have not previously calculated liveness information for this block.
// Lazily instantiate a bitvector, and copy the bits from Live.
hasChanged = true;
llvm::BitVector& V = BMap[B];
V.resize(L.getNumDecls());
V = Live;
}
else if (BI->second != Live) {
hasChanged = true;
BI->second = Live;
}
return hasChanged;
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// runOnCFG - Method to run the actual liveness computation.
//
void LiveVariables::runOnCFG(const CFG& cfg, LiveVariablesAuditor* Auditor) {
// Scan a CFG for DeclRefStmts. For each one, create a VarInfo object.
{
RegisterDecls R(*this,cfg);
R.RegisterUsedDecls();
}
// Create the worklist and enqueue the exit block.
WorkListTy WorkList;
WorkList.enqueue(&cfg.getExit());
// Create the state for transfer functions.
LivenessTFuncs TF(*this,Auditor);
// Process the worklist until it is empty.
while (!WorkList.isEmpty()) {
const CFGBlock* B = WorkList.dequeue();
if (TF.ProcessBlock(B))
for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
I != E; ++I)
WorkList.enqueue(*I);
}
// Go through each block and reserve a bitvector. This is needed if
// a block was never visited by the worklist algorithm.
for (CFG::const_iterator I = cfg.begin(), E = cfg.end(); I != E; ++I)
LiveAtBlockEntryMap[&(*I)].resize(NumDecls);
}
void LiveVariables::runOnBlock(const CFGBlock* B, LiveVariablesAuditor* Auditor)
{
assert (NumDecls && "You must use runOnCFG before using runOnBlock.");
LivenessTFuncs TF(*this,Auditor);
TF.ProcessBlock(B);
}
//===----------------------------------------------------------------------===//
// liveness queries
//
bool LiveVariables::IsLive(const CFGBlock* B, const Decl* D) const {
BlockLivenessMap::const_iterator I = LiveAtBlockEntryMap.find(B);
assert (I != LiveAtBlockEntryMap.end());
VarInfoMap::const_iterator VI = VarInfos.find(D);
assert (VI != VarInfos.end());
return I->second[VI->second.Idx];
}
bool LiveVariables::KillsVar(const Stmt* S, const Decl* D) const {
VarInfoMap::const_iterator VI = VarInfos.find(D);
assert (VI != VarInfos.end());
for (VarInfo::KillsSet::const_iterator
I = VI->second.V.Kills.begin(), E = VI->second.V.Kills.end(); I!=E;++I)
if (I->first == S)
return true;
return false;
}
LiveVariables::VarInfo& LiveVariables::getVarInfo(const Decl* D) {
VarInfoMap::iterator VI = VarInfos.find(D);
assert (VI != VarInfos.end());
return VI->second.V;
}
const LiveVariables::VarInfo& LiveVariables::getVarInfo(const Decl* D) const {
return const_cast<LiveVariables*>(this)->getVarInfo(D);
}
//===----------------------------------------------------------------------===//
// printing liveness state for debugging
//
void LiveVariables::dumpLiveness(const llvm::BitVector& V,
SourceManager& SM) const {
for (VarInfoMap::iterator I = VarInfos.begin(), E=VarInfos.end(); I!=E; ++I) {
if (V[I->second.Idx]) {
SourceLocation PhysLoc = SM.getPhysicalLoc(I->first->getLocation());
fprintf(stderr, " %s <%s:%u:%u>\n",
I->first->getIdentifier()->getName(),
SM.getSourceName(PhysLoc),
SM.getLineNumber(PhysLoc),
SM.getColumnNumber(PhysLoc));
}
}
}
void LiveVariables::dumpBlockLiveness(SourceManager& M) const {
for (BlockLivenessMap::iterator I = LiveAtBlockEntryMap.begin(),
E = LiveAtBlockEntryMap.end();
I != E; ++I) {
fprintf(stderr,
"\n[ B%d (live variables at block entry) ]\n",
I->first->getBlockID());
dumpLiveness(I->second,M);
}
}