llvm-project/polly/lib/External/isl/isl_coalesce.c

2685 lines
80 KiB
C
Raw Normal View History

/*
* Copyright 2008-2009 Katholieke Universiteit Leuven
* Copyright 2010 INRIA Saclay
* Copyright 2012-2013 Ecole Normale Superieure
* Copyright 2014 INRIA Rocquencourt
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, K.U.Leuven, Departement
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue dUlm, 75230 Paris, France
* and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
* B.P. 105 - 78153 Le Chesnay, France
*/
#include "isl_map_private.h"
#include <isl_seq.h>
#include <isl/options.h>
#include "isl_tab.h"
#include <isl_mat_private.h>
#include <isl_local_space_private.h>
#include <isl_vec_private.h>
#include <isl_aff_private.h>
#define STATUS_ERROR -1
#define STATUS_REDUNDANT 1
#define STATUS_VALID 2
#define STATUS_SEPARATE 3
#define STATUS_CUT 4
#define STATUS_ADJ_EQ 5
#define STATUS_ADJ_INEQ 6
static int status_in(isl_int *ineq, struct isl_tab *tab)
{
enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
switch (type) {
default:
case isl_ineq_error: return STATUS_ERROR;
case isl_ineq_redundant: return STATUS_VALID;
case isl_ineq_separate: return STATUS_SEPARATE;
case isl_ineq_cut: return STATUS_CUT;
case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
}
}
/* Compute the position of the equalities of basic map "bmap_i"
* with respect to the basic map represented by "tab_j".
* The resulting array has twice as many entries as the number
* of equalities corresponding to the two inequalties to which
* each equality corresponds.
*/
static int *eq_status_in(__isl_keep isl_basic_map *bmap_i,
struct isl_tab *tab_j)
{
int k, l;
int *eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq);
unsigned dim;
if (!eq)
return NULL;
dim = isl_basic_map_total_dim(bmap_i);
for (k = 0; k < bmap_i->n_eq; ++k) {
for (l = 0; l < 2; ++l) {
isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim);
eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j);
if (eq[2 * k + l] == STATUS_ERROR)
goto error;
}
if (eq[2 * k] == STATUS_SEPARATE ||
eq[2 * k + 1] == STATUS_SEPARATE)
break;
}
return eq;
error:
free(eq);
return NULL;
}
/* Compute the position of the inequalities of basic map "bmap_i"
* (also represented by "tab_i", if not NULL) with respect to the basic map
* represented by "tab_j".
*/
static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i,
struct isl_tab *tab_i, struct isl_tab *tab_j)
{
int k;
unsigned n_eq = bmap_i->n_eq;
int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq);
if (!ineq)
return NULL;
for (k = 0; k < bmap_i->n_ineq; ++k) {
if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) {
ineq[k] = STATUS_REDUNDANT;
continue;
}
ineq[k] = status_in(bmap_i->ineq[k], tab_j);
if (ineq[k] == STATUS_ERROR)
goto error;
if (ineq[k] == STATUS_SEPARATE)
break;
}
return ineq;
error:
free(ineq);
return NULL;
}
static int any(int *con, unsigned len, int status)
{
int i;
for (i = 0; i < len ; ++i)
if (con[i] == status)
return 1;
return 0;
}
static int count(int *con, unsigned len, int status)
{
int i;
int c = 0;
for (i = 0; i < len ; ++i)
if (con[i] == status)
c++;
return c;
}
static int all(int *con, unsigned len, int status)
{
int i;
for (i = 0; i < len ; ++i) {
if (con[i] == STATUS_REDUNDANT)
continue;
if (con[i] != status)
return 0;
}
return 1;
}
/* Internal information associated to a basic map in a map
* that is to be coalesced by isl_map_coalesce.
*
* "bmap" is the basic map itself (or NULL if "removed" is set)
* "tab" is the corresponding tableau (or NULL if "removed" is set)
* "hull_hash" identifies the affine space in which "bmap" lives.
* "removed" is set if this basic map has been removed from the map
* "simplify" is set if this basic map may have some unknown integer
* divisions that were not present in the input basic maps. The basic
* map should then be simplified such that we may be able to find
* a definition among the constraints.
*
* "eq" and "ineq" are only set if we are currently trying to coalesce
* this basic map with another basic map, in which case they represent
* the position of the inequalities of this basic map with respect to
* the other basic map. The number of elements in the "eq" array
* is twice the number of equalities in the "bmap", corresponding
* to the two inequalities that make up each equality.
*/
struct isl_coalesce_info {
isl_basic_map *bmap;
struct isl_tab *tab;
uint32_t hull_hash;
int removed;
int simplify;
int *eq;
int *ineq;
};
/* Compute the hash of the (apparent) affine hull of info->bmap (with
* the existentially quantified variables removed) and store it
* in info->hash.
*/
static int coalesce_info_set_hull_hash(struct isl_coalesce_info *info)
{
isl_basic_map *hull;
unsigned n_div;
hull = isl_basic_map_copy(info->bmap);
hull = isl_basic_map_plain_affine_hull(hull);
n_div = isl_basic_map_dim(hull, isl_dim_div);
hull = isl_basic_map_drop_constraints_involving_dims(hull,
isl_dim_div, 0, n_div);
info->hull_hash = isl_basic_map_get_hash(hull);
isl_basic_map_free(hull);
return hull ? 0 : -1;
}
/* Free all the allocated memory in an array
* of "n" isl_coalesce_info elements.
*/
static void clear_coalesce_info(int n, struct isl_coalesce_info *info)
{
int i;
if (!info)
return;
for (i = 0; i < n; ++i) {
isl_basic_map_free(info[i].bmap);
isl_tab_free(info[i].tab);
}
free(info);
}
/* Drop the basic map represented by "info".
* That is, clear the memory associated to the entry and
* mark it as having been removed.
*/
static void drop(struct isl_coalesce_info *info)
{
info->bmap = isl_basic_map_free(info->bmap);
isl_tab_free(info->tab);
info->tab = NULL;
info->removed = 1;
}
/* Exchange the information in "info1" with that in "info2".
*/
static void exchange(struct isl_coalesce_info *info1,
struct isl_coalesce_info *info2)
{
struct isl_coalesce_info info;
info = *info1;
*info1 = *info2;
*info2 = info;
}
/* This type represents the kind of change that has been performed
* while trying to coalesce two basic maps.
*
* isl_change_none: nothing was changed
* isl_change_drop_first: the first basic map was removed
* isl_change_drop_second: the second basic map was removed
* isl_change_fuse: the two basic maps were replaced by a new basic map.
*/
enum isl_change {
isl_change_error = -1,
isl_change_none = 0,
isl_change_drop_first,
isl_change_drop_second,
isl_change_fuse,
};
/* Update "change" based on an interchange of the first and the second
* basic map. That is, interchange isl_change_drop_first and
* isl_change_drop_second.
*/
static enum isl_change invert_change(enum isl_change change)
{
switch (change) {
case isl_change_error:
return isl_change_error;
case isl_change_none:
return isl_change_none;
case isl_change_drop_first:
return isl_change_drop_second;
case isl_change_drop_second:
return isl_change_drop_first;
case isl_change_fuse:
return isl_change_fuse;
}
return isl_change_error;
}
/* Add the valid constraints of the basic map represented by "info"
* to "bmap". "len" is the size of the constraints.
* If only one of the pair of inequalities that make up an equality
* is valid, then add that inequality.
*/
static __isl_give isl_basic_map *add_valid_constraints(
__isl_take isl_basic_map *bmap, struct isl_coalesce_info *info,
unsigned len)
{
int k, l;
if (!bmap)
return NULL;
for (k = 0; k < info->bmap->n_eq; ++k) {
if (info->eq[2 * k] == STATUS_VALID &&
info->eq[2 * k + 1] == STATUS_VALID) {
l = isl_basic_map_alloc_equality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_cpy(bmap->eq[l], info->bmap->eq[k], len);
} else if (info->eq[2 * k] == STATUS_VALID) {
l = isl_basic_map_alloc_inequality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_neg(bmap->ineq[l], info->bmap->eq[k], len);
} else if (info->eq[2 * k + 1] == STATUS_VALID) {
l = isl_basic_map_alloc_inequality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_cpy(bmap->ineq[l], info->bmap->eq[k], len);
}
}
for (k = 0; k < info->bmap->n_ineq; ++k) {
if (info->ineq[k] != STATUS_VALID)
continue;
l = isl_basic_map_alloc_inequality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_cpy(bmap->ineq[l], info->bmap->ineq[k], len);
}
return bmap;
}
/* Is "bmap" defined by a number of (non-redundant) constraints that
* is greater than the number of constraints of basic maps i and j combined?
* Equalities are counted as two inequalities.
*/
static int number_of_constraints_increases(int i, int j,
struct isl_coalesce_info *info,
__isl_keep isl_basic_map *bmap, struct isl_tab *tab)
{
int k, n_old, n_new;
n_old = 2 * info[i].bmap->n_eq + info[i].bmap->n_ineq;
n_old += 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
n_new = 2 * bmap->n_eq;
for (k = 0; k < bmap->n_ineq; ++k)
if (!isl_tab_is_redundant(tab, bmap->n_eq + k))
++n_new;
return n_new > n_old;
}
/* Replace the pair of basic maps i and j by the basic map bounded
* by the valid constraints in both basic maps and the constraints
* in extra (if not NULL).
* Place the fused basic map in the position that is the smallest of i and j.
*
* If "detect_equalities" is set, then look for equalities encoded
* as pairs of inequalities.
* If "check_number" is set, then the original basic maps are only
* replaced if the total number of constraints does not increase.
* While the number of integer divisions in the two basic maps
* is assumed to be the same, the actual definitions may be different.
* We only copy the definition from one of the basic map if it is
* the same as that of the other basic map. Otherwise, we mark
* the integer division as unknown and schedule for the basic map
* to be simplified in an attempt to recover the integer division definition.
*/
static enum isl_change fuse(int i, int j, struct isl_coalesce_info *info,
__isl_keep isl_mat *extra, int detect_equalities, int check_number)
{
int k, l;
struct isl_basic_map *fused = NULL;
struct isl_tab *fused_tab = NULL;
unsigned total = isl_basic_map_total_dim(info[i].bmap);
unsigned extra_rows = extra ? extra->n_row : 0;
unsigned n_eq, n_ineq;
if (j < i)
return fuse(j, i, info, extra, detect_equalities, check_number);
n_eq = info[i].bmap->n_eq + info[j].bmap->n_eq;
n_ineq = info[i].bmap->n_ineq + info[j].bmap->n_ineq;
fused = isl_basic_map_alloc_space(isl_space_copy(info[i].bmap->dim),
info[i].bmap->n_div, n_eq, n_eq + n_ineq + extra_rows);
fused = add_valid_constraints(fused, &info[i], 1 + total);
fused = add_valid_constraints(fused, &info[j], 1 + total);
if (!fused)
goto error;
for (k = 0; k < info[i].bmap->n_div; ++k) {
int l = isl_basic_map_alloc_div(fused);
if (l < 0)
goto error;
if (isl_seq_eq(info[i].bmap->div[k], info[j].bmap->div[k],
1 + 1 + total)) {
isl_seq_cpy(fused->div[l], info[i].bmap->div[k],
1 + 1 + total);
} else {
isl_int_set_si(fused->div[l][0], 0);
info[i].simplify = 1;
}
}
for (k = 0; k < extra_rows; ++k) {
l = isl_basic_map_alloc_inequality(fused);
if (l < 0)
goto error;
isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
}
if (detect_equalities)
fused = isl_basic_map_detect_inequality_pairs(fused, NULL);
fused = isl_basic_map_gauss(fused, NULL);
ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) &&
ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
fused_tab = isl_tab_from_basic_map(fused, 0);
if (isl_tab_detect_redundant(fused_tab) < 0)
goto error;
if (check_number &&
number_of_constraints_increases(i, j, info, fused, fused_tab)) {
isl_tab_free(fused_tab);
isl_basic_map_free(fused);
return isl_change_none;
}
info[i].simplify |= info[j].simplify;
isl_basic_map_free(info[i].bmap);
info[i].bmap = fused;
isl_tab_free(info[i].tab);
info[i].tab = fused_tab;
drop(&info[j]);
return isl_change_fuse;
error:
isl_tab_free(fused_tab);
isl_basic_map_free(fused);
return isl_change_error;
}
/* Given a pair of basic maps i and j such that all constraints are either
* "valid" or "cut", check if the facets corresponding to the "cut"
* constraints of i lie entirely within basic map j.
* If so, replace the pair by the basic map consisting of the valid
* constraints in both basic maps.
* Checking whether the facet lies entirely within basic map j
* is performed by checking whether the constraints of basic map j
* are valid for the facet. These tests are performed on a rational
* tableau to avoid the theoretical possibility that a constraint
* that was considered to be a cut constraint for the entire basic map i
* happens to be considered to be a valid constraint for the facet,
* even though it cuts off the same rational points.
*
* To see that we are not introducing any extra points, call the
* two basic maps A and B and the resulting map U and let x
* be an element of U \setminus ( A \cup B ).
* A line connecting x with an element of A \cup B meets a facet F
* of either A or B. Assume it is a facet of B and let c_1 be
* the corresponding facet constraint. We have c_1(x) < 0 and
* so c_1 is a cut constraint. This implies that there is some
* (possibly rational) point x' satisfying the constraints of A
* and the opposite of c_1 as otherwise c_1 would have been marked
* valid for A. The line connecting x and x' meets a facet of A
* in a (possibly rational) point that also violates c_1, but this
* is impossible since all cut constraints of B are valid for all
* cut facets of A.
* In case F is a facet of A rather than B, then we can apply the
* above reasoning to find a facet of B separating x from A \cup B first.
*/
static enum isl_change check_facets(int i, int j,
struct isl_coalesce_info *info)
{
int k, l;
struct isl_tab_undo *snap, *snap2;
unsigned n_eq = info[i].bmap->n_eq;
snap = isl_tab_snap(info[i].tab);
if (isl_tab_mark_rational(info[i].tab) < 0)
return isl_change_error;
snap2 = isl_tab_snap(info[i].tab);
for (k = 0; k < info[i].bmap->n_ineq; ++k) {
if (info[i].ineq[k] != STATUS_CUT)
continue;
if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0)
return isl_change_error;
for (l = 0; l < info[j].bmap->n_ineq; ++l) {
int stat;
if (info[j].ineq[l] != STATUS_CUT)
continue;
stat = status_in(info[j].bmap->ineq[l], info[i].tab);
if (stat < 0)
return isl_change_error;
if (stat != STATUS_VALID)
break;
}
if (isl_tab_rollback(info[i].tab, snap2) < 0)
return isl_change_error;
if (l < info[j].bmap->n_ineq)
break;
}
if (k < info[i].bmap->n_ineq) {
if (isl_tab_rollback(info[i].tab, snap) < 0)
return isl_change_error;
return isl_change_none;
}
return fuse(i, j, info, NULL, 0, 0);
}
/* Check if info->bmap contains the basic map represented
* by the tableau "tab".
* For each equality, we check both the constraint itself
* (as an inequality) and its negation. Make sure the
* equality is returned to its original state before returning.
*/
static int contains(struct isl_coalesce_info *info, struct isl_tab *tab)
{
int k;
unsigned dim;
isl_basic_map *bmap = info->bmap;
dim = isl_basic_map_total_dim(bmap);
for (k = 0; k < bmap->n_eq; ++k) {
int stat;
isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
stat = status_in(bmap->eq[k], tab);
isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
if (stat < 0)
return -1;
if (stat != STATUS_VALID)
return 0;
stat = status_in(bmap->eq[k], tab);
if (stat < 0)
return -1;
if (stat != STATUS_VALID)
return 0;
}
for (k = 0; k < bmap->n_ineq; ++k) {
int stat;
if (info->ineq[k] == STATUS_REDUNDANT)
continue;
stat = status_in(bmap->ineq[k], tab);
if (stat < 0)
return -1;
if (stat != STATUS_VALID)
return 0;
}
return 1;
}
/* Basic map "i" has an inequality (say "k") that is adjacent
* to some inequality of basic map "j". All the other inequalities
* are valid for "j".
* Check if basic map "j" forms an extension of basic map "i".
*
* Note that this function is only called if some of the equalities or
* inequalities of basic map "j" do cut basic map "i". The function is
* correct even if there are no such cut constraints, but in that case
* the additional checks performed by this function are overkill.
*
* In particular, we replace constraint k, say f >= 0, by constraint
* f <= -1, add the inequalities of "j" that are valid for "i"
* and check if the result is a subset of basic map "j".
* If so, then we know that this result is exactly equal to basic map "j"
* since all its constraints are valid for basic map "j".
* By combining the valid constraints of "i" (all equalities and all
* inequalities except "k") and the valid constraints of "j" we therefore
* obtain a basic map that is equal to their union.
* In this case, there is no need to perform a rollback of the tableau
* since it is going to be destroyed in fuse().
*
*
* |\__ |\__
* | \__ | \__
* | \_ => | \__
* |_______| _ |_________\
*
*
* |\ |\
* | \ | \
* | \ | \
* | | | \
* | ||\ => | \
* | || \ | \
* | || | | |
* |__||_/ |_____/
*/
static enum isl_change is_adj_ineq_extension(int i, int j,
struct isl_coalesce_info *info)
{
int k;
struct isl_tab_undo *snap;
unsigned n_eq = info[i].bmap->n_eq;
unsigned total = isl_basic_map_total_dim(info[i].bmap);
int r;
int super;
if (isl_tab_extend_cons(info[i].tab, 1 + info[j].bmap->n_ineq) < 0)
return isl_change_error;
for (k = 0; k < info[i].bmap->n_ineq; ++k)
if (info[i].ineq[k] == STATUS_ADJ_INEQ)
break;
if (k >= info[i].bmap->n_ineq)
isl_die(isl_basic_map_get_ctx(info[i].bmap), isl_error_internal,
"info[i].ineq should have exactly one STATUS_ADJ_INEQ",
return isl_change_error);
snap = isl_tab_snap(info[i].tab);
if (isl_tab_unrestrict(info[i].tab, n_eq + k) < 0)
return isl_change_error;
isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
r = isl_tab_add_ineq(info[i].tab, info[i].bmap->ineq[k]);
isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
if (r < 0)
return isl_change_error;
for (k = 0; k < info[j].bmap->n_ineq; ++k) {
if (info[j].ineq[k] != STATUS_VALID)
continue;
if (isl_tab_add_ineq(info[i].tab, info[j].bmap->ineq[k]) < 0)
return isl_change_error;
}
super = contains(&info[j], info[i].tab);
if (super < 0)
return isl_change_error;
if (super)
return fuse(i, j, info, NULL, 0, 0);
if (isl_tab_rollback(info[i].tab, snap) < 0)
return isl_change_error;
return isl_change_none;
}
/* Both basic maps have at least one inequality with and adjacent
* (but opposite) inequality in the other basic map.
* Check that there are no cut constraints and that there is only
* a single pair of adjacent inequalities.
* If so, we can replace the pair by a single basic map described
* by all but the pair of adjacent inequalities.
* Any additional points introduced lie strictly between the two
* adjacent hyperplanes and can therefore be integral.
*
* ____ _____
* / ||\ / \
* / || \ / \
* \ || \ => \ \
* \ || / \ /
* \___||_/ \_____/
*
* The test for a single pair of adjancent inequalities is important
* for avoiding the combination of two basic maps like the following
*
* /|
* / |
* /__|
* _____
* | |
* | |
* |___|
*
* If there are some cut constraints on one side, then we may
* still be able to fuse the two basic maps, but we need to perform
* some additional checks in is_adj_ineq_extension.
*/
static enum isl_change check_adj_ineq(int i, int j,
struct isl_coalesce_info *info)
{
int count_i, count_j;
int cut_i, cut_j;
count_i = count(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_INEQ);
count_j = count(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_INEQ);
if (count_i != 1 && count_j != 1)
return isl_change_none;
cut_i = any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT) ||
any(info[i].ineq, info[i].bmap->n_ineq, STATUS_CUT);
cut_j = any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_CUT) ||
any(info[j].ineq, info[j].bmap->n_ineq, STATUS_CUT);
if (!cut_i && !cut_j && count_i == 1 && count_j == 1)
return fuse(i, j, info, NULL, 0, 0);
if (count_i == 1 && !cut_i)
return is_adj_ineq_extension(i, j, info);
if (count_j == 1 && !cut_j)
return is_adj_ineq_extension(j, i, info);
return isl_change_none;
}
/* Basic map "i" has an inequality "k" that is adjacent to some equality
* of basic map "j". All the other inequalities are valid for "j".
* Check if basic map "j" forms an extension of basic map "i".
*
* In particular, we relax constraint "k", compute the corresponding
* facet and check whether it is included in the other basic map.
* If so, we know that relaxing the constraint extends the basic
* map with exactly the other basic map (we already know that this
* other basic map is included in the extension, because there
* were no "cut" inequalities in "i") and we can replace the
* two basic maps by this extension.
* Each integer division that does not have exactly the same
* definition in "i" and "j" is marked unknown and the basic map
* is scheduled to be simplified in an attempt to recover
* the integer division definition.
* Place this extension in the position that is the smallest of i and j.
* ____ _____
* / || / |
* / || / |
* \ || => \ |
* \ || \ |
* \___|| \____|
*/
static enum isl_change is_adj_eq_extension(int i, int j, int k,
struct isl_coalesce_info *info)
{
int change = isl_change_none;
int super;
struct isl_tab_undo *snap, *snap2;
unsigned n_eq = info[i].bmap->n_eq;
if (isl_tab_is_equality(info[i].tab, n_eq + k))
return isl_change_none;
snap = isl_tab_snap(info[i].tab);
if (isl_tab_relax(info[i].tab, n_eq + k) < 0)
return isl_change_error;
snap2 = isl_tab_snap(info[i].tab);
if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0)
return isl_change_error;
super = contains(&info[j], info[i].tab);
if (super < 0)
return isl_change_error;
if (super) {
int l;
unsigned total;
if (isl_tab_rollback(info[i].tab, snap2) < 0)
return isl_change_error;
info[i].bmap = isl_basic_map_cow(info[i].bmap);
if (!info[i].bmap)
return isl_change_error;
total = isl_basic_map_total_dim(info[i].bmap);
for (l = 0; l < info[i].bmap->n_div; ++l)
if (!isl_seq_eq(info[i].bmap->div[l],
info[j].bmap->div[l], 1 + 1 + total)) {
isl_int_set_si(info[i].bmap->div[l][0], 0);
info[i].simplify = 1;
}
isl_int_add_ui(info[i].bmap->ineq[k][0],
info[i].bmap->ineq[k][0], 1);
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_FINAL);
drop(&info[j]);
if (j < i)
exchange(&info[i], &info[j]);
change = isl_change_fuse;
} else
if (isl_tab_rollback(info[i].tab, snap) < 0)
return isl_change_error;
return change;
}
/* Data structure that keeps track of the wrapping constraints
* and of information to bound the coefficients of those constraints.
*
* bound is set if we want to apply a bound on the coefficients
* mat contains the wrapping constraints
* max is the bound on the coefficients (if bound is set)
*/
struct isl_wraps {
int bound;
isl_mat *mat;
isl_int max;
};
/* Update wraps->max to be greater than or equal to the coefficients
* in the equalities and inequalities of info->bmap that can be removed
* if we end up applying wrapping.
*/
static void wraps_update_max(struct isl_wraps *wraps,
struct isl_coalesce_info *info)
{
int k;
isl_int max_k;
unsigned total = isl_basic_map_total_dim(info->bmap);
isl_int_init(max_k);
for (k = 0; k < info->bmap->n_eq; ++k) {
if (info->eq[2 * k] == STATUS_VALID &&
info->eq[2 * k + 1] == STATUS_VALID)
continue;
isl_seq_abs_max(info->bmap->eq[k] + 1, total, &max_k);
if (isl_int_abs_gt(max_k, wraps->max))
isl_int_set(wraps->max, max_k);
}
for (k = 0; k < info->bmap->n_ineq; ++k) {
if (info->ineq[k] == STATUS_VALID ||
info->ineq[k] == STATUS_REDUNDANT)
continue;
isl_seq_abs_max(info->bmap->ineq[k] + 1, total, &max_k);
if (isl_int_abs_gt(max_k, wraps->max))
isl_int_set(wraps->max, max_k);
}
isl_int_clear(max_k);
}
/* Initialize the isl_wraps data structure.
* If we want to bound the coefficients of the wrapping constraints,
* we set wraps->max to the largest coefficient
* in the equalities and inequalities that can be removed if we end up
* applying wrapping.
*/
static void wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat,
struct isl_coalesce_info *info, int i, int j)
{
isl_ctx *ctx;
wraps->bound = 0;
wraps->mat = mat;
if (!mat)
return;
ctx = isl_mat_get_ctx(mat);
wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx);
if (!wraps->bound)
return;
isl_int_init(wraps->max);
isl_int_set_si(wraps->max, 0);
wraps_update_max(wraps, &info[i]);
wraps_update_max(wraps, &info[j]);
}
/* Free the contents of the isl_wraps data structure.
*/
static void wraps_free(struct isl_wraps *wraps)
{
isl_mat_free(wraps->mat);
if (wraps->bound)
isl_int_clear(wraps->max);
}
/* Is the wrapping constraint in row "row" allowed?
*
* If wraps->bound is set, we check that none of the coefficients
* is greater than wraps->max.
*/
static int allow_wrap(struct isl_wraps *wraps, int row)
{
int i;
if (!wraps->bound)
return 1;
for (i = 1; i < wraps->mat->n_col; ++i)
if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max))
return 0;
return 1;
}
/* Wrap "ineq" (or its opposite if "negate" is set) around "bound"
* to include "set" and add the result in position "w" of "wraps".
* "len" is the total number of coefficients in "bound" and "ineq".
* Return 1 on success, 0 on failure and -1 on error.
* Wrapping can fail if the result of wrapping is equal to "bound"
* or if we want to bound the sizes of the coefficients and
* the wrapped constraint does not satisfy this bound.
*/
static int add_wrap(struct isl_wraps *wraps, int w, isl_int *bound,
isl_int *ineq, unsigned len, __isl_keep isl_set *set, int negate)
{
isl_seq_cpy(wraps->mat->row[w], bound, len);
if (negate) {
isl_seq_neg(wraps->mat->row[w + 1], ineq, len);
ineq = wraps->mat->row[w + 1];
}
if (!isl_set_wrap_facet(set, wraps->mat->row[w], ineq))
return -1;
if (isl_seq_eq(wraps->mat->row[w], bound, len))
return 0;
if (!allow_wrap(wraps, w))
return 0;
return 1;
}
/* For each constraint in info->bmap that is not redundant (as determined
* by info->tab) and that is not a valid constraint for the other basic map,
* wrap the constraint around "bound" such that it includes the whole
* set "set" and append the resulting constraint to "wraps".
* Note that the constraints that are valid for the other basic map
* will be added to the combined basic map by default, so there is
* no need to wrap them.
* The caller wrap_in_facets even relies on this function not wrapping
* any constraints that are already valid.
* "wraps" is assumed to have been pre-allocated to the appropriate size.
* wraps->n_row is the number of actual wrapped constraints that have
* been added.
* If any of the wrapping problems results in a constraint that is
* identical to "bound", then this means that "set" is unbounded in such
* way that no wrapping is possible. If this happens then wraps->n_row
* is reset to zero.
* Similarly, if we want to bound the coefficients of the wrapping
* constraints and a newly added wrapping constraint does not
* satisfy the bound, then wraps->n_row is also reset to zero.
*/
static int add_wraps(struct isl_wraps *wraps, struct isl_coalesce_info *info,
isl_int *bound, __isl_keep isl_set *set)
{
int l, m;
int w;
int added;
isl_basic_map *bmap = info->bmap;
unsigned len = 1 + isl_basic_map_total_dim(bmap);
w = wraps->mat->n_row;
for (l = 0; l < bmap->n_ineq; ++l) {
if (info->ineq[l] == STATUS_VALID ||
info->ineq[l] == STATUS_REDUNDANT)
continue;
if (isl_seq_is_neg(bound, bmap->ineq[l], len))
continue;
if (isl_seq_eq(bound, bmap->ineq[l], len))
continue;
if (isl_tab_is_redundant(info->tab, bmap->n_eq + l))
continue;
added = add_wrap(wraps, w, bound, bmap->ineq[l], len, set, 0);
if (added < 0)
return -1;
if (!added)
goto unbounded;
++w;
}
for (l = 0; l < bmap->n_eq; ++l) {
if (isl_seq_is_neg(bound, bmap->eq[l], len))
continue;
if (isl_seq_eq(bound, bmap->eq[l], len))
continue;
for (m = 0; m < 2; ++m) {
if (info->eq[2 * l + m] == STATUS_VALID)
continue;
added = add_wrap(wraps, w, bound, bmap->eq[l], len,
set, !m);
if (added < 0)
return -1;
if (!added)
goto unbounded;
++w;
}
}
wraps->mat->n_row = w;
return 0;
unbounded:
wraps->mat->n_row = 0;
return 0;
}
/* Check if the constraints in "wraps" from "first" until the last
* are all valid for the basic set represented by "tab".
* If not, wraps->n_row is set to zero.
*/
static int check_wraps(__isl_keep isl_mat *wraps, int first,
struct isl_tab *tab)
{
int i;
for (i = first; i < wraps->n_row; ++i) {
enum isl_ineq_type type;
type = isl_tab_ineq_type(tab, wraps->row[i]);
if (type == isl_ineq_error)
return -1;
if (type == isl_ineq_redundant)
continue;
wraps->n_row = 0;
return 0;
}
return 0;
}
/* Return a set that corresponds to the non-redundant constraints
* (as recorded in tab) of bmap.
*
* It's important to remove the redundant constraints as some
* of the other constraints may have been modified after the
* constraints were marked redundant.
* In particular, a constraint may have been relaxed.
* Redundant constraints are ignored when a constraint is relaxed
* and should therefore continue to be ignored ever after.
* Otherwise, the relaxation might be thwarted by some of
* these constraints.
*
* Update the underlying set to ensure that the dimension doesn't change.
* Otherwise the integer divisions could get dropped if the tab
* turns out to be empty.
*/
static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
struct isl_tab *tab)
{
isl_basic_set *bset;
bmap = isl_basic_map_copy(bmap);
bset = isl_basic_map_underlying_set(bmap);
bset = isl_basic_set_cow(bset);
bset = isl_basic_set_update_from_tab(bset, tab);
return isl_set_from_basic_set(bset);
}
/* Wrap the constraints of info->bmap that bound the facet defined
* by inequality "k" around (the opposite of) this inequality to
* include "set". "bound" may be used to store the negated inequality.
* Since the wrapped constraints are not guaranteed to contain the whole
* of info->bmap, we check them in check_wraps.
* If any of the wrapped constraints turn out to be invalid, then
* check_wraps will reset wrap->n_row to zero.
*/
static int add_wraps_around_facet(struct isl_wraps *wraps,
struct isl_coalesce_info *info, int k, isl_int *bound,
__isl_keep isl_set *set)
{
struct isl_tab_undo *snap;
int n;
unsigned total = isl_basic_map_total_dim(info->bmap);
snap = isl_tab_snap(info->tab);
if (isl_tab_select_facet(info->tab, info->bmap->n_eq + k) < 0)
return -1;
if (isl_tab_detect_redundant(info->tab) < 0)
return -1;
isl_seq_neg(bound, info->bmap->ineq[k], 1 + total);
n = wraps->mat->n_row;
if (add_wraps(wraps, info, bound, set) < 0)
return -1;
if (isl_tab_rollback(info->tab, snap) < 0)
return -1;
if (check_wraps(wraps->mat, n, info->tab) < 0)
return -1;
return 0;
}
/* Given a basic set i with a constraint k that is adjacent to
* basic set j, check if we can wrap
* both the facet corresponding to k (if "wrap_facet" is set) and basic map j
* (always) around their ridges to include the other set.
* If so, replace the pair of basic sets by their union.
*
* All constraints of i (except k) are assumed to be valid or
* cut constraints for j.
* Wrapping the cut constraints to include basic map j may result
* in constraints that are no longer valid of basic map i
* we have to check that the resulting wrapping constraints are valid for i.
* If "wrap_facet" is not set, then all constraints of i (except k)
* are assumed to be valid for j.
* ____ _____
* / | / \
* / || / |
* \ || => \ |
* \ || \ |
* \___|| \____|
*
*/
static enum isl_change can_wrap_in_facet(int i, int j, int k,
struct isl_coalesce_info *info, int wrap_facet)
{
enum isl_change change = isl_change_none;
struct isl_wraps wraps;
isl_ctx *ctx;
isl_mat *mat;
struct isl_set *set_i = NULL;
struct isl_set *set_j = NULL;
struct isl_vec *bound = NULL;
unsigned total = isl_basic_map_total_dim(info[i].bmap);
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
ctx = isl_basic_map_get_ctx(info[i].bmap);
mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
info[i].bmap->n_ineq + info[j].bmap->n_ineq,
1 + total);
wraps_init(&wraps, mat, info, i, j);
bound = isl_vec_alloc(ctx, 1 + total);
if (!set_i || !set_j || !wraps.mat || !bound)
goto error;
isl_seq_cpy(bound->el, info[i].bmap->ineq[k], 1 + total);
isl_int_add_ui(bound->el[0], bound->el[0], 1);
isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
wraps.mat->n_row = 1;
if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
goto error;
if (!wraps.mat->n_row)
goto unbounded;
if (wrap_facet) {
if (add_wraps_around_facet(&wraps, &info[i], k,
bound->el, set_j) < 0)
goto error;
if (!wraps.mat->n_row)
goto unbounded;
}
change = fuse(i, j, info, wraps.mat, 0, 0);
unbounded:
wraps_free(&wraps);
isl_set_free(set_i);
isl_set_free(set_j);
isl_vec_free(bound);
return change;
error:
wraps_free(&wraps);
isl_vec_free(bound);
isl_set_free(set_i);
isl_set_free(set_j);
return isl_change_error;
}
/* Given a pair of basic maps i and j such that j sticks out
* of i at n cut constraints, each time by at most one,
* try to compute wrapping constraints and replace the two
* basic maps by a single basic map.
* The other constraints of i are assumed to be valid for j.
*
* For each cut constraint t(x) >= 0 of i, we add the relaxed version
* t(x) + 1 >= 0, along with wrapping constraints for all constraints
* of basic map j that bound the part of basic map j that sticks out
* of the cut constraint.
* In particular, we first intersect basic map j with t(x) + 1 = 0.
* If the result is empty, then t(x) >= 0 was actually a valid constraint
* (with respect to the integer points), so we add t(x) >= 0 instead.
* Otherwise, we wrap the constraints of basic map j that are not
* redundant in this intersection and that are not already valid
* for basic map i over basic map i.
* Note that it is sufficient to wrap the constraints to include
* basic map i, because we will only wrap the constraints that do
* not include basic map i already. The wrapped constraint will
* therefore be more relaxed compared to the original constraint.
* Since the original constraint is valid for basic map j, so is
* the wrapped constraint.
*
* If any wrapping fails, i.e., if we cannot wrap to touch
* the union, then we give up.
* Otherwise, the pair of basic maps is replaced by their union.
*/
static enum isl_change wrap_in_facets(int i, int j, int *cuts, int n,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
struct isl_wraps wraps;
isl_ctx *ctx;
isl_mat *mat;
isl_set *set_i = NULL;
unsigned total = isl_basic_map_total_dim(info[i].bmap);
int max_wrap;
int k, w;
struct isl_tab_undo *snap;
if (isl_tab_extend_cons(info[j].tab, 1) < 0)
goto error;
max_wrap = 1 + 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
max_wrap *= n;
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
ctx = isl_basic_map_get_ctx(info[i].bmap);
mat = isl_mat_alloc(ctx, max_wrap, 1 + total);
wraps_init(&wraps, mat, info, i, j);
if (!set_i || !wraps.mat)
goto error;
snap = isl_tab_snap(info[j].tab);
wraps.mat->n_row = 0;
for (k = 0; k < n; ++k) {
w = wraps.mat->n_row++;
isl_seq_cpy(wraps.mat->row[w],
info[i].bmap->ineq[cuts[k]], 1 + total);
isl_int_add_ui(wraps.mat->row[w][0], wraps.mat->row[w][0], 1);
if (isl_tab_add_eq(info[j].tab, wraps.mat->row[w]) < 0)
goto error;
if (isl_tab_detect_redundant(info[j].tab) < 0)
goto error;
if (info[j].tab->empty)
isl_int_sub_ui(wraps.mat->row[w][0],
wraps.mat->row[w][0], 1);
else if (add_wraps(&wraps, &info[j],
wraps.mat->row[w], set_i) < 0)
goto error;
if (isl_tab_rollback(info[j].tab, snap) < 0)
goto error;
if (!wraps.mat->n_row)
break;
}
if (k == n)
change = fuse(i, j, info, wraps.mat, 0, 1);
wraps_free(&wraps);
isl_set_free(set_i);
return change;
error:
wraps_free(&wraps);
isl_set_free(set_i);
return isl_change_error;
}
/* Given two basic sets i and j such that i has no cut equalities,
* check if relaxing all the cut inequalities of i by one turns
* them into valid constraint for j and check if we can wrap in
* the bits that are sticking out.
* If so, replace the pair by their union.
*
* We first check if all relaxed cut inequalities of i are valid for j
* and then try to wrap in the intersections of the relaxed cut inequalities
* with j.
*
* During this wrapping, we consider the points of j that lie at a distance
* of exactly 1 from i. In particular, we ignore the points that lie in
* between this lower-dimensional space and the basic map i.
* We can therefore only apply this to integer maps.
* ____ _____
* / ___|_ / \
* / | | / |
* \ | | => \ |
* \|____| \ |
* \___| \____/
*
* _____ ______
* | ____|_ | \
* | | | | |
* | | | => | |
* |_| | | |
* |_____| \______|
*
* _______
* | |
* | |\ |
* | | \ |
* | | \ |
* | | \|
* | | \
* | |_____\
* | |
* |_______|
*
* Wrapping can fail if the result of wrapping one of the facets
* around its edges does not produce any new facet constraint.
* In particular, this happens when we try to wrap in unbounded sets.
*
* _______________________________________________________________________
* |
* | ___
* | | |
* |_| |_________________________________________________________________
* |___|
*
* The following is not an acceptable result of coalescing the above two
* sets as it includes extra integer points.
* _______________________________________________________________________
* |
* |
* |
* |
* \______________________________________________________________________
*/
static enum isl_change can_wrap_in_set(int i, int j,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
int k, m;
int n;
int *cuts = NULL;
isl_ctx *ctx;
if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) ||
ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
return isl_change_none;
n = count(info[i].ineq, info[i].bmap->n_ineq, STATUS_CUT);
if (n == 0)
return isl_change_none;
ctx = isl_basic_map_get_ctx(info[i].bmap);
cuts = isl_alloc_array(ctx, int, n);
if (!cuts)
return isl_change_error;
for (k = 0, m = 0; m < n; ++k) {
enum isl_ineq_type type;
if (info[i].ineq[k] != STATUS_CUT)
continue;
isl_int_add_ui(info[i].bmap->ineq[k][0],
info[i].bmap->ineq[k][0], 1);
type = isl_tab_ineq_type(info[j].tab, info[i].bmap->ineq[k]);
isl_int_sub_ui(info[i].bmap->ineq[k][0],
info[i].bmap->ineq[k][0], 1);
if (type == isl_ineq_error)
goto error;
if (type != isl_ineq_redundant)
break;
cuts[m] = k;
++m;
}
if (m == n)
change = wrap_in_facets(i, j, cuts, n, info);
free(cuts);
return change;
error:
free(cuts);
return isl_change_error;
}
/* Check if either i or j has only cut inequalities that can
* be used to wrap in (a facet of) the other basic set.
* if so, replace the pair by their union.
*/
static enum isl_change check_wrap(int i, int j, struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
if (!any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT))
change = can_wrap_in_set(i, j, info);
if (change != isl_change_none)
return change;
if (!any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_CUT))
change = can_wrap_in_set(j, i, info);
return change;
}
/* At least one of the basic maps has an equality that is adjacent
* to inequality. Make sure that only one of the basic maps has
* such an equality and that the other basic map has exactly one
* inequality adjacent to an equality.
* We call the basic map that has the inequality "i" and the basic
* map that has the equality "j".
* If "i" has any "cut" (in)equality, then relaxing the inequality
* by one would not result in a basic map that contains the other
* basic map. However, it may still be possible to wrap in the other
* basic map.
*/
static enum isl_change check_adj_eq(int i, int j,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
int k;
int any_cut;
if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_INEQ) &&
any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_INEQ))
/* ADJ EQ TOO MANY */
return isl_change_none;
if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_INEQ))
return check_adj_eq(j, i, info);
/* j has an equality adjacent to an inequality in i */
if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT))
return isl_change_none;
any_cut = any(info[i].ineq, info[i].bmap->n_ineq, STATUS_CUT);
if (count(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_EQ) != 1 ||
any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_EQ) ||
any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_INEQ) ||
any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_INEQ))
/* ADJ EQ TOO MANY */
return isl_change_none;
for (k = 0; k < info[i].bmap->n_ineq; ++k)
if (info[i].ineq[k] == STATUS_ADJ_EQ)
break;
if (!any_cut) {
change = is_adj_eq_extension(i, j, k, info);
if (change != isl_change_none)
return change;
}
change = can_wrap_in_facet(i, j, k, info, any_cut);
return change;
}
/* The two basic maps lie on adjacent hyperplanes. In particular,
* basic map "i" has an equality that lies parallel to basic map "j".
* Check if we can wrap the facets around the parallel hyperplanes
* to include the other set.
*
* We perform basically the same operations as can_wrap_in_facet,
* except that we don't need to select a facet of one of the sets.
* _
* \\ \\
* \\ => \\
* \ \|
*
* If there is more than one equality of "i" adjacent to an equality of "j",
* then the result will satisfy one or more equalities that are a linear
* combination of these equalities. These will be encoded as pairs
* of inequalities in the wrapping constraints and need to be made
* explicit.
*/
static enum isl_change check_eq_adj_eq(int i, int j,
struct isl_coalesce_info *info)
{
int k;
enum isl_change change = isl_change_none;
int detect_equalities = 0;
struct isl_wraps wraps;
isl_ctx *ctx;
isl_mat *mat;
struct isl_set *set_i = NULL;
struct isl_set *set_j = NULL;
struct isl_vec *bound = NULL;
unsigned total = isl_basic_map_total_dim(info[i].bmap);
if (count(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_EQ) != 1)
detect_equalities = 1;
for (k = 0; k < 2 * info[i].bmap->n_eq ; ++k)
if (info[i].eq[k] == STATUS_ADJ_EQ)
break;
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
ctx = isl_basic_map_get_ctx(info[i].bmap);
mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
info[i].bmap->n_ineq + info[j].bmap->n_ineq,
1 + total);
wraps_init(&wraps, mat, info, i, j);
bound = isl_vec_alloc(ctx, 1 + total);
if (!set_i || !set_j || !wraps.mat || !bound)
goto error;
if (k % 2 == 0)
isl_seq_neg(bound->el, info[i].bmap->eq[k / 2], 1 + total);
else
isl_seq_cpy(bound->el, info[i].bmap->eq[k / 2], 1 + total);
isl_int_add_ui(bound->el[0], bound->el[0], 1);
isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
wraps.mat->n_row = 1;
if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
goto error;
if (!wraps.mat->n_row)
goto unbounded;
isl_int_sub_ui(bound->el[0], bound->el[0], 1);
isl_seq_neg(bound->el, bound->el, 1 + total);
isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total);
wraps.mat->n_row++;
if (add_wraps(&wraps, &info[i], bound->el, set_j) < 0)
goto error;
if (!wraps.mat->n_row)
goto unbounded;
change = fuse(i, j, info, wraps.mat, detect_equalities, 0);
if (0) {
error: change = isl_change_error;
}
unbounded:
wraps_free(&wraps);
isl_set_free(set_i);
isl_set_free(set_j);
isl_vec_free(bound);
return change;
}
/* Check if the union of the given pair of basic maps
* can be represented by a single basic map.
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
* The two basic maps are assumed to live in the same local space.
*
* We first check the effect of each constraint of one basic map
* on the other basic map.
* The constraint may be
* redundant the constraint is redundant in its own
* basic map and should be ignore and removed
* in the end
* valid all (integer) points of the other basic map
* satisfy the constraint
* separate no (integer) point of the other basic map
* satisfies the constraint
* cut some but not all points of the other basic map
* satisfy the constraint
* adj_eq the given constraint is adjacent (on the outside)
* to an equality of the other basic map
* adj_ineq the given constraint is adjacent (on the outside)
* to an inequality of the other basic map
*
* We consider seven cases in which we can replace the pair by a single
* basic map. We ignore all "redundant" constraints.
*
* 1. all constraints of one basic map are valid
* => the other basic map is a subset and can be removed
*
* 2. all constraints of both basic maps are either "valid" or "cut"
* and the facets corresponding to the "cut" constraints
* of one of the basic maps lies entirely inside the other basic map
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps
*
* 3. there is a single pair of adjacent inequalities
* (all other constraints are "valid")
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps
*
* 4. one basic map has a single adjacent inequality, while the other
* constraints are "valid". The other basic map has some
* "cut" constraints, but replacing the adjacent inequality by
* its opposite and adding the valid constraints of the other
* basic map results in a subset of the other basic map
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps
*
* 5. there is a single adjacent pair of an inequality and an equality,
* the other constraints of the basic map containing the inequality are
* "valid". Moreover, if the inequality the basic map is relaxed
* and then turned into an equality, then resulting facet lies
* entirely inside the other basic map
* => the pair can be replaced by the basic map containing
* the inequality, with the inequality relaxed.
*
* 6. there is a single adjacent pair of an inequality and an equality,
* the other constraints of the basic map containing the inequality are
* "valid". Moreover, the facets corresponding to both
* the inequality and the equality can be wrapped around their
* ridges to include the other basic map
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps together
* with all wrapping constraints
*
* 7. one of the basic maps extends beyond the other by at most one.
* Moreover, the facets corresponding to the cut constraints and
* the pieces of the other basic map at offset one from these cut
* constraints can be wrapped around their ridges to include
* the union of the two basic maps
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps together
* with all wrapping constraints
*
* 8. the two basic maps live in adjacent hyperplanes. In principle
* such sets can always be combined through wrapping, but we impose
* that there is only one such pair, to avoid overeager coalescing.
*
* Throughout the computation, we maintain a collection of tableaus
* corresponding to the basic maps. When the basic maps are dropped
* or combined, the tableaus are modified accordingly.
*/
static enum isl_change coalesce_local_pair(int i, int j,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
info[i].eq = info[i].ineq = NULL;
info[j].eq = info[j].ineq = NULL;
info[i].eq = eq_status_in(info[i].bmap, info[j].tab);
if (info[i].bmap->n_eq && !info[i].eq)
goto error;
if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ERROR))
goto error;
if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_SEPARATE))
goto done;
info[j].eq = eq_status_in(info[j].bmap, info[i].tab);
if (info[j].bmap->n_eq && !info[j].eq)
goto error;
if (any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ERROR))
goto error;
if (any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_SEPARATE))
goto done;
info[i].ineq = ineq_status_in(info[i].bmap, info[i].tab, info[j].tab);
if (info[i].bmap->n_ineq && !info[i].ineq)
goto error;
if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ERROR))
goto error;
if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_SEPARATE))
goto done;
info[j].ineq = ineq_status_in(info[j].bmap, info[j].tab, info[i].tab);
if (info[j].bmap->n_ineq && !info[j].ineq)
goto error;
if (any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ERROR))
goto error;
if (any(info[j].ineq, info[j].bmap->n_ineq, STATUS_SEPARATE))
goto done;
if (all(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_VALID) &&
all(info[i].ineq, info[i].bmap->n_ineq, STATUS_VALID)) {
drop(&info[j]);
change = isl_change_drop_second;
} else if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
all(info[j].ineq, info[j].bmap->n_ineq, STATUS_VALID)) {
drop(&info[i]);
change = isl_change_drop_first;
} else if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_EQ)) {
change = check_eq_adj_eq(i, j, info);
} else if (any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_EQ)) {
change = check_eq_adj_eq(j, i, info);
} else if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_INEQ) ||
any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_INEQ)) {
change = check_adj_eq(i, j, info);
} else if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_EQ) ||
any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_EQ)) {
/* Can't happen */
/* BAD ADJ INEQ */
} else if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_INEQ) ||
any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_INEQ)) {
change = check_adj_ineq(i, j, info);
} else {
if (!any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT) &&
!any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_CUT))
change = check_facets(i, j, info);
if (change == isl_change_none)
change = check_wrap(i, j, info);
}
done:
free(info[i].eq);
free(info[j].eq);
free(info[i].ineq);
free(info[j].ineq);
return change;
error:
free(info[i].eq);
free(info[j].eq);
free(info[i].ineq);
free(info[j].ineq);
return isl_change_error;
}
/* Shift the integer division at position "div" of the basic map
* represented by "info" by "shift".
*
* That is, if the integer division has the form
*
* floor(f(x)/d)
*
* then replace it by
*
* floor((f(x) + shift * d)/d) - shift
*/
static int shift_div(struct isl_coalesce_info *info, int div, isl_int shift)
{
unsigned total;
info->bmap = isl_basic_map_shift_div(info->bmap, div, 0, shift);
if (!info->bmap)
return -1;
total = isl_basic_map_dim(info->bmap, isl_dim_all);
total -= isl_basic_map_dim(info->bmap, isl_dim_div);
if (isl_tab_shift_var(info->tab, total + div, shift) < 0)
return -1;
return 0;
}
/* Check if some of the divs in the basic map represented by "info1"
* are shifts of the corresponding divs in the basic map represented
* by "info2". If so, align them with those of "info2".
* Only do this if "info1" and "info2" have the same number
* of integer divisions.
*
* An integer division is considered to be a shift of another integer
* division if one is equal to the other plus a constant.
*
* In particular, for each pair of integer divisions, if both are known,
* have identical coefficients (apart from the constant term) and
* if the difference between the constant terms (taking into account
* the denominator) is an integer, then move the difference outside.
* That is, if one integer division is of the form
*
* floor((f(x) + c_1)/d)
*
* while the other is of the form
*
* floor((f(x) + c_2)/d)
*
* and n = (c_2 - c_1)/d is an integer, then replace the first
* integer division by
*
* floor((f(x) + c_1 + n * d)/d) - n = floor((f(x) + c_2)/d) - n
*/
static int harmonize_divs(struct isl_coalesce_info *info1,
struct isl_coalesce_info *info2)
{
int i;
int total;
if (!info1->bmap || !info2->bmap)
return -1;
if (info1->bmap->n_div != info2->bmap->n_div)
return 0;
if (info1->bmap->n_div == 0)
return 0;
total = isl_basic_map_total_dim(info1->bmap);
for (i = 0; i < info1->bmap->n_div; ++i) {
isl_int d;
int r = 0;
if (isl_int_is_zero(info1->bmap->div[i][0]) ||
isl_int_is_zero(info2->bmap->div[i][0]))
continue;
if (isl_int_ne(info1->bmap->div[i][0], info2->bmap->div[i][0]))
continue;
if (isl_int_eq(info1->bmap->div[i][1], info2->bmap->div[i][1]))
continue;
if (!isl_seq_eq(info1->bmap->div[i] + 2,
info2->bmap->div[i] + 2, total))
continue;
isl_int_init(d);
isl_int_sub(d, info2->bmap->div[i][1], info1->bmap->div[i][1]);
if (isl_int_is_divisible_by(d, info1->bmap->div[i][0])) {
isl_int_divexact(d, d, info1->bmap->div[i][0]);
r = shift_div(info1, i, d);
}
isl_int_clear(d);
if (r < 0)
return -1;
}
return 0;
}
/* Do the two basic maps live in the same local space, i.e.,
* do they have the same (known) divs?
* If either basic map has any unknown divs, then we can only assume
* that they do not live in the same local space.
*/
static int same_divs(__isl_keep isl_basic_map *bmap1,
__isl_keep isl_basic_map *bmap2)
{
int i;
int known;
int total;
if (!bmap1 || !bmap2)
return -1;
if (bmap1->n_div != bmap2->n_div)
return 0;
if (bmap1->n_div == 0)
return 1;
known = isl_basic_map_divs_known(bmap1);
if (known < 0 || !known)
return known;
known = isl_basic_map_divs_known(bmap2);
if (known < 0 || !known)
return known;
total = isl_basic_map_total_dim(bmap1);
for (i = 0; i < bmap1->n_div; ++i)
if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total))
return 0;
return 1;
}
/* Does "bmap" contain the basic map represented by the tableau "tab"
* after expanding the divs of "bmap" to match those of "tab"?
* The expansion is performed using the divs "div" and expansion "exp"
* computed by the caller.
* Then we check if all constraints of the expanded "bmap" are valid for "tab".
*/
static int contains_with_expanded_divs(__isl_keep isl_basic_map *bmap,
struct isl_tab *tab, __isl_keep isl_mat *div, int *exp)
{
int superset = 0;
int *eq_i = NULL;
int *ineq_i = NULL;
bmap = isl_basic_map_copy(bmap);
bmap = isl_basic_set_expand_divs(bmap, isl_mat_copy(div), exp);
if (!bmap)
goto error;
eq_i = eq_status_in(bmap, tab);
if (bmap->n_eq && !eq_i)
goto error;
if (any(eq_i, 2 * bmap->n_eq, STATUS_ERROR))
goto error;
if (any(eq_i, 2 * bmap->n_eq, STATUS_SEPARATE))
goto done;
ineq_i = ineq_status_in(bmap, NULL, tab);
if (bmap->n_ineq && !ineq_i)
goto error;
if (any(ineq_i, bmap->n_ineq, STATUS_ERROR))
goto error;
if (any(ineq_i, bmap->n_ineq, STATUS_SEPARATE))
goto done;
if (all(eq_i, 2 * bmap->n_eq, STATUS_VALID) &&
all(ineq_i, bmap->n_ineq, STATUS_VALID))
superset = 1;
done:
isl_basic_map_free(bmap);
free(eq_i);
free(ineq_i);
return superset;
error:
isl_basic_map_free(bmap);
free(eq_i);
free(ineq_i);
return -1;
}
/* Does "bmap_i" contain the basic map represented by "info_j"
* after aligning the divs of "bmap_i" to those of "info_j".
* Note that this can only succeed if the number of divs of "bmap_i"
* is smaller than (or equal to) the number of divs of "info_j".
*
* We first check if the divs of "bmap_i" are all known and form a subset
* of those of "bmap_j". If so, we pass control over to
* contains_with_expanded_divs.
*/
static int contains_after_aligning_divs(__isl_keep isl_basic_map *bmap_i,
struct isl_coalesce_info *info_j)
{
int known;
isl_mat *div_i, *div_j, *div;
int *exp1 = NULL;
int *exp2 = NULL;
isl_ctx *ctx;
int subset;
known = isl_basic_map_divs_known(bmap_i);
if (known < 0 || !known)
return known;
ctx = isl_basic_map_get_ctx(bmap_i);
div_i = isl_basic_map_get_divs(bmap_i);
div_j = isl_basic_map_get_divs(info_j->bmap);
if (!div_i || !div_j)
goto error;
exp1 = isl_alloc_array(ctx, int, div_i->n_row);
exp2 = isl_alloc_array(ctx, int, div_j->n_row);
if ((div_i->n_row && !exp1) || (div_j->n_row && !exp2))
goto error;
div = isl_merge_divs(div_i, div_j, exp1, exp2);
if (!div)
goto error;
if (div->n_row == div_j->n_row)
subset = contains_with_expanded_divs(bmap_i,
info_j->tab, div, exp1);
else
subset = 0;
isl_mat_free(div);
isl_mat_free(div_i);
isl_mat_free(div_j);
free(exp2);
free(exp1);
return subset;
error:
isl_mat_free(div_i);
isl_mat_free(div_j);
free(exp1);
free(exp2);
return -1;
}
/* Check if the basic map "j" is a subset of basic map "i",
* if "i" has fewer divs that "j".
* If so, remove basic map "j".
*
* If the two basic maps have the same number of divs, then
* they must necessarily be different. Otherwise, we would have
* called coalesce_local_pair. We therefore don't try anything
* in this case.
*/
static int coalesced_subset(int i, int j, struct isl_coalesce_info *info)
{
int superset;
if (info[i].bmap->n_div >= info[j].bmap->n_div)
return 0;
superset = contains_after_aligning_divs(info[i].bmap, &info[j]);
if (superset < 0)
return -1;
if (superset)
drop(&info[j]);
return superset;
}
/* Check if basic map "j" is a subset of basic map "i" after
* exploiting the extra equalities of "j" to simplify the divs of "i".
* If so, remove basic map "j".
*
* If "j" does not have any equalities or if they are the same
* as those of "i", then we cannot exploit them to simplify the divs.
* Similarly, if there are no divs in "i", then they cannot be simplified.
* If, on the other hand, the affine hulls of "i" and "j" do not intersect,
* then "j" cannot be a subset of "i".
*
* Otherwise, we intersect "i" with the affine hull of "j" and then
* check if "j" is a subset of the result after aligning the divs.
* If so, then "j" is definitely a subset of "i" and can be removed.
* Note that if after intersection with the affine hull of "j".
* "i" still has more divs than "j", then there is no way we can
* align the divs of "i" to those of "j".
*/
static int coalesced_subset_with_equalities(int i, int j,
struct isl_coalesce_info *info)
{
isl_basic_map *hull_i, *hull_j, *bmap_i;
int equal, empty, subset;
if (info[j].bmap->n_eq == 0)
return 0;
if (info[i].bmap->n_div == 0)
return 0;
hull_i = isl_basic_map_copy(info[i].bmap);
hull_i = isl_basic_map_plain_affine_hull(hull_i);
hull_j = isl_basic_map_copy(info[j].bmap);
hull_j = isl_basic_map_plain_affine_hull(hull_j);
hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
empty = isl_basic_map_plain_is_empty(hull_j);
isl_basic_map_free(hull_i);
if (equal < 0 || equal || empty < 0 || empty) {
isl_basic_map_free(hull_j);
return equal < 0 || empty < 0 ? -1 : 0;
}
bmap_i = isl_basic_map_copy(info[i].bmap);
bmap_i = isl_basic_map_intersect(bmap_i, hull_j);
if (!bmap_i)
return -1;
if (bmap_i->n_div > info[j].bmap->n_div) {
isl_basic_map_free(bmap_i);
return 0;
}
subset = contains_after_aligning_divs(bmap_i, &info[j]);
isl_basic_map_free(bmap_i);
if (subset < 0)
return -1;
if (subset)
drop(&info[j]);
return subset;
}
/* Check if one of the basic maps is a subset of the other and, if so,
* drop the subset.
* Note that we only perform any test if the number of divs is different
* in the two basic maps. In case the number of divs is the same,
* we have already established that the divs are different
* in the two basic maps.
* In particular, if the number of divs of basic map i is smaller than
* the number of divs of basic map j, then we check if j is a subset of i
* and vice versa.
*/
static enum isl_change check_coalesce_subset(int i, int j,
struct isl_coalesce_info *info)
{
int changed;
changed = coalesced_subset(i, j, info);
if (changed < 0 || changed)
return changed < 0 ? isl_change_error : isl_change_drop_second;
changed = coalesced_subset(j, i, info);
if (changed < 0 || changed)
return changed < 0 ? isl_change_error : isl_change_drop_first;
changed = coalesced_subset_with_equalities(i, j, info);
if (changed < 0 || changed)
return changed < 0 ? isl_change_error : isl_change_drop_second;
changed = coalesced_subset_with_equalities(j, i, info);
if (changed < 0 || changed)
return changed < 0 ? isl_change_error : isl_change_drop_first;
return isl_change_none;
}
/* Does "bmap" involve any divs that themselves refer to divs?
*/
static int has_nested_div(__isl_keep isl_basic_map *bmap)
{
int i;
unsigned total;
unsigned n_div;
total = isl_basic_map_dim(bmap, isl_dim_all);
n_div = isl_basic_map_dim(bmap, isl_dim_div);
total -= n_div;
for (i = 0; i < n_div; ++i)
if (isl_seq_first_non_zero(bmap->div[i] + 2 + total,
n_div) != -1)
return 1;
return 0;
}
/* Return a list of affine expressions, one for each integer division
* in "bmap_i". For each integer division that also appears in "bmap_j",
* the affine expression is set to NaN. The number of NaNs in the list
* is equal to the number of integer divisions in "bmap_j".
* For the other integer divisions of "bmap_i", the corresponding
* element in the list is a purely affine expression equal to the integer
* division in "hull".
* If no such list can be constructed, then the number of elements
* in the returned list is smaller than the number of integer divisions
* in "bmap_i".
*/
static __isl_give isl_aff_list *set_up_substitutions(
__isl_keep isl_basic_map *bmap_i, __isl_keep isl_basic_map *bmap_j,
__isl_take isl_basic_map *hull)
{
unsigned n_div_i, n_div_j, total;
isl_ctx *ctx;
isl_local_space *ls;
isl_basic_set *wrap_hull;
isl_aff *aff_nan;
isl_aff_list *list;
int i, j;
if (!hull)
return NULL;
ctx = isl_basic_map_get_ctx(hull);
n_div_i = isl_basic_map_dim(bmap_i, isl_dim_div);
n_div_j = isl_basic_map_dim(bmap_j, isl_dim_div);
total = isl_basic_map_total_dim(bmap_i) - n_div_i;
ls = isl_basic_map_get_local_space(bmap_i);
ls = isl_local_space_wrap(ls);
wrap_hull = isl_basic_map_wrap(hull);
aff_nan = isl_aff_nan_on_domain(isl_local_space_copy(ls));
list = isl_aff_list_alloc(ctx, n_div_i);
j = 0;
for (i = 0; i < n_div_i; ++i) {
isl_aff *aff;
if (j < n_div_j &&
isl_seq_eq(bmap_i->div[i], bmap_j->div[j], 2 + total)) {
++j;
list = isl_aff_list_add(list, isl_aff_copy(aff_nan));
continue;
}
if (n_div_i - i <= n_div_j - j)
break;
aff = isl_local_space_get_div(ls, i);
aff = isl_aff_substitute_equalities(aff,
isl_basic_set_copy(wrap_hull));
aff = isl_aff_floor(aff);
if (!aff)
goto error;
if (isl_aff_dim(aff, isl_dim_div) != 0) {
isl_aff_free(aff);
break;
}
list = isl_aff_list_add(list, aff);
}
isl_aff_free(aff_nan);
isl_local_space_free(ls);
isl_basic_set_free(wrap_hull);
return list;
error:
isl_aff_free(aff_nan);
isl_local_space_free(ls);
isl_basic_set_free(wrap_hull);
isl_aff_list_free(list);
return NULL;
}
/* Add variables to "tab" corresponding to the elements in "list"
* that are not set to NaN.
* "dim" is the offset in the variables of "tab" where we should
* start considering the elements in "list".
* When this function returns, the total number of variables in "tab"
* is equal to "dim" plus the number of elements in "list".
*/
static int add_sub_vars(struct isl_tab *tab, __isl_keep isl_aff_list *list,
int dim)
{
int i, n;
n = isl_aff_list_n_aff(list);
for (i = 0; i < n; ++i) {
int is_nan;
isl_aff *aff;
aff = isl_aff_list_get_aff(list, i);
is_nan = isl_aff_is_nan(aff);
isl_aff_free(aff);
if (is_nan < 0)
return -1;
if (!is_nan && isl_tab_insert_var(tab, dim + i) < 0)
return -1;
}
return 0;
}
/* For each element in "list" that is not set to NaN, fix the corresponding
* variable in "tab" to the purely affine expression defined by the element.
* "dim" is the offset in the variables of "tab" where we should
* start considering the elements in "list".
*/
static int add_sub_equalities(struct isl_tab *tab,
__isl_keep isl_aff_list *list, int dim)
{
int i, n;
isl_ctx *ctx;
isl_vec *sub;
isl_aff *aff;
n = isl_aff_list_n_aff(list);
ctx = isl_tab_get_ctx(tab);
sub = isl_vec_alloc(ctx, 1 + dim + n);
if (!sub)
return -1;
isl_seq_clr(sub->el + 1 + dim, n);
for (i = 0; i < n; ++i) {
aff = isl_aff_list_get_aff(list, i);
if (!aff)
goto error;
if (isl_aff_is_nan(aff)) {
isl_aff_free(aff);
continue;
}
isl_seq_cpy(sub->el, aff->v->el + 1, 1 + dim);
isl_int_neg(sub->el[1 + dim + i], aff->v->el[0]);
if (isl_tab_add_eq(tab, sub->el) < 0)
goto error;
isl_int_set_si(sub->el[1 + dim + i], 0);
isl_aff_free(aff);
}
isl_vec_free(sub);
return 0;
error:
isl_aff_free(aff);
isl_vec_free(sub);
return -1;
}
/* Add variables to info->tab corresponding to the elements in "list"
* that are not set to NaN. The value of the added variable
* is fixed to the purely affine expression defined by the element.
* "dim" is the offset in the variables of info->tab where we should
* start considering the elements in "list".
* When this function returns, the total number of variables in info->tab
* is equal to "dim" plus the number of elements in "list".
* Additionally, add the div constraints that have been added info->bmap
* after the tableau was constructed to info->tab. These constraints
* start at position "n_ineq" in info->bmap.
* The constraints need to be added to the tableau before
* the equalities assigning the purely affine expression
* because the position needs to match that in info->bmap.
* They are frozen because the corresponding added equality is a consequence
* of the two div constraints and the other equalities, meaning that
* the div constraints would otherwise get marked as redundant,
* while they are only redundant with respect to the extra equalities
* added to the tableau, which do not appear explicitly in the basic map.
*/
static int add_subs(struct isl_coalesce_info *info,
__isl_keep isl_aff_list *list, int dim, int n_ineq)
{
int i, extra_var, extra_con;
int n;
unsigned n_eq = info->bmap->n_eq;
if (!list)
return -1;
n = isl_aff_list_n_aff(list);
extra_var = n - (info->tab->n_var - dim);
extra_con = info->bmap->n_ineq - n_ineq;
if (isl_tab_extend_vars(info->tab, extra_var) < 0)
return -1;
if (isl_tab_extend_cons(info->tab, extra_con + 2 * extra_var) < 0)
return -1;
if (add_sub_vars(info->tab, list, dim) < 0)
return -1;
for (i = n_ineq; i < info->bmap->n_ineq; ++i) {
if (isl_tab_add_ineq(info->tab, info->bmap->ineq[i]) < 0)
return -1;
if (isl_tab_freeze_constraint(info->tab, n_eq + i) < 0)
return -1;
}
return add_sub_equalities(info->tab, list, dim);
}
/* Coalesce basic map "j" into basic map "i" after adding the extra integer
* divisions in "i" but not in "j" to basic map "j", with values
* specified by "list". The total number of elements in "list"
* is equal to the number of integer divisions in "i", while the number
* of NaN elements in the list is equal to the number of integer divisions
* in "j".
* Adding extra integer divisions to "j" through isl_basic_map_align_divs
* also adds the corresponding div constraints. These need to be added
* to the corresponding tableau as well in add_subs to maintain consistency.
*
* If no coalescing can be performed, then we need to revert basic map "j"
* to its original state. We do the same if basic map "i" gets dropped
* during the coalescing, even though this should not happen in practice
* since we have already checked for "j" being a subset of "i"
* before we reach this stage.
*/
static enum isl_change coalesce_with_subs(int i, int j,
struct isl_coalesce_info *info, __isl_keep isl_aff_list *list)
{
isl_basic_map *bmap_j;
struct isl_tab_undo *snap;
unsigned dim;
enum isl_change change;
int n_ineq;
bmap_j = isl_basic_map_copy(info[j].bmap);
n_ineq = info[j].bmap->n_ineq;
info[j].bmap = isl_basic_map_align_divs(info[j].bmap, info[i].bmap);
if (!info[j].bmap)
goto error;
snap = isl_tab_snap(info[j].tab);
dim = isl_basic_map_dim(bmap_j, isl_dim_all);
dim -= isl_basic_map_dim(bmap_j, isl_dim_div);
if (add_subs(&info[j], list, dim, n_ineq) < 0)
goto error;
change = coalesce_local_pair(i, j, info);
if (change != isl_change_none && change != isl_change_drop_first) {
isl_basic_map_free(bmap_j);
} else {
isl_basic_map_free(info[j].bmap);
info[j].bmap = bmap_j;
if (isl_tab_rollback(info[j].tab, snap) < 0)
return isl_change_error;
}
return change;
error:
isl_basic_map_free(bmap_j);
return isl_change_error;
}
/* Check if we can coalesce basic map "j" into basic map "i" after copying
* those extra integer divisions in "i" that can be simplified away
* using the extra equalities in "j".
* All divs are assumed to be known and not contain any nested divs.
*
* We first check if there are any extra equalities in "j" that we
* can exploit. Then we check if every integer division in "i"
* either already appears in "j" or can be simplified using the
* extra equalities to a purely affine expression.
* If these tests succeed, then we try to coalesce the two basic maps
* by introducing extra dimensions in "j" corresponding to
* the extra integer divsisions "i" fixed to the corresponding
* purely affine expression.
*/
static enum isl_change check_coalesce_into_eq(int i, int j,
struct isl_coalesce_info *info)
{
unsigned n_div_i, n_div_j;
isl_basic_map *hull_i, *hull_j;
int equal, empty;
isl_aff_list *list;
enum isl_change change;
n_div_i = isl_basic_map_dim(info[i].bmap, isl_dim_div);
n_div_j = isl_basic_map_dim(info[j].bmap, isl_dim_div);
if (n_div_i <= n_div_j)
return isl_change_none;
if (info[j].bmap->n_eq == 0)
return isl_change_none;
hull_i = isl_basic_map_copy(info[i].bmap);
hull_i = isl_basic_map_plain_affine_hull(hull_i);
hull_j = isl_basic_map_copy(info[j].bmap);
hull_j = isl_basic_map_plain_affine_hull(hull_j);
hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
empty = isl_basic_map_plain_is_empty(hull_j);
isl_basic_map_free(hull_i);
if (equal < 0 || empty < 0)
goto error;
if (equal || empty) {
isl_basic_map_free(hull_j);
return isl_change_none;
}
list = set_up_substitutions(info[i].bmap, info[j].bmap, hull_j);
if (!list)
return isl_change_error;
if (isl_aff_list_n_aff(list) < n_div_i)
change = isl_change_none;
else
change = coalesce_with_subs(i, j, info, list);
isl_aff_list_free(list);
return change;
error:
isl_basic_map_free(hull_j);
return isl_change_error;
}
/* Check if we can coalesce basic maps "i" and "j" after copying
* those extra integer divisions in one of the basic maps that can
* be simplified away using the extra equalities in the other basic map.
* We require all divs to be known in both basic maps.
* Furthermore, to simplify the comparison of div expressions,
* we do not allow any nested integer divisions.
*/
static enum isl_change check_coalesce_eq(int i, int j,
struct isl_coalesce_info *info)
{
int known, nested;
enum isl_change change;
known = isl_basic_map_divs_known(info[i].bmap);
if (known < 0 || !known)
return known < 0 ? isl_change_error : isl_change_none;
known = isl_basic_map_divs_known(info[j].bmap);
if (known < 0 || !known)
return known < 0 ? isl_change_error : isl_change_none;
nested = has_nested_div(info[i].bmap);
if (nested < 0 || nested)
return nested < 0 ? isl_change_error : isl_change_none;
nested = has_nested_div(info[j].bmap);
if (nested < 0 || nested)
return nested < 0 ? isl_change_error : isl_change_none;
change = check_coalesce_into_eq(i, j, info);
if (change != isl_change_none)
return change;
change = check_coalesce_into_eq(j, i, info);
if (change != isl_change_none)
return invert_change(change);
return isl_change_none;
}
/* Check if the union of the given pair of basic maps
* can be represented by a single basic map.
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
*
* We first check if the two basic maps live in the same local space,
* after aligning the divs that differ by only an integer constant.
* If so, we do the complete check. Otherwise, we check if they have
* the same number of integer divisions and can be coalesced, if one is
* an obvious subset of the other or if the extra integer divisions
* of one basic map can be simplified away using the extra equalities
* of the other basic map.
*/
static enum isl_change coalesce_pair(int i, int j,
struct isl_coalesce_info *info)
{
int same;
enum isl_change change;
if (harmonize_divs(&info[i], &info[j]) < 0)
return isl_change_error;
same = same_divs(info[i].bmap, info[j].bmap);
if (same < 0)
return isl_change_error;
if (same)
return coalesce_local_pair(i, j, info);
if (info[i].bmap->n_div == info[j].bmap->n_div) {
change = coalesce_local_pair(i, j, info);
if (change != isl_change_none)
return change;
}
change = check_coalesce_subset(i, j, info);
if (change != isl_change_none)
return change;
return check_coalesce_eq(i, j, info);
}
/* Return the maximum of "a" and "b".
*/
static int isl_max(int a, int b)
{
return a > b ? a : b;
}
/* Pairwise coalesce the basic maps in the range [start1, end1[ of "info"
* with those in the range [start2, end2[, skipping basic maps
* that have been removed (either before or within this function).
*
* For each basic map i in the first range, we check if it can be coalesced
* with respect to any previously considered basic map j in the second range.
* If i gets dropped (because it was a subset of some j), then
* we can move on to the next basic map.
* If j gets dropped, we need to continue checking against the other
* previously considered basic maps.
* If the two basic maps got fused, then we recheck the fused basic map
* against the previously considered basic maps, starting at i + 1
* (even if start2 is greater than i + 1).
*/
static int coalesce_range(isl_ctx *ctx, struct isl_coalesce_info *info,
int start1, int end1, int start2, int end2)
{
int i, j;
for (i = end1 - 1; i >= start1; --i) {
if (info[i].removed)
continue;
for (j = isl_max(i + 1, start2); j < end2; ++j) {
enum isl_change changed;
if (info[j].removed)
continue;
if (info[i].removed)
isl_die(ctx, isl_error_internal,
"basic map unexpectedly removed",
return -1);
changed = coalesce_pair(i, j, info);
switch (changed) {
case isl_change_error:
return -1;
case isl_change_none:
case isl_change_drop_second:
continue;
case isl_change_drop_first:
j = end2;
break;
case isl_change_fuse:
j = i;
break;
}
}
}
return 0;
}
/* Pairwise coalesce the basic maps described by the "n" elements of "info".
*
* We consider groups of basic maps that live in the same apparent
* affine hull and we first coalesce within such a group before we
* coalesce the elements in the group with elements of previously
* considered groups. If a fuse happens during the second phase,
* then we also reconsider the elements within the group.
*/
static int coalesce(isl_ctx *ctx, int n, struct isl_coalesce_info *info)
{
int start, end;
for (end = n; end > 0; end = start) {
start = end - 1;
while (start >= 1 &&
info[start - 1].hull_hash == info[start].hull_hash)
start--;
if (coalesce_range(ctx, info, start, end, start, end) < 0)
return -1;
if (coalesce_range(ctx, info, start, end, end, n) < 0)
return -1;
}
return 0;
}
/* Update the basic maps in "map" based on the information in "info".
* In particular, remove the basic maps that have been marked removed and
* update the others based on the information in the corresponding tableau.
* Since we detected implicit equalities without calling
* isl_basic_map_gauss, we need to do it now.
* Also call isl_basic_map_simplify if we may have lost the definition
* of one or more integer divisions.
*/
static __isl_give isl_map *update_basic_maps(__isl_take isl_map *map,
int n, struct isl_coalesce_info *info)
{
int i;
if (!map)
return NULL;
for (i = n - 1; i >= 0; --i) {
if (info[i].removed) {
isl_basic_map_free(map->p[i]);
if (i != map->n - 1)
map->p[i] = map->p[map->n - 1];
map->n--;
continue;
}
info[i].bmap = isl_basic_map_update_from_tab(info[i].bmap,
info[i].tab);
info[i].bmap = isl_basic_map_gauss(info[i].bmap, NULL);
if (info[i].simplify)
info[i].bmap = isl_basic_map_simplify(info[i].bmap);
info[i].bmap = isl_basic_map_finalize(info[i].bmap);
if (!info[i].bmap)
return isl_map_free(map);
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT);
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT);
isl_basic_map_free(map->p[i]);
map->p[i] = info[i].bmap;
info[i].bmap = NULL;
}
return map;
}
/* For each pair of basic maps in the map, check if the union of the two
* can be represented by a single basic map.
* If so, replace the pair by the single basic map and start over.
*
* We factor out any (hidden) common factor from the constraint
* coefficients to improve the detection of adjacent constraints.
*
* Since we are constructing the tableaus of the basic maps anyway,
* we exploit them to detect implicit equalities and redundant constraints.
* This also helps the coalescing as it can ignore the redundant constraints.
* In order to avoid confusion, we make all implicit equalities explicit
* in the basic maps. We don't call isl_basic_map_gauss, though,
* as that may affect the number of constraints.
* This means that we have to call isl_basic_map_gauss at the end
* of the computation (in update_basic_maps) to ensure that
* the basic maps are not left in an unexpected state.
* For each basic map, we also compute the hash of the apparent affine hull
* for use in coalesce.
*/
struct isl_map *isl_map_coalesce(struct isl_map *map)
{
int i;
unsigned n;
isl_ctx *ctx;
struct isl_coalesce_info *info = NULL;
map = isl_map_remove_empty_parts(map);
if (!map)
return NULL;
if (map->n <= 1)
return map;
ctx = isl_map_get_ctx(map);
map = isl_map_sort_divs(map);
map = isl_map_cow(map);
if (!map)
return NULL;
n = map->n;
info = isl_calloc_array(map->ctx, struct isl_coalesce_info, n);
if (!info)
goto error;
for (i = 0; i < map->n; ++i) {
map->p[i] = isl_basic_map_reduce_coefficients(map->p[i]);
if (!map->p[i])
goto error;
info[i].bmap = isl_basic_map_copy(map->p[i]);
info[i].tab = isl_tab_from_basic_map(info[i].bmap, 0);
if (!info[i].tab)
goto error;
if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT))
if (isl_tab_detect_implicit_equalities(info[i].tab) < 0)
goto error;
info[i].bmap = isl_tab_make_equalities_explicit(info[i].tab,
info[i].bmap);
if (!info[i].bmap)
goto error;
if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT))
if (isl_tab_detect_redundant(info[i].tab) < 0)
goto error;
if (coalesce_info_set_hull_hash(&info[i]) < 0)
goto error;
}
for (i = map->n - 1; i >= 0; --i)
if (info[i].tab->empty)
drop(&info[i]);
if (coalesce(ctx, n, info) < 0)
goto error;
map = update_basic_maps(map, n, info);
clear_coalesce_info(n, info);
return map;
error:
clear_coalesce_info(n, info);
isl_map_free(map);
return NULL;
}
/* For each pair of basic sets in the set, check if the union of the two
* can be represented by a single basic set.
* If so, replace the pair by the single basic set and start over.
*/
struct isl_set *isl_set_coalesce(struct isl_set *set)
{
return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);
}