llvm-project/clang/test/CodeGen/object-size.c

394 lines
13 KiB
C
Raw Normal View History

// RUN: %clang_cc1 -triple x86_64-apple-darwin -emit-llvm %s -o - 2>&1 | FileCheck %s
#define strcpy(dest, src) \
((__builtin_object_size(dest, 0) != -1ULL) \
? __builtin___strcpy_chk (dest, src, __builtin_object_size(dest, 1)) \
: __inline_strcpy_chk(dest, src))
static char *__inline_strcpy_chk (char *dest, const char *src) {
return __builtin___strcpy_chk(dest, src, __builtin_object_size(dest, 1));
}
char gbuf[63];
char *gp;
int gi, gj;
// CHECK-LABEL: define void @test1
void test1() {
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
// CHECK: = call i8* @__strcpy_chk(i8* getelementptr inbounds ([63 x i8], [63 x i8]* @gbuf, i64 0, i64 4), i8* getelementptr inbounds ([9 x i8], [9 x i8]* @.str, i32 0, i32 0), i64 59)
strcpy(&gbuf[4], "Hi there");
}
// CHECK-LABEL: define void @test2
void test2() {
// CHECK: = call i8* @__strcpy_chk(i8* getelementptr inbounds ([63 x i8], [63 x i8]* @gbuf, i32 0, i32 0), i8* getelementptr inbounds ([9 x i8], [9 x i8]* @.str, i32 0, i32 0), i64 63)
strcpy(gbuf, "Hi there");
}
// CHECK-LABEL: define void @test3
void test3() {
// CHECK: = call i8* @__strcpy_chk(i8* getelementptr inbounds ([63 x i8], [63 x i8]* @gbuf, i64 1, i64 37), i8* getelementptr inbounds ([9 x i8], [9 x i8]* @.str, i32 0, i32 0), i64 0)
strcpy(&gbuf[100], "Hi there");
}
// CHECK-LABEL: define void @test4
void test4() {
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
// CHECK: = call i8* @__strcpy_chk(i8* getelementptr inbounds ([63 x i8], [63 x i8]* @gbuf, i64 0, i64 -1), i8* getelementptr inbounds ([9 x i8], [9 x i8]* @.str, i32 0, i32 0), i64 0)
strcpy((char*)(void*)&gbuf[-1], "Hi there");
}
// CHECK-LABEL: define void @test5
void test5() {
// CHECK: = load i8*, i8** @gp
// CHECK-NEXT:= call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false)
strcpy(gp, "Hi there");
}
// CHECK-LABEL: define void @test6
void test6() {
char buf[57];
// CHECK: = call i8* @__strcpy_chk(i8* %{{.*}}, i8* getelementptr inbounds ([9 x i8], [9 x i8]* @.str, i32 0, i32 0), i64 53)
strcpy(&buf[4], "Hi there");
}
// CHECK-LABEL: define void @test7
void test7() {
int i;
// Ensure we only evaluate the side-effect once.
// CHECK: = add
// CHECK-NOT: = add
// CHECK: = call i8* @__strcpy_chk(i8* getelementptr inbounds ([63 x i8], [63 x i8]* @gbuf, i32 0, i32 0), i8* getelementptr inbounds ([9 x i8], [9 x i8]* @.str, i32 0, i32 0), i64 63)
strcpy((++i, gbuf), "Hi there");
}
// CHECK-LABEL: define void @test8
void test8() {
char *buf[50];
// CHECK-NOT: __strcpy_chk
// CHECK: = call i8* @__inline_strcpy_chk(i8* %{{.*}}, i8* getelementptr inbounds ([9 x i8], [9 x i8]* @.str, i32 0, i32 0))
strcpy(buf[++gi], "Hi there");
}
// CHECK-LABEL: define void @test9
void test9() {
// CHECK-NOT: __strcpy_chk
// CHECK: = call i8* @__inline_strcpy_chk(i8* %{{.*}}, i8* getelementptr inbounds ([9 x i8], [9 x i8]* @.str, i32 0, i32 0))
strcpy((char *)((++gi) + gj), "Hi there");
}
// CHECK-LABEL: define void @test10
char **p;
void test10() {
// CHECK-NOT: __strcpy_chk
// CHECK: = call i8* @__inline_strcpy_chk(i8* %{{.*}}, i8* getelementptr inbounds ([9 x i8], [9 x i8]* @.str, i32 0, i32 0))
strcpy(*(++p), "Hi there");
}
// CHECK-LABEL: define void @test11
void test11() {
// CHECK-NOT: __strcpy_chk
// CHECK: = call i8* @__inline_strcpy_chk(i8* getelementptr inbounds ([63 x i8], [63 x i8]* @gbuf, i32 0, i32 0), i8* getelementptr inbounds ([9 x i8], [9 x i8]* @.str, i32 0, i32 0))
strcpy(gp = gbuf, "Hi there");
}
// CHECK-LABEL: define void @test12
void test12() {
// CHECK-NOT: __strcpy_chk
// CHECK: = call i8* @__inline_strcpy_chk(i8* %{{.*}}, i8* getelementptr inbounds ([9 x i8], [9 x i8]* @.str, i32 0, i32 0))
strcpy(++gp, "Hi there");
}
// CHECK-LABEL: define void @test13
void test13() {
// CHECK-NOT: __strcpy_chk
// CHECK: = call i8* @__inline_strcpy_chk(i8* %{{.*}}, i8* getelementptr inbounds ([9 x i8], [9 x i8]* @.str, i32 0, i32 0))
strcpy(gp++, "Hi there");
}
// CHECK-LABEL: define void @test14
void test14() {
// CHECK-NOT: __strcpy_chk
// CHECK: = call i8* @__inline_strcpy_chk(i8* %{{.*}}, i8* getelementptr inbounds ([9 x i8], [9 x i8]* @.str, i32 0, i32 0))
strcpy(--gp, "Hi there");
}
// CHECK-LABEL: define void @test15
void test15() {
// CHECK-NOT: __strcpy_chk
// CHECK: = call i8* @__inline_strcpy_chk(i8* %{{..*}}, i8* getelementptr inbounds ([9 x i8], [9 x i8]* @.str, i32 0, i32 0))
strcpy(gp--, "Hi there");
}
// CHECK-LABEL: define void @test16
void test16() {
// CHECK-NOT: __strcpy_chk
// CHECK: = call i8* @__inline_strcpy_chk(i8* %{{.*}}, i8* getelementptr inbounds ([9 x i8], [9 x i8]* @.str, i32 0, i32 0))
strcpy(gp += 1, "Hi there");
}
// CHECK: @test17
void test17() {
// CHECK: store i32 -1
gi = __builtin_object_size(gp++, 0);
// CHECK: store i32 -1
gi = __builtin_object_size(gp++, 1);
// CHECK: store i32 0
gi = __builtin_object_size(gp++, 2);
// CHECK: store i32 0
gi = __builtin_object_size(gp++, 3);
}
// CHECK: @test18
unsigned test18(int cond) {
int a[4], b[4];
// CHECK: phi i32*
// CHECK: call i64 @llvm.objectsize.i64
return __builtin_object_size(cond ? a : b, 0);
}
// CHECK: @test19
void test19() {
struct {
int a, b;
} foo;
// CHECK: store i32 8
gi = __builtin_object_size(&foo.a, 0);
// CHECK: store i32 4
gi = __builtin_object_size(&foo.a, 1);
// CHECK: store i32 8
gi = __builtin_object_size(&foo.a, 2);
// CHECK: store i32 4
gi = __builtin_object_size(&foo.a, 3);
// CHECK: store i32 4
gi = __builtin_object_size(&foo.b, 0);
// CHECK: store i32 4
gi = __builtin_object_size(&foo.b, 1);
// CHECK: store i32 4
gi = __builtin_object_size(&foo.b, 2);
// CHECK: store i32 4
gi = __builtin_object_size(&foo.b, 3);
}
// CHECK: @test20
void test20() {
struct { int t[10]; } t[10];
// CHECK: store i32 380
gi = __builtin_object_size(&t[0].t[5], 0);
// CHECK: store i32 20
gi = __builtin_object_size(&t[0].t[5], 1);
// CHECK: store i32 380
gi = __builtin_object_size(&t[0].t[5], 2);
// CHECK: store i32 20
gi = __builtin_object_size(&t[0].t[5], 3);
}
// CHECK: @test21
void test21() {
struct { int t; } t;
// CHECK: store i32 0
gi = __builtin_object_size(&t + 1, 0);
// CHECK: store i32 0
gi = __builtin_object_size(&t + 1, 1);
// CHECK: store i32 0
gi = __builtin_object_size(&t + 1, 2);
// CHECK: store i32 0
gi = __builtin_object_size(&t + 1, 3);
// CHECK: store i32 0
gi = __builtin_object_size(&t.t + 1, 0);
// CHECK: store i32 0
gi = __builtin_object_size(&t.t + 1, 1);
// CHECK: store i32 0
gi = __builtin_object_size(&t.t + 1, 2);
// CHECK: store i32 0
gi = __builtin_object_size(&t.t + 1, 3);
}
// CHECK: @test22
void test22() {
struct { int t[10]; } t[10];
// CHECK: store i32 0
gi = __builtin_object_size(&t[10], 0);
// CHECK: store i32 0
gi = __builtin_object_size(&t[10], 1);
// CHECK: store i32 0
gi = __builtin_object_size(&t[10], 2);
// CHECK: store i32 0
gi = __builtin_object_size(&t[10], 3);
// CHECK: store i32 0
gi = __builtin_object_size(&t[9].t[10], 0);
// CHECK: store i32 0
gi = __builtin_object_size(&t[9].t[10], 1);
// CHECK: store i32 0
gi = __builtin_object_size(&t[9].t[10], 2);
// CHECK: store i32 0
gi = __builtin_object_size(&t[9].t[10], 3);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[0] + sizeof(t), 0);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[0] + sizeof(t), 1);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[0] + sizeof(t), 2);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[0] + sizeof(t), 3);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[9].t[0] + 10*sizeof(t[0].t), 0);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[9].t[0] + 10*sizeof(t[0].t), 1);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[9].t[0] + 10*sizeof(t[0].t), 2);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[9].t[0] + 10*sizeof(t[0].t), 3);
}
struct Test23Ty { int a; int t[10]; };
// CHECK: @test23
void test23(struct Test23Ty *p) {
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false)
gi = __builtin_object_size(p, 0);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false)
gi = __builtin_object_size(p, 1);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 true)
gi = __builtin_object_size(p, 2);
// Note: this is currently fixed at 0 because LLVM doesn't have sufficient
// data to correctly handle type=3
// CHECK: store i32 0
gi = __builtin_object_size(p, 3);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false)
gi = __builtin_object_size(&p->a, 0);
// CHECK: store i32 4
gi = __builtin_object_size(&p->a, 1);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 true)
gi = __builtin_object_size(&p->a, 2);
// CHECK: store i32 4
gi = __builtin_object_size(&p->a, 3);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false)
gi = __builtin_object_size(&p->t[5], 0);
// CHECK: store i32 20
gi = __builtin_object_size(&p->t[5], 1);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 true)
gi = __builtin_object_size(&p->t[5], 2);
// CHECK: store i32 20
gi = __builtin_object_size(&p->t[5], 3);
}
// PR24493 -- ICE if __builtin_object_size called with NULL and (Type & 1) != 0
// CHECK: @test24
void test24() {
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* {{.*}}, i1 false)
gi = __builtin_object_size((void*)0, 0);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* {{.*}}, i1 false)
gi = __builtin_object_size((void*)0, 1);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* {{.*}}, i1 true)
gi = __builtin_object_size((void*)0, 2);
// Note: Currently fixed at zero because LLVM can't handle type=3 correctly.
// Hopefully will be lowered properly in the future.
// CHECK: store i32 0
gi = __builtin_object_size((void*)0, 3);
}
// CHECK: @test25
void test25() {
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* {{.*}}, i1 false)
gi = __builtin_object_size((void*)0x1000, 0);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* {{.*}}, i1 false)
gi = __builtin_object_size((void*)0x1000, 1);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* {{.*}}, i1 true)
gi = __builtin_object_size((void*)0x1000, 2);
// Note: Currently fixed at zero because LLVM can't handle type=3 correctly.
// Hopefully will be lowered properly in the future.
// CHECK: store i32 0
gi = __builtin_object_size((void*)0x1000, 3);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* {{.*}}, i1 false)
gi = __builtin_object_size((void*)0 + 0x1000, 0);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* {{.*}}, i1 false)
gi = __builtin_object_size((void*)0 + 0x1000, 1);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* {{.*}}, i1 true)
gi = __builtin_object_size((void*)0 + 0x1000, 2);
// Note: Currently fixed at zero because LLVM can't handle type=3 correctly.
// Hopefully will be lowered properly in the future.
// CHECK: store i32 0
gi = __builtin_object_size((void*)0 + 0x1000, 3);
}
// CHECK: @test26
void test26() {
struct { int v[10]; } t[10];
// CHECK: store i32 316
gi = __builtin_object_size(&t[1].v[11], 0);
// CHECK: store i32 312
gi = __builtin_object_size(&t[1].v[12], 1);
// CHECK: store i32 308
gi = __builtin_object_size(&t[1].v[13], 2);
// CHECK: store i32 0
gi = __builtin_object_size(&t[1].v[14], 3);
}
struct Test27IncompleteTy;
// CHECK: @test27
void test27(struct Test27IncompleteTy *t) {
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false)
gi = __builtin_object_size(t, 0);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false)
gi = __builtin_object_size(t, 1);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 true)
gi = __builtin_object_size(t, 2);
// Note: this is currently fixed at 0 because LLVM doesn't have sufficient
// data to correctly handle type=3
// CHECK: store i32 0
gi = __builtin_object_size(t, 3);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* {{.*}}, i1 false)
gi = __builtin_object_size(&test27, 0);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* {{.*}}, i1 false)
gi = __builtin_object_size(&test27, 1);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* {{.*}}, i1 true)
gi = __builtin_object_size(&test27, 2);
// Note: this is currently fixed at 0 because LLVM doesn't have sufficient
// data to correctly handle type=3
// CHECK: store i32 0
gi = __builtin_object_size(&test27, 3);
}
// The intent of this test is to ensure that __builtin_object_size treats `&foo`
// and `(T*)&foo` identically, when used as the pointer argument.
// CHECK: @test28
void test28() {
struct { int v[10]; } t[10];
#define addCasts(s) ((char*)((short*)(s)))
// CHECK: store i32 360
gi = __builtin_object_size(addCasts(&t[1]), 0);
// CHECK: store i32 360
gi = __builtin_object_size(addCasts(&t[1]), 1);
// CHECK: store i32 360
gi = __builtin_object_size(addCasts(&t[1]), 2);
// CHECK: store i32 360
gi = __builtin_object_size(addCasts(&t[1]), 3);
// CHECK: store i32 356
gi = __builtin_object_size(addCasts(&t[1].v[1]), 0);
// CHECK: store i32 36
gi = __builtin_object_size(addCasts(&t[1].v[1]), 1);
// CHECK: store i32 356
gi = __builtin_object_size(addCasts(&t[1].v[1]), 2);
// CHECK: store i32 36
gi = __builtin_object_size(addCasts(&t[1].v[1]), 3);
#undef addCasts
}