llvm-project/clang/test/CodeGen/c11atomics.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

491 lines
25 KiB
C
Raw Normal View History

// RUN: %clang_cc1 %s -emit-llvm -o - -triple=armv5-unknown-freebsd -std=c11 | FileCheck %s
// Test that we are generating atomicrmw instructions, rather than
// compare-exchange loops for common atomic ops. This makes a big difference
// on RISC platforms, where the compare-exchange loop becomes a ll/sc pair for
// the load and then another ll/sc in the loop, expanding to about 30
// instructions when it should be only 4. It has a smaller, but still
// noticeable, impact on platforms like x86 and RISC-V, where there are atomic
// RMW instructions.
//
// We currently emit cmpxchg loops for most operations on _Bools, because
// they're sufficiently rare that it's not worth making sure that the semantics
// are correct.
struct elem;
struct ptr {
struct elem *ptr;
};
// CHECK-DAG: %struct.ptr = type { %struct.elem* }
struct elem {
_Atomic(struct ptr) link;
};
// CHECK-DAG: %struct.elem = type { %struct.ptr }
struct ptr object;
// CHECK-DAG: @object ={{.*}} global %struct.ptr zeroinitializer
// CHECK-DAG: @testStructGlobal ={{.*}} global {{.*}} { i16 1, i16 2, i16 3, i16 4 }
// CHECK-DAG: @testPromotedStructGlobal ={{.*}} global {{.*}} { %{{.*}} { i16 1, i16 2, i16 3 }, [2 x i8] zeroinitializer }
typedef int __attribute__((vector_size(16))) vector;
_Atomic(_Bool) b;
_Atomic(int) i;
_Atomic(long long) l;
_Atomic(short) s;
_Atomic(char*) p;
_Atomic(float) f;
_Atomic(vector) v;
// CHECK: testinc
void testinc(void)
{
// Special case for suffix bool++, sets to true and returns the old value.
// CHECK: atomicrmw xchg i8* @b, i8 1 seq_cst, align 1
b++;
// CHECK: atomicrmw add i32* @i, i32 1 seq_cst, align 4
i++;
// CHECK: atomicrmw add i64* @l, i64 1 seq_cst, align 8
l++;
// CHECK: atomicrmw add i16* @s, i16 1 seq_cst, align 2
s++;
// Prefix increment
// Special case for bool: set to true and return true
// CHECK: store atomic i8 1, i8* @b seq_cst, align 1
++b;
// Currently, we have no variant of atomicrmw that returns the new value, so
// we have to generate an atomic add, which returns the old value, and then a
// non-atomic add.
// CHECK: atomicrmw add i32* @i, i32 1 seq_cst, align 4
// CHECK: add i32
++i;
// CHECK: atomicrmw add i64* @l, i64 1 seq_cst, align 8
// CHECK: add i64
++l;
// CHECK: atomicrmw add i16* @s, i16 1 seq_cst, align 2
// CHECK: add i16
++s;
}
// CHECK: testdec
void testdec(void)
{
// CHECK: call arm_aapcscc zeroext i1 @__atomic_compare_exchange(i32 noundef 1, i8* noundef @b
b--;
// CHECK: atomicrmw sub i32* @i, i32 1 seq_cst, align 4
i--;
// CHECK: atomicrmw sub i64* @l, i64 1 seq_cst, align 8
l--;
// CHECK: atomicrmw sub i16* @s, i16 1 seq_cst, align 2
s--;
// CHECK: call arm_aapcscc zeroext i1 @__atomic_compare_exchange(i32 noundef 1, i8* noundef @b
--b;
// CHECK: atomicrmw sub i32* @i, i32 1 seq_cst, align 4
// CHECK: sub i32
--i;
// CHECK: atomicrmw sub i64* @l, i64 1 seq_cst, align 8
// CHECK: sub i64
--l;
// CHECK: atomicrmw sub i16* @s, i16 1 seq_cst, align 2
// CHECK: sub i16
--s;
}
// CHECK: testaddeq
void testaddeq(void)
{
// CHECK: call arm_aapcscc zeroext i1 @__atomic_compare_exchange(i32 noundef 1, i8* noundef @b
// CHECK: atomicrmw add i32* @i, i32 42 seq_cst, align 4
// CHECK: atomicrmw add i64* @l, i64 42 seq_cst, align 8
// CHECK: atomicrmw add i16* @s, i16 42 seq_cst, align 2
b += 42;
i += 42;
l += 42;
s += 42;
}
// CHECK: testsubeq
void testsubeq(void)
{
// CHECK: call arm_aapcscc zeroext i1 @__atomic_compare_exchange(i32 noundef 1, i8* noundef @b
// CHECK: atomicrmw sub i32* @i, i32 42 seq_cst, align 4
// CHECK: atomicrmw sub i64* @l, i64 42 seq_cst, align 8
// CHECK: atomicrmw sub i16* @s, i16 42 seq_cst, align 2
b -= 42;
i -= 42;
l -= 42;
s -= 42;
}
// CHECK: testxoreq
void testxoreq(void)
{
// CHECK: call arm_aapcscc zeroext i1 @__atomic_compare_exchange(i32 noundef 1, i8* noundef @b
// CHECK: atomicrmw xor i32* @i, i32 42 seq_cst, align 4
// CHECK: atomicrmw xor i64* @l, i64 42 seq_cst, align 8
// CHECK: atomicrmw xor i16* @s, i16 42 seq_cst, align 2
b ^= 42;
i ^= 42;
l ^= 42;
s ^= 42;
}
// CHECK: testoreq
void testoreq(void)
{
// CHECK: call arm_aapcscc zeroext i1 @__atomic_compare_exchange(i32 noundef 1, i8* noundef @b
// CHECK: atomicrmw or i32* @i, i32 42 seq_cst, align 4
// CHECK: atomicrmw or i64* @l, i64 42 seq_cst, align 8
// CHECK: atomicrmw or i16* @s, i16 42 seq_cst, align 2
b |= 42;
i |= 42;
l |= 42;
s |= 42;
}
// CHECK: testandeq
void testandeq(void)
{
// CHECK: call arm_aapcscc zeroext i1 @__atomic_compare_exchange(i32 noundef 1, i8* noundef @b
// CHECK: atomicrmw and i32* @i, i32 42 seq_cst, align 4
// CHECK: atomicrmw and i64* @l, i64 42 seq_cst, align 8
// CHECK: atomicrmw and i16* @s, i16 42 seq_cst, align 2
b &= 42;
i &= 42;
l &= 42;
s &= 42;
}
// CHECK-LABEL: define{{.*}} arm_aapcscc void @testFloat(float*
void testFloat(_Atomic(float) *fp) {
// CHECK: [[FP:%.*]] = alloca float*
// CHECK-NEXT: [[X:%.*]] = alloca float
// CHECK-NEXT: [[F:%.*]] = alloca float
// CHECK-NEXT: [[TMP0:%.*]] = alloca float
// CHECK-NEXT: [[TMP1:%.*]] = alloca float
// CHECK-NEXT: store float* {{%.*}}, float** [[FP]]
// CHECK-NEXT: [[T0:%.*]] = load float*, float** [[FP]]
// CHECK-NEXT: store float 1.000000e+00, float* [[T0]], align 4
__c11_atomic_init(fp, 1.0f);
// CHECK-NEXT: store float 2.000000e+00, float* [[X]], align 4
_Atomic(float) x = 2.0f;
// CHECK-NEXT: [[T0:%.*]] = load float*, float** [[FP]]
// CHECK-NEXT: [[T1:%.*]] = bitcast float* [[T0]] to i8*
// CHECK-NEXT: [[T2:%.*]] = bitcast float* [[TMP0]] to i8*
// CHECK-NEXT: call arm_aapcscc void @__atomic_load(i32 noundef 4, i8* noundef [[T1]], i8* noundef [[T2]], i32 noundef 5)
// CHECK-NEXT: [[T3:%.*]] = load float, float* [[TMP0]], align 4
// CHECK-NEXT: store float [[T3]], float* [[F]]
float f = *fp;
// CHECK-NEXT: [[T0:%.*]] = load float, float* [[F]], align 4
// CHECK-NEXT: [[T1:%.*]] = load float*, float** [[FP]], align 4
// CHECK-NEXT: store float [[T0]], float* [[TMP1]], align 4
// CHECK-NEXT: [[T2:%.*]] = bitcast float* [[T1]] to i8*
// CHECK-NEXT: [[T3:%.*]] = bitcast float* [[TMP1]] to i8*
// CHECK-NEXT: call arm_aapcscc void @__atomic_store(i32 noundef 4, i8* noundef [[T2]], i8* noundef [[T3]], i32 noundef 5)
*fp = f;
// CHECK-NEXT: ret void
}
// CHECK: define{{.*}} arm_aapcscc void @testComplexFloat([[CF:{ float, float }]]*
void testComplexFloat(_Atomic(_Complex float) *fp) {
// CHECK: [[FP:%.*]] = alloca [[CF]]*, align 4
// CHECK-NEXT: [[X:%.*]] = alloca [[CF]], align 8
// CHECK-NEXT: [[F:%.*]] = alloca [[CF]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = alloca [[CF]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = alloca [[CF]], align 8
// CHECK-NEXT: store [[CF]]*
// CHECK-NEXT: [[P:%.*]] = load [[CF]]*, [[CF]]** [[FP]]
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[CF]], [[CF]]* [[P]], i32 0, i32 0
// CHECK-NEXT: [[T1:%.*]] = getelementptr inbounds [[CF]], [[CF]]* [[P]], i32 0, i32 1
// CHECK-NEXT: store float 1.000000e+00, float* [[T0]]
// CHECK-NEXT: store float 0.000000e+00, float* [[T1]]
__c11_atomic_init(fp, 1.0f);
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[CF]], [[CF]]* [[X]], i32 0, i32 0
// CHECK-NEXT: [[T1:%.*]] = getelementptr inbounds [[CF]], [[CF]]* [[X]], i32 0, i32 1
// CHECK-NEXT: store float 2.000000e+00, float* [[T0]]
// CHECK-NEXT: store float 0.000000e+00, float* [[T1]]
_Atomic(_Complex float) x = 2.0f;
// CHECK-NEXT: [[T0:%.*]] = load [[CF]]*, [[CF]]** [[FP]]
// CHECK-NEXT: [[T1:%.*]] = bitcast [[CF]]* [[T0]] to i8*
// CHECK-NEXT: [[T2:%.*]] = bitcast [[CF]]* [[TMP0]] to i8*
// CHECK-NEXT: call arm_aapcscc void @__atomic_load(i32 noundef 8, i8* noundef [[T1]], i8* noundef [[T2]], i32 noundef 5)
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[CF]], [[CF]]* [[TMP0]], i32 0, i32 0
// CHECK-NEXT: [[R:%.*]] = load float, float* [[T0]]
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[CF]], [[CF]]* [[TMP0]], i32 0, i32 1
// CHECK-NEXT: [[I:%.*]] = load float, float* [[T0]]
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[CF]], [[CF]]* [[F]], i32 0, i32 0
// CHECK-NEXT: [[T1:%.*]] = getelementptr inbounds [[CF]], [[CF]]* [[F]], i32 0, i32 1
// CHECK-NEXT: store float [[R]], float* [[T0]]
// CHECK-NEXT: store float [[I]], float* [[T1]]
_Complex float f = *fp;
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[CF]], [[CF]]* [[F]], i32 0, i32 0
// CHECK-NEXT: [[R:%.*]] = load float, float* [[T0]]
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[CF]], [[CF]]* [[F]], i32 0, i32 1
// CHECK-NEXT: [[I:%.*]] = load float, float* [[T0]]
// CHECK-NEXT: [[DEST:%.*]] = load [[CF]]*, [[CF]]** [[FP]], align 4
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[CF]], [[CF]]* [[TMP1]], i32 0, i32 0
// CHECK-NEXT: [[T1:%.*]] = getelementptr inbounds [[CF]], [[CF]]* [[TMP1]], i32 0, i32 1
// CHECK-NEXT: store float [[R]], float* [[T0]]
// CHECK-NEXT: store float [[I]], float* [[T1]]
// CHECK-NEXT: [[T0:%.*]] = bitcast [[CF]]* [[DEST]] to i8*
// CHECK-NEXT: [[T1:%.*]] = bitcast [[CF]]* [[TMP1]] to i8*
// CHECK-NEXT: call arm_aapcscc void @__atomic_store(i32 noundef 8, i8* noundef [[T0]], i8* noundef [[T1]], i32 noundef 5)
*fp = f;
// CHECK-NEXT: ret void
}
typedef struct { short x, y, z, w; } S;
_Atomic S testStructGlobal = (S){1, 2, 3, 4};
// CHECK: define{{.*}} arm_aapcscc void @testStruct([[S:.*]]*
void testStruct(_Atomic(S) *fp) {
// CHECK: [[FP:%.*]] = alloca [[S]]*, align 4
// CHECK-NEXT: [[X:%.*]] = alloca [[S]], align 8
// CHECK-NEXT: [[F:%.*]] = alloca [[S:%.*]], align 2
// CHECK-NEXT: [[TMP0:%.*]] = alloca [[S]], align 8
// CHECK-NEXT: store [[S]]*
// CHECK-NEXT: [[P:%.*]] = load [[S]]*, [[S]]** [[FP]]
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[S]], [[S]]* [[P]], i32 0, i32 0
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
// CHECK-NEXT: store i16 1, i16* [[T0]], align 8
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[S]], [[S]]* [[P]], i32 0, i32 1
// CHECK-NEXT: store i16 2, i16* [[T0]], align 2
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[S]], [[S]]* [[P]], i32 0, i32 2
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
// CHECK-NEXT: store i16 3, i16* [[T0]], align 4
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[S]], [[S]]* [[P]], i32 0, i32 3
// CHECK-NEXT: store i16 4, i16* [[T0]], align 2
__c11_atomic_init(fp, (S){1,2,3,4});
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[S]], [[S]]* [[X]], i32 0, i32 0
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
// CHECK-NEXT: store i16 1, i16* [[T0]], align 8
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[S]], [[S]]* [[X]], i32 0, i32 1
// CHECK-NEXT: store i16 2, i16* [[T0]], align 2
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[S]], [[S]]* [[X]], i32 0, i32 2
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
// CHECK-NEXT: store i16 3, i16* [[T0]], align 4
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[S]], [[S]]* [[X]], i32 0, i32 3
// CHECK-NEXT: store i16 4, i16* [[T0]], align 2
_Atomic(S) x = (S){1,2,3,4};
// CHECK-NEXT: [[T0:%.*]] = load [[S]]*, [[S]]** [[FP]]
// CHECK-NEXT: [[T1:%.*]] = bitcast [[S]]* [[T0]] to i8*
// CHECK-NEXT: [[T2:%.*]] = bitcast [[S]]* [[F]] to i8*
// CHECK-NEXT: call arm_aapcscc void @__atomic_load(i32 noundef 8, i8* noundef [[T1]], i8* noundef [[T2]], i32 noundef 5)
S f = *fp;
// CHECK-NEXT: [[T0:%.*]] = load [[S]]*, [[S]]** [[FP]]
// CHECK-NEXT: [[T1:%.*]] = bitcast [[S]]* [[TMP0]] to i8*
// CHECK-NEXT: [[T2:%.*]] = bitcast [[S]]* [[F]] to i8*
// CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 [[T1]], i8* align 2 [[T2]], i32 8, i1 false)
// CHECK-NEXT: [[T3:%.*]] = bitcast [[S]]* [[T0]] to i8*
// CHECK-NEXT: [[T4:%.*]] = bitcast [[S]]* [[TMP0]] to i8*
// CHECK-NEXT: call arm_aapcscc void @__atomic_store(i32 noundef 8, i8* noundef [[T3]], i8* noundef [[T4]], i32 noundef 5)
*fp = f;
// CHECK-NEXT: ret void
}
typedef struct { short x, y, z; } PS;
_Atomic PS testPromotedStructGlobal = (PS){1, 2, 3};
// CHECK: define{{.*}} arm_aapcscc void @testPromotedStruct([[APS:.*]]*
void testPromotedStruct(_Atomic(PS) *fp) {
// CHECK: [[FP:%.*]] = alloca [[APS]]*, align 4
// CHECK-NEXT: [[X:%.*]] = alloca [[APS]], align 8
// CHECK-NEXT: [[F:%.*]] = alloca [[PS:%.*]], align 2
// CHECK-NEXT: [[TMP0:%.*]] = alloca [[APS]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = alloca [[APS]], align 8
// CHECK-NEXT: [[A:%.*]] = alloca i32, align 4
// CHECK-NEXT: [[TMP2:%.*]] = alloca %struct.PS, align 2
// CHECK-NEXT: [[TMP3:%.*]] = alloca [[APS]], align 8
// CHECK-NEXT: store [[APS]]*
// CHECK-NEXT: [[P:%.*]] = load [[APS]]*, [[APS]]** [[FP]]
// CHECK-NEXT: [[T0:%.*]] = bitcast [[APS]]* [[P]] to i8*
// CHECK-NEXT: call void @llvm.memset.p0i8.i64(i8* align 8 [[T0]], i8 0, i64 8, i1 false)
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[APS]], [[APS]]* [[P]], i32 0, i32 0
// CHECK-NEXT: [[T1:%.*]] = getelementptr inbounds [[PS]], [[PS]]* [[T0]], i32 0, i32 0
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
// CHECK-NEXT: store i16 1, i16* [[T1]], align 8
// CHECK-NEXT: [[T1:%.*]] = getelementptr inbounds [[PS]], [[PS]]* [[T0]], i32 0, i32 1
// CHECK-NEXT: store i16 2, i16* [[T1]], align 2
// CHECK-NEXT: [[T1:%.*]] = getelementptr inbounds [[PS]], [[PS]]* [[T0]], i32 0, i32 2
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
// CHECK-NEXT: store i16 3, i16* [[T1]], align 4
__c11_atomic_init(fp, (PS){1,2,3});
// CHECK-NEXT: [[T0:%.*]] = bitcast [[APS]]* [[X]] to i8*
// CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* align 8 [[T0]], i8 0, i32 8, i1 false)
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[APS]], [[APS]]* [[X]], i32 0, i32 0
// CHECK-NEXT: [[T1:%.*]] = getelementptr inbounds [[PS]], [[PS]]* [[T0]], i32 0, i32 0
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
// CHECK-NEXT: store i16 1, i16* [[T1]], align 8
// CHECK-NEXT: [[T1:%.*]] = getelementptr inbounds [[PS]], [[PS]]* [[T0]], i32 0, i32 1
// CHECK-NEXT: store i16 2, i16* [[T1]], align 2
// CHECK-NEXT: [[T1:%.*]] = getelementptr inbounds [[PS]], [[PS]]* [[T0]], i32 0, i32 2
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
// CHECK-NEXT: store i16 3, i16* [[T1]], align 4
_Atomic(PS) x = (PS){1,2,3};
// CHECK-NEXT: [[T0:%.*]] = load [[APS]]*, [[APS]]** [[FP]]
// CHECK-NEXT: [[T1:%.*]] = bitcast [[APS]]* [[T0]] to i8*
// CHECK-NEXT: [[T2:%.*]] = bitcast [[APS]]* [[TMP0]] to i8*
// CHECK-NEXT: call arm_aapcscc void @__atomic_load(i32 noundef 8, i8* noundef [[T1]], i8* noundef [[T2]], i32 noundef 5)
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[APS]], [[APS]]* [[TMP0]], i32 0, i32 0
// CHECK-NEXT: [[T1:%.*]] = bitcast [[PS]]* [[F]] to i8*
// CHECK-NEXT: [[T2:%.*]] = bitcast [[PS]]* [[T0]] to i8*
// CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 2 [[T1]], i8* align 8 [[T2]], i32 6, i1 false)
PS f = *fp;
// CHECK-NEXT: [[T0:%.*]] = load [[APS]]*, [[APS]]** [[FP]]
// CHECK-NEXT: [[T1:%.*]] = bitcast { %struct.PS, [2 x i8] }* [[TMP1]] to i8*
// CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* align 8 [[T1]], i8 0, i32 8, i1 false)
// CHECK-NEXT: [[T1:%.*]] = getelementptr inbounds [[APS]], [[APS]]* [[TMP1]], i32 0, i32 0
// CHECK-NEXT: [[T2:%.*]] = bitcast [[PS]]* [[T1]] to i8*
// CHECK-NEXT: [[T3:%.*]] = bitcast [[PS]]* [[F]] to i8*
// CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 [[T2]], i8* align 2 [[T3]], i32 6, i1 false)
// CHECK-NEXT: [[T4:%.*]] = bitcast [[APS]]* [[T0]] to i8*
// CHECK-NEXT: [[T5:%.*]] = bitcast [[APS]]* [[TMP1]] to i8*
// CHECK-NEXT: call arm_aapcscc void @__atomic_store(i32 noundef 8, i8* noundef [[T4]], i8* noundef [[T5]], i32 noundef 5)
*fp = f;
// CHECK-NEXT: [[T0:%.*]] = load [[APS]]*, [[APS]]** [[FP]], align 4
// CHECK-NEXT: [[T1:%.*]] = bitcast [[APS]]* [[T0]] to i8*
// CHECK-NEXT: [[T2:%.*]] = bitcast [[APS]]* [[TMP3]] to i8*
// CHECK-NEXT: call arm_aapcscc void @__atomic_load(i32 noundef 8, i8* noundef [[T1]], i8* noundef [[T2]], i32 noundef 5)
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds [[APS]], [[APS]]* [[TMP3]], i32 0, i32 0
// CHECK-NEXT: [[T1:%.*]] = bitcast %struct.PS* [[TMP2]] to i8*
// CHECK-NEXT: [[T2:%.*]] = bitcast %struct.PS* [[T0]] to i8*
// CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 2 [[T1]], i8* align 8 [[T2]], i32 6, i1 false)
// CHECK-NEXT: [[T0:%.*]] = getelementptr inbounds %struct.PS, %struct.PS* [[TMP2]], i32 0, i32 0
// CHECK-NEXT: [[T1:%.*]] = load i16, i16* [[T0]], align 2
// CHECK-NEXT: [[T2:%.*]] = sext i16 [[T1]] to i32
// CHECK-NEXT: store i32 [[T2]], i32* [[A]], align 4
int a = ((PS)*fp).x;
// CHECK-NEXT: ret void
}
PS test_promoted_load(_Atomic(PS) *addr) {
// CHECK-LABEL: @test_promoted_load(%struct.PS* noalias sret(%struct.PS) align 2 %agg.result, { %struct.PS, [2 x i8] }* noundef %addr)
// CHECK: [[ADDR_ARG:%.*]] = alloca { %struct.PS, [2 x i8] }*, align 4
// CHECK: [[ATOMIC_RES:%.*]] = alloca { %struct.PS, [2 x i8] }, align 8
// CHECK: store { %struct.PS, [2 x i8] }* %addr, { %struct.PS, [2 x i8] }** [[ADDR_ARG]], align 4
// CHECK: [[ADDR:%.*]] = load { %struct.PS, [2 x i8] }*, { %struct.PS, [2 x i8] }** [[ADDR_ARG]], align 4
// CHECK: [[ADDR64:%.*]] = bitcast { %struct.PS, [2 x i8] }* [[ADDR]] to i64*
// CHECK: [[ATOMIC_RES64:%.*]] = bitcast { %struct.PS, [2 x i8] }* [[ATOMIC_RES]] to i64*
// CHECK: [[ADDR8:%.*]] = bitcast i64* [[ADDR64]] to i8*
// CHECK: [[RES:%.*]] = call arm_aapcscc i64 @__atomic_load_8(i8* noundef [[ADDR8]], i32 noundef 5)
// CHECK: store i64 [[RES]], i64* [[ATOMIC_RES64]], align 8
// CHECK: [[ATOMIC_RES_STRUCT:%.*]] = bitcast i64* [[ATOMIC_RES64]] to %struct.PS*
// CHECK: [[AGG_RESULT8:%.*]] = bitcast %struct.PS* %agg.result to i8*
// CHECK: [[ATOMIC_RES8:%.*]] = bitcast %struct.PS* [[ATOMIC_RES_STRUCT]] to i8*
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 2 [[AGG_RESULT8]], i8* align 8 [[ATOMIC_RES8]], i32 6, i1 false)
return __c11_atomic_load(addr, 5);
}
void test_promoted_store(_Atomic(PS) *addr, PS *val) {
// CHECK-LABEL: @test_promoted_store({ %struct.PS, [2 x i8] }* noundef %addr, %struct.PS* noundef %val)
// CHECK: [[ADDR_ARG:%.*]] = alloca { %struct.PS, [2 x i8] }*, align 4
// CHECK: [[VAL_ARG:%.*]] = alloca %struct.PS*, align 4
// CHECK: [[NONATOMIC_TMP:%.*]] = alloca %struct.PS, align 2
// CHECK: [[ATOMIC_VAL:%.*]] = alloca { %struct.PS, [2 x i8] }, align 8
// CHECK: store { %struct.PS, [2 x i8] }* %addr, { %struct.PS, [2 x i8] }** [[ADDR_ARG]], align 4
// CHECK: store %struct.PS* %val, %struct.PS** [[VAL_ARG]], align 4
// CHECK: [[ADDR:%.*]] = load { %struct.PS, [2 x i8] }*, { %struct.PS, [2 x i8] }** [[ADDR_ARG]], align 4
// CHECK: [[VAL:%.*]] = load %struct.PS*, %struct.PS** [[VAL_ARG]], align 4
// CHECK: [[NONATOMIC_TMP8:%.*]] = bitcast %struct.PS* [[NONATOMIC_TMP]] to i8*
// CHECK: [[VAL8:%.*]] = bitcast %struct.PS* [[VAL]] to i8*
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 2 [[NONATOMIC_TMP8]], i8* align 2 [[VAL8]], i32 6, i1 false)
// CHECK: [[ADDR64:%.*]] = bitcast { %struct.PS, [2 x i8] }* [[ADDR]] to i64*
// CHECK: [[ATOMIC_VAL8:%.*]] = bitcast { %struct.PS, [2 x i8] }* [[ATOMIC_VAL]] to i8*
// CHECK: [[NONATOMIC_TMP8:%.*]] = bitcast %struct.PS* [[NONATOMIC_TMP]] to i8*
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 8 [[ATOMIC_VAL8]], i8* align 2 [[NONATOMIC_TMP8]], i64 6, i1 false)
// CHECK: [[ATOMIC_VAL64:%.*]] = bitcast { %struct.PS, [2 x i8] }* [[ATOMIC_VAL]] to i64*
// CHECK: [[ADDR8:%.*]] = bitcast i64* [[ADDR64]] to i8*
// CHECK: [[VAL64:%.*]] = load i64, i64* [[ATOMIC_VAL64]], align 2
// CHECK: call arm_aapcscc void @__atomic_store_8(i8* noundef [[ADDR8]], i64 noundef [[VAL64]], i32 noundef 5)
__c11_atomic_store(addr, *val, 5);
}
PS test_promoted_exchange(_Atomic(PS) *addr, PS *val) {
// CHECK-LABEL: @test_promoted_exchange(%struct.PS* noalias sret(%struct.PS) align 2 %agg.result, { %struct.PS, [2 x i8] }* noundef %addr, %struct.PS* noundef %val)
// CHECK: [[ADDR_ARG:%.*]] = alloca { %struct.PS, [2 x i8] }*, align 4
// CHECK: [[VAL_ARG:%.*]] = alloca %struct.PS*, align 4
// CHECK: [[NONATOMIC_TMP:%.*]] = alloca %struct.PS, align 2
// CHECK: [[ATOMIC_VAL:%.*]] = alloca { %struct.PS, [2 x i8] }, align 8
// CHECK: [[ATOMIC_RES:%.*]] = alloca { %struct.PS, [2 x i8] }, align 8
// CHECK: store { %struct.PS, [2 x i8] }* %addr, { %struct.PS, [2 x i8] }** [[ADDR_ARG]], align 4
// CHECK: store %struct.PS* %val, %struct.PS** [[VAL_ARG]], align 4
// CHECK: [[ADDR:%.*]] = load { %struct.PS, [2 x i8] }*, { %struct.PS, [2 x i8] }** [[ADDR_ARG]], align 4
// CHECK: [[VAL:%.*]] = load %struct.PS*, %struct.PS** [[VAL_ARG]], align 4
// CHECK: [[NONATOMIC_TMP8:%.*]] = bitcast %struct.PS* [[NONATOMIC_TMP]] to i8*
// CHECK: [[VAL8:%.*]] = bitcast %struct.PS* [[VAL]] to i8*
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 2 [[NONATOMIC_TMP8]], i8* align 2 [[VAL8]], i32 6, i1 false)
// CHECK: [[ADDR64:%.*]] = bitcast { %struct.PS, [2 x i8] }* [[ADDR]] to i64*
// CHECK: [[ATOMIC_VAL8:%.*]] = bitcast { %struct.PS, [2 x i8] }* [[ATOMIC_VAL]] to i8*
// CHECK: [[NONATOMIC_TMP8:%.*]] = bitcast %struct.PS* [[NONATOMIC_TMP]] to i8*
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 8 [[ATOMIC_VAL8]], i8* align 2 [[NONATOMIC_TMP8]], i64 6, i1 false)
// CHECK: [[ATOMIC_VAL64:%.*]] = bitcast { %struct.PS, [2 x i8] }* [[ATOMIC_VAL]] to i64*
// CHECK: [[ATOMIC_RES64:%.*]] = bitcast { %struct.PS, [2 x i8] }* [[ATOMIC_RES]] to i64*
// CHECK: [[ADDR8:%.*]] = bitcast i64* [[ADDR64]] to i8*
// CHECK: [[VAL64:%.*]] = load i64, i64* [[ATOMIC_VAL64]], align 2
// CHECK: [[RES:%.*]] = call arm_aapcscc i64 @__atomic_exchange_8(i8* noundef [[ADDR8]], i64 noundef [[VAL64]], i32 noundef 5)
// CHECK: store i64 [[RES]], i64* [[ATOMIC_RES64]], align 8
// CHECK: [[ATOMIC_RES_STRUCT:%.*]] = bitcast i64* [[ATOMIC_RES64]] to %struct.PS*
// CHECK: [[AGG_RESULT8:%.*]] = bitcast %struct.PS* %agg.result to i8*
// CHECK: [[ATOMIC_RES8:%.*]] = bitcast %struct.PS* [[ATOMIC_RES_STRUCT]] to i8*
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 2 [[AGG_RESULT8]], i8* align 8 [[ATOMIC_RES8]], i32 6, i1 false)
return __c11_atomic_exchange(addr, *val, 5);
}
_Bool test_promoted_cmpxchg(_Atomic(PS) *addr, PS *desired, PS *new) {
// CHECK-LABEL: i1 @test_promoted_cmpxchg({ %struct.PS, [2 x i8] }* noundef %addr, %struct.PS* noundef %desired, %struct.PS* noundef %new) #0 {
// CHECK: [[ADDR_ARG:%.*]] = alloca { %struct.PS, [2 x i8] }*, align 4
// CHECK: [[DESIRED_ARG:%.*]] = alloca %struct.PS*, align 4
// CHECK: [[NEW_ARG:%.*]] = alloca %struct.PS*, align 4
// CHECK: [[NONATOMIC_TMP:%.*]] = alloca %struct.PS, align 2
// CHECK: [[ATOMIC_DESIRED:%.*]] = alloca { %struct.PS, [2 x i8] }, align 8
// CHECK: [[ATOMIC_NEW:%.*]] = alloca { %struct.PS, [2 x i8] }, align 8
// CHECK: store { %struct.PS, [2 x i8] }* %addr, { %struct.PS, [2 x i8] }** [[ADDR_ARG]], align 4
// CHECK: store %struct.PS* %desired, %struct.PS** [[DESIRED_ARG]], align 4
// CHECK: store %struct.PS* %new, %struct.PS** [[NEW_ARG]], align 4
// CHECK: [[ADDR:%.*]] = load { %struct.PS, [2 x i8] }*, { %struct.PS, [2 x i8] }** [[ADDR_ARG]], align 4
// CHECK: [[DESIRED:%.*]]= load %struct.PS*, %struct.PS** [[DESIRED_ARG]], align 4
// CHECK: [[NEW:%.*]] = load %struct.PS*, %struct.PS** [[NEW_ARG]], align 4
// CHECK: [[NONATOMIC_TMP8:%.*]] = bitcast %struct.PS* [[NONATOMIC_TMP]] to i8*
// CHECK: [[NEW8:%.*]] = bitcast %struct.PS* [[NEW]] to i8*
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 2 [[NONATOMIC_TMP8]], i8* align 2 [[NEW8]], i32 6, i1 false)
// CHECK: [[ADDR64:%.*]] = bitcast { %struct.PS, [2 x i8] }* [[ADDR]] to i64*
// CHECK: [[ATOMIC_DESIRED8:%.*]] = bitcast { %struct.PS, [2 x i8] }* [[ATOMIC_DESIRED]] to i8*
// CHECK: [[DESIRED8:%.*]] = bitcast %struct.PS* [[DESIRED]]to i8*
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 8 [[ATOMIC_DESIRED8]], i8* align 2 [[DESIRED8]], i64 6, i1 false)
// CHECK: [[ATOMIC_DESIRED64:%.*]] = bitcast { %struct.PS, [2 x i8] }* [[ATOMIC_DESIRED]] to i64*
// CHECK: [[ATOMIC_NEW8:%.*]] = bitcast { %struct.PS, [2 x i8] }* [[ATOMIC_NEW]] to i8*
// CHECK: [[NONATOMIC_TMP8:%.*]] = bitcast %struct.PS* [[NONATOMIC_TMP]] to i8*
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 8 [[ATOMIC_NEW8]], i8* align 2 [[NONATOMIC_TMP8]], i64 6, i1 false)
// CHECK: [[ATOMIC_NEW64:%.*]] = bitcast { %struct.PS, [2 x i8] }* [[ATOMIC_NEW]] to i64*
// CHECK: [[ADDR8:%.*]] = bitcast i64* [[ADDR64]] to i8*
// CHECK: [[ATOMIC_DESIRED8:%.*]] = bitcast i64* [[ATOMIC_DESIRED64]] to i8*
// CHECK: [[NEW64:%.*]] = load i64, i64* [[ATOMIC_NEW64]], align 2
// CHECK: [[RES:%.*]] = call arm_aapcscc zeroext i1 @__atomic_compare_exchange_8(i8* noundef [[ADDR8]], i8* noundef [[ATOMIC_DESIRED8]], i64 noundef [[NEW64]], i32 noundef 5, i32 noundef 5)
// CHECK: ret i1 [[RES]]
return __c11_atomic_compare_exchange_strong(addr, desired, *new, 5, 5);
}
_Atomic of empty struct shouldn't assert Summary: An _Atomic of an empty struct is pretty silly. In general we just widen empty structs to hold a byte's worth of storage, and we represent size and alignment as 0 internally and let LLVM figure out what to do. For _Atomic it's a bit different: the memory model mandates concrete effects occur when atomic operations occur, so in most cases actual instructions need to get emitted. It's really not worth trying to optimize empty struct atomics by figuring out e.g. that a fence would do, even though sane compilers should do optimize atomics. Further, wg21.link/p0528 will fix C++20 atomics with padding bits so that cmpxchg on them works, which means that we'll likely need to do the zero-init song and dance for empty atomic structs anyways (and I think we shouldn't special-case this behavior to C++20 because prior standards are just broken). This patch therefore makes a minor change to r176658 "Promote atomic type sizes up to a power of two": if the width of the atomic's value type is 0, just use 1 byte for width and leave alignment as-is (since it should never be zero, and over-aligned zero-width structs are weird but fine). This fixes an assertion: (NumBits >= MIN_INT_BITS && "bitwidth too small"), function get, file ../lib/IR/Type.cpp, line 241. It seems like this has run into other assertions before (namely the unreachable Kind check in ImpCastExprToType), but I haven't reproduced that issue with tip-of-tree. <rdar://problem/39678063> Reviewers: arphaman, rjmccall Subscribers: aheejin, cfe-commits Differential Revision: https://reviews.llvm.org/D46613 llvm-svn: 331845
2018-05-09 11:51:12 +08:00
struct Empty {};
struct Empty test_empty_struct_load(_Atomic(struct Empty)* empty) {
// CHECK-LABEL: @test_empty_struct_load(
// CHECK: call arm_aapcscc zeroext i8 @__atomic_load_1(i8* noundef %{{.*}}, i32 noundef 5)
_Atomic of empty struct shouldn't assert Summary: An _Atomic of an empty struct is pretty silly. In general we just widen empty structs to hold a byte's worth of storage, and we represent size and alignment as 0 internally and let LLVM figure out what to do. For _Atomic it's a bit different: the memory model mandates concrete effects occur when atomic operations occur, so in most cases actual instructions need to get emitted. It's really not worth trying to optimize empty struct atomics by figuring out e.g. that a fence would do, even though sane compilers should do optimize atomics. Further, wg21.link/p0528 will fix C++20 atomics with padding bits so that cmpxchg on them works, which means that we'll likely need to do the zero-init song and dance for empty atomic structs anyways (and I think we shouldn't special-case this behavior to C++20 because prior standards are just broken). This patch therefore makes a minor change to r176658 "Promote atomic type sizes up to a power of two": if the width of the atomic's value type is 0, just use 1 byte for width and leave alignment as-is (since it should never be zero, and over-aligned zero-width structs are weird but fine). This fixes an assertion: (NumBits >= MIN_INT_BITS && "bitwidth too small"), function get, file ../lib/IR/Type.cpp, line 241. It seems like this has run into other assertions before (namely the unreachable Kind check in ImpCastExprToType), but I haven't reproduced that issue with tip-of-tree. <rdar://problem/39678063> Reviewers: arphaman, rjmccall Subscribers: aheejin, cfe-commits Differential Revision: https://reviews.llvm.org/D46613 llvm-svn: 331845
2018-05-09 11:51:12 +08:00
return __c11_atomic_load(empty, 5);
}
void test_empty_struct_store(_Atomic(struct Empty)* empty, struct Empty value) {
// CHECK-LABEL: @test_empty_struct_store(
// CHECK: call arm_aapcscc void @__atomic_store_1(i8* noundef %{{.*}}, i8 noundef zeroext %{{.*}}, i32 noundef 5)
_Atomic of empty struct shouldn't assert Summary: An _Atomic of an empty struct is pretty silly. In general we just widen empty structs to hold a byte's worth of storage, and we represent size and alignment as 0 internally and let LLVM figure out what to do. For _Atomic it's a bit different: the memory model mandates concrete effects occur when atomic operations occur, so in most cases actual instructions need to get emitted. It's really not worth trying to optimize empty struct atomics by figuring out e.g. that a fence would do, even though sane compilers should do optimize atomics. Further, wg21.link/p0528 will fix C++20 atomics with padding bits so that cmpxchg on them works, which means that we'll likely need to do the zero-init song and dance for empty atomic structs anyways (and I think we shouldn't special-case this behavior to C++20 because prior standards are just broken). This patch therefore makes a minor change to r176658 "Promote atomic type sizes up to a power of two": if the width of the atomic's value type is 0, just use 1 byte for width and leave alignment as-is (since it should never be zero, and over-aligned zero-width structs are weird but fine). This fixes an assertion: (NumBits >= MIN_INT_BITS && "bitwidth too small"), function get, file ../lib/IR/Type.cpp, line 241. It seems like this has run into other assertions before (namely the unreachable Kind check in ImpCastExprToType), but I haven't reproduced that issue with tip-of-tree. <rdar://problem/39678063> Reviewers: arphaman, rjmccall Subscribers: aheejin, cfe-commits Differential Revision: https://reviews.llvm.org/D46613 llvm-svn: 331845
2018-05-09 11:51:12 +08:00
__c11_atomic_store(empty, value, 5);
}