llvm-project/mlir/lib/ExecutionEngine/JitRunner.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

400 lines
16 KiB
C++
Raw Normal View History

//===- jit-runner.cpp - MLIR CPU Execution Driver Library -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a library that provides a shared implementation for command line
// utilities that execute an MLIR file on the CPU by translating MLIR to LLVM
// IR before JIT-compiling and executing the latter.
//
// The translation can be customized by providing an MLIR to MLIR
// transformation.
//===----------------------------------------------------------------------===//
#include "mlir/ExecutionEngine/JitRunner.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/ExecutionEngine/ExecutionEngine.h"
#include "mlir/ExecutionEngine/OptUtils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/Parser.h"
#include "mlir/Support/FileUtilities.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassNameParser.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/ToolOutputFile.h"
#include <cstdint>
#include <numeric>
using namespace mlir;
using llvm::Error;
namespace {
/// This options struct prevents the need for global static initializers, and
/// is only initialized if the JITRunner is invoked.
struct Options {
llvm::cl::opt<std::string> inputFilename{llvm::cl::Positional,
llvm::cl::desc("<input file>"),
llvm::cl::init("-")};
llvm::cl::opt<std::string> mainFuncName{
"e", llvm::cl::desc("The function to be called"),
llvm::cl::value_desc("<function name>"), llvm::cl::init("main")};
llvm::cl::opt<std::string> mainFuncType{
"entry-point-result",
llvm::cl::desc("Textual description of the function type to be called"),
llvm::cl::value_desc("f32 | i32 | i64 | void"), llvm::cl::init("f32")};
llvm::cl::OptionCategory optFlags{"opt-like flags"};
// CLI list of pass information
llvm::cl::list<const llvm::PassInfo *, bool, llvm::PassNameParser> llvmPasses{
llvm::cl::desc("LLVM optimizing passes to run"), llvm::cl::cat(optFlags)};
// CLI variables for -On options.
llvm::cl::opt<bool> optO0{"O0",
llvm::cl::desc("Run opt passes and codegen at O0"),
llvm::cl::cat(optFlags)};
llvm::cl::opt<bool> optO1{"O1",
llvm::cl::desc("Run opt passes and codegen at O1"),
llvm::cl::cat(optFlags)};
llvm::cl::opt<bool> optO2{"O2",
llvm::cl::desc("Run opt passes and codegen at O2"),
llvm::cl::cat(optFlags)};
llvm::cl::opt<bool> optO3{"O3",
llvm::cl::desc("Run opt passes and codegen at O3"),
llvm::cl::cat(optFlags)};
llvm::cl::OptionCategory clOptionsCategory{"linking options"};
llvm::cl::list<std::string> clSharedLibs{
"shared-libs", llvm::cl::desc("Libraries to link dynamically"),
llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated,
llvm::cl::cat(clOptionsCategory)};
/// CLI variables for debugging.
llvm::cl::opt<bool> dumpObjectFile{
"dump-object-file",
llvm::cl::desc("Dump JITted-compiled object to file specified with "
"-object-filename (<input file>.o by default).")};
llvm::cl::opt<std::string> objectFilename{
"object-filename",
llvm::cl::desc("Dump JITted-compiled object to file <input file>.o")};
};
struct CompileAndExecuteConfig {
/// LLVM module transformer that is passed to ExecutionEngine.
llvm::function_ref<llvm::Error(llvm::Module *)> transformer;
/// A custom function that is passed to ExecutionEngine. It processes MLIR
/// module and creates LLVM IR module.
llvm::function_ref<std::unique_ptr<llvm::Module>(ModuleOp,
llvm::LLVMContext &)>
llvmModuleBuilder;
/// A custom function that is passed to ExecutinEngine to register symbols at
/// runtime.
llvm::function_ref<llvm::orc::SymbolMap(llvm::orc::MangleAndInterner)>
runtimeSymbolMap;
};
} // end anonymous namespace
static OwningModuleRef parseMLIRInput(StringRef inputFilename,
MLIRContext *context) {
// Set up the input file.
std::string errorMessage;
auto file = openInputFile(inputFilename, &errorMessage);
if (!file) {
llvm::errs() << errorMessage << "\n";
return nullptr;
}
llvm::SourceMgr sourceMgr;
sourceMgr.AddNewSourceBuffer(std::move(file), llvm::SMLoc());
return OwningModuleRef(parseSourceFile(sourceMgr, context));
}
static inline Error make_string_error(const Twine &message) {
return llvm::make_error<llvm::StringError>(message.str(),
llvm::inconvertibleErrorCode());
}
static Optional<unsigned> getCommandLineOptLevel(Options &options) {
Optional<unsigned> optLevel;
SmallVector<std::reference_wrapper<llvm::cl::opt<bool>>, 4> optFlags{
options.optO0, options.optO1, options.optO2, options.optO3};
// Determine if there is an optimization flag present.
for (unsigned j = 0; j < 4; ++j) {
auto &flag = optFlags[j].get();
if (flag) {
optLevel = j;
break;
}
}
return optLevel;
}
// JIT-compile the given module and run "entryPoint" with "args" as arguments.
static Error compileAndExecute(Options &options, ModuleOp module,
StringRef entryPoint,
CompileAndExecuteConfig config, void **args) {
Optional<llvm::CodeGenOpt::Level> jitCodeGenOptLevel;
if (auto clOptLevel = getCommandLineOptLevel(options))
jitCodeGenOptLevel =
static_cast<llvm::CodeGenOpt::Level>(clOptLevel.getValue());
// If shared library implements custom mlir-runner library init and destroy
// functions, we'll use them to register the library with the execution
// engine. Otherwise we'll pass library directly to the execution engine.
SmallVector<SmallString<256>, 4> libPaths;
// Use absolute library path so that gdb can find the symbol table.
transform(
options.clSharedLibs, std::back_inserter(libPaths),
[](std::string libPath) {
SmallString<256> absPath(libPath.begin(), libPath.end());
cantFail(llvm::errorCodeToError(llvm::sys::fs::make_absolute(absPath)));
return absPath;
});
// Libraries that we'll pass to the ExecutionEngine for loading.
SmallVector<StringRef, 4> executionEngineLibs;
using MlirRunnerInitFn = void (*)(llvm::StringMap<void *> &);
using MlirRunnerDestroyFn = void (*)();
llvm::StringMap<void *> exportSymbols;
SmallVector<MlirRunnerDestroyFn> destroyFns;
// Handle libraries that do support mlir-runner init/destroy callbacks.
for (auto &libPath : libPaths) {
auto lib = llvm::sys::DynamicLibrary::getPermanentLibrary(libPath.c_str());
void *initSym = lib.getAddressOfSymbol("__mlir_runner_init");
void *destroySim = lib.getAddressOfSymbol("__mlir_runner_destroy");
// Library does not support mlir runner, load it with ExecutionEngine.
if (!initSym || !destroySim) {
executionEngineLibs.push_back(libPath);
continue;
}
auto initFn = reinterpret_cast<MlirRunnerInitFn>(initSym);
initFn(exportSymbols);
auto destroyFn = reinterpret_cast<MlirRunnerDestroyFn>(destroySim);
destroyFns.push_back(destroyFn);
}
// Build a runtime symbol map from the config and exported symbols.
auto runtimeSymbolMap = [&](llvm::orc::MangleAndInterner interner) {
auto symbolMap = config.runtimeSymbolMap ? config.runtimeSymbolMap(interner)
: llvm::orc::SymbolMap();
for (auto &exportSymbol : exportSymbols)
symbolMap[interner(exportSymbol.getKey())] =
llvm::JITEvaluatedSymbol::fromPointer(exportSymbol.getValue());
return symbolMap;
};
auto expectedEngine = mlir::ExecutionEngine::create(
module, config.llvmModuleBuilder, config.transformer, jitCodeGenOptLevel,
executionEngineLibs);
if (!expectedEngine)
return expectedEngine.takeError();
auto engine = std::move(*expectedEngine);
engine->registerSymbols(runtimeSymbolMap);
auto expectedFPtr = engine->lookupPacked(entryPoint);
if (!expectedFPtr)
return expectedFPtr.takeError();
if (options.dumpObjectFile)
engine->dumpToObjectFile(options.objectFilename.empty()
? options.inputFilename + ".o"
: options.objectFilename);
void (*fptr)(void **) = *expectedFPtr;
(*fptr)(args);
// Run all dynamic library destroy callbacks to prepare for the shutdown.
llvm::for_each(destroyFns, [](MlirRunnerDestroyFn destroy) { destroy(); });
return Error::success();
}
static Error compileAndExecuteVoidFunction(Options &options, ModuleOp module,
StringRef entryPoint,
CompileAndExecuteConfig config) {
auto mainFunction = module.lookupSymbol<LLVM::LLVMFuncOp>(entryPoint);
if (!mainFunction || mainFunction.empty())
return make_string_error("entry point not found");
void *empty = nullptr;
return compileAndExecute(options, module, entryPoint, config, &empty);
}
template <typename Type>
Error checkCompatibleReturnType(LLVM::LLVMFuncOp mainFunction);
template <>
Error checkCompatibleReturnType<int32_t>(LLVM::LLVMFuncOp mainFunction) {
auto resultType = mainFunction.getType()
.cast<LLVM::LLVMFunctionType>()
.getReturnType()
.dyn_cast<IntegerType>();
if (!resultType || resultType.getWidth() != 32)
return make_string_error("only single i32 function result supported");
return Error::success();
}
template <>
Error checkCompatibleReturnType<int64_t>(LLVM::LLVMFuncOp mainFunction) {
auto resultType = mainFunction.getType()
.cast<LLVM::LLVMFunctionType>()
.getReturnType()
.dyn_cast<IntegerType>();
if (!resultType || resultType.getWidth() != 64)
return make_string_error("only single i64 function result supported");
return Error::success();
}
template <>
Error checkCompatibleReturnType<float>(LLVM::LLVMFuncOp mainFunction) {
if (!mainFunction.getType()
.cast<LLVM::LLVMFunctionType>()
.getReturnType()
.isa<Float32Type>())
return make_string_error("only single f32 function result supported");
return Error::success();
}
template <typename Type>
Error compileAndExecuteSingleReturnFunction(Options &options, ModuleOp module,
StringRef entryPoint,
CompileAndExecuteConfig config) {
auto mainFunction = module.lookupSymbol<LLVM::LLVMFuncOp>(entryPoint);
if (!mainFunction || mainFunction.isExternal())
return make_string_error("entry point not found");
if (mainFunction.getType().cast<LLVM::LLVMFunctionType>().getNumParams() != 0)
return make_string_error("function inputs not supported");
if (Error error = checkCompatibleReturnType<Type>(mainFunction))
return error;
Type res;
struct {
void *data;
} data;
data.data = &res;
if (auto error = compileAndExecute(options, module, entryPoint, config,
(void **)&data))
return error;
// Intentional printing of the output so we can test.
llvm::outs() << res << '\n';
return Error::success();
}
/// Entry point for all CPU runners. Expects the common argc/argv arguments for
/// standard C++ main functions.
int mlir::JitRunnerMain(int argc, char **argv, const DialectRegistry &registry,
JitRunnerConfig config) {
// Create the options struct containing the command line options for the
// runner. This must come before the command line options are parsed.
Options options;
llvm::cl::ParseCommandLineOptions(argc, argv, "MLIR CPU execution driver\n");
Optional<unsigned> optLevel = getCommandLineOptLevel(options);
SmallVector<std::reference_wrapper<llvm::cl::opt<bool>>, 4> optFlags{
options.optO0, options.optO1, options.optO2, options.optO3};
unsigned optCLIPosition = 0;
// Determine if there is an optimization flag present, and its CLI position
// (optCLIPosition).
for (unsigned j = 0; j < 4; ++j) {
auto &flag = optFlags[j].get();
if (flag) {
optCLIPosition = flag.getPosition();
break;
}
}
// Generate vector of pass information, plus the index at which we should
// insert any optimization passes in that vector (optPosition).
SmallVector<const llvm::PassInfo *, 4> passes;
unsigned optPosition = 0;
for (unsigned i = 0, e = options.llvmPasses.size(); i < e; ++i) {
passes.push_back(options.llvmPasses[i]);
if (optCLIPosition < options.llvmPasses.getPosition(i)) {
optPosition = i;
optCLIPosition = UINT_MAX; // To ensure we never insert again
}
}
MLIRContext context(registry);
Separate the Registration from Loading dialects in the Context This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand: - the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context. - Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline. This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled. To adjust to this change, stop using the existing dialect registration: the global registry will be removed soon. 1) For passes, you need to override the method: virtual void getDependentDialects(DialectRegistry &registry) const {} and registery on the provided registry any dialect that this pass can produce. Passes defined in TableGen can provide this list in the dependentDialects list field. 2) For dialects, on construction you can register dependent dialects using the provided MLIRContext: `context.getOrLoadDialect<DialectName>()` This is useful if a dialect may canonicalize or have interfaces involving another dialect. 3) For loading IR, dialect that can be in the input file must be explicitly registered with the context. `MlirOptMain()` is taking an explicit registry for this purpose. See how the standalone-opt.cpp example is setup: mlir::DialectRegistry registry; registry.insert<mlir::standalone::StandaloneDialect>(); registry.insert<mlir::StandardOpsDialect>(); Only operations from these two dialects can be in the input file. To include all of the dialects in MLIR Core, you can populate the registry this way: mlir::registerAllDialects(registry); 4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in the context before emitting the IR: context.getOrLoadDialect<ToyDialect>() Differential Revision: https://reviews.llvm.org/D85622
2020-08-19 04:01:19 +08:00
auto m = parseMLIRInput(options.inputFilename, &context);
if (!m) {
llvm::errs() << "could not parse the input IR\n";
return 1;
}
if (config.mlirTransformer)
if (failed(config.mlirTransformer(m.get())))
return EXIT_FAILURE;
auto tmBuilderOrError = llvm::orc::JITTargetMachineBuilder::detectHost();
if (!tmBuilderOrError) {
llvm::errs() << "Failed to create a JITTargetMachineBuilder for the host\n";
return EXIT_FAILURE;
}
auto tmOrError = tmBuilderOrError->createTargetMachine();
if (!tmOrError) {
llvm::errs() << "Failed to create a TargetMachine for the host\n";
return EXIT_FAILURE;
}
auto transformer = mlir::makeLLVMPassesTransformer(
passes, optLevel, /*targetMachine=*/tmOrError->get(), optPosition);
CompileAndExecuteConfig compileAndExecuteConfig;
compileAndExecuteConfig.transformer = transformer;
compileAndExecuteConfig.llvmModuleBuilder = config.llvmModuleBuilder;
compileAndExecuteConfig.runtimeSymbolMap = config.runtimesymbolMap;
// Get the function used to compile and execute the module.
using CompileAndExecuteFnT =
Error (*)(Options &, ModuleOp, StringRef, CompileAndExecuteConfig);
auto compileAndExecuteFn =
StringSwitch<CompileAndExecuteFnT>(options.mainFuncType.getValue())
.Case("i32", compileAndExecuteSingleReturnFunction<int32_t>)
.Case("i64", compileAndExecuteSingleReturnFunction<int64_t>)
.Case("f32", compileAndExecuteSingleReturnFunction<float>)
.Case("void", compileAndExecuteVoidFunction)
.Default(nullptr);
Error error = compileAndExecuteFn
? compileAndExecuteFn(options, m.get(),
options.mainFuncName.getValue(),
compileAndExecuteConfig)
: make_string_error("unsupported function type");
int exitCode = EXIT_SUCCESS;
llvm::handleAllErrors(std::move(error),
[&exitCode](const llvm::ErrorInfoBase &info) {
llvm::errs() << "Error: ";
info.log(llvm::errs());
llvm::errs() << '\n';
exitCode = EXIT_FAILURE;
});
return exitCode;
}