2012-09-28 05:21:21 +08:00
|
|
|
; Test lib call simplification of __memcpy_chk calls with various values
|
|
|
|
; for dstlen and len.
|
|
|
|
;
|
|
|
|
; RUN: opt < %s -instcombine -S | FileCheck %s
|
|
|
|
|
|
|
|
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
|
|
|
|
|
|
|
|
%struct.T1 = type { [100 x i32], [100 x i32], [1024 x i8] }
|
|
|
|
%struct.T2 = type { [100 x i32], [100 x i32], [1024 x i8] }
|
|
|
|
%struct.T3 = type { [100 x i32], [100 x i32], [2048 x i8] }
|
|
|
|
|
|
|
|
@t1 = common global %struct.T1 zeroinitializer
|
|
|
|
@t2 = common global %struct.T2 zeroinitializer
|
|
|
|
@t3 = common global %struct.T3 zeroinitializer
|
|
|
|
|
|
|
|
; Check cases where dstlen >= len.
|
|
|
|
|
[SimplifyLibCalls] Don't confuse strcpy_chk for stpcpy_chk.
This was introduced in a faulty refactoring (r225640, mea culpa):
the tests weren't testing the return values, so, for both
__strcpy_chk and __stpcpy_chk, we would return the end of the
buffer (matching stpcpy) instead of the beginning (for strcpy).
The root cause was the prefix "__" being ignored when comparing,
which made us always pick LibFunc::stpcpy_chk.
Pass the LibFunc::Func directly to avoid this kind of error.
Also, make the testcases as explicit as possible to prevent this.
The now-useful testcases expose another, entangled, stpcpy problem,
with the further simplification. This was introduced in a
refactoring (r225640) to match the original behavior.
However, this leads to problems when successive simplifications
generate several similar instructions, none of which are removed
by the custom replaceAllUsesWith.
For instance, InstCombine (the main user) doesn't erase the
instruction in its custom RAUW. When trying to simplify say
__stpcpy_chk:
- first, an stpcpy is created (fortified simplifier),
- second, a memcpy is created (normal simplifier), but the
stpcpy call isn't removed.
- third, InstCombine later revisits the instructions,
and simplifies the first stpcpy to a memcpy. We now have
two memcpys.
llvm-svn: 227250
2015-01-28 05:52:16 +08:00
|
|
|
define i8* @test_simplify1() {
|
2013-07-14 09:42:54 +08:00
|
|
|
; CHECK-LABEL: @test_simplify1(
|
2012-09-28 05:21:21 +08:00
|
|
|
%dst = bitcast %struct.T1* @t1 to i8*
|
|
|
|
%src = bitcast %struct.T2* @t2 to i8*
|
|
|
|
|
Change memcpy/memset/memmove to have dest and source alignments.
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
2015-11-19 06:17:24 +08:00
|
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 bitcast (%struct.T1* @t1 to i8*), i8* align 4 bitcast (%struct.T2* @t2 to i8*), i64 1824, i1 false)
|
[SimplifyLibCalls] Don't confuse strcpy_chk for stpcpy_chk.
This was introduced in a faulty refactoring (r225640, mea culpa):
the tests weren't testing the return values, so, for both
__strcpy_chk and __stpcpy_chk, we would return the end of the
buffer (matching stpcpy) instead of the beginning (for strcpy).
The root cause was the prefix "__" being ignored when comparing,
which made us always pick LibFunc::stpcpy_chk.
Pass the LibFunc::Func directly to avoid this kind of error.
Also, make the testcases as explicit as possible to prevent this.
The now-useful testcases expose another, entangled, stpcpy problem,
with the further simplification. This was introduced in a
refactoring (r225640) to match the original behavior.
However, this leads to problems when successive simplifications
generate several similar instructions, none of which are removed
by the custom replaceAllUsesWith.
For instance, InstCombine (the main user) doesn't erase the
instruction in its custom RAUW. When trying to simplify say
__stpcpy_chk:
- first, an stpcpy is created (fortified simplifier),
- second, a memcpy is created (normal simplifier), but the
stpcpy call isn't removed.
- third, InstCombine later revisits the instructions,
and simplifies the first stpcpy to a memcpy. We now have
two memcpys.
llvm-svn: 227250
2015-01-28 05:52:16 +08:00
|
|
|
; CHECK-NEXT: ret i8* bitcast (%struct.T1* @t1 to i8*)
|
|
|
|
%ret = call i8* @__memcpy_chk(i8* %dst, i8* %src, i64 1824, i64 1824)
|
|
|
|
ret i8* %ret
|
2012-09-28 05:21:21 +08:00
|
|
|
}
|
|
|
|
|
[SimplifyLibCalls] Don't confuse strcpy_chk for stpcpy_chk.
This was introduced in a faulty refactoring (r225640, mea culpa):
the tests weren't testing the return values, so, for both
__strcpy_chk and __stpcpy_chk, we would return the end of the
buffer (matching stpcpy) instead of the beginning (for strcpy).
The root cause was the prefix "__" being ignored when comparing,
which made us always pick LibFunc::stpcpy_chk.
Pass the LibFunc::Func directly to avoid this kind of error.
Also, make the testcases as explicit as possible to prevent this.
The now-useful testcases expose another, entangled, stpcpy problem,
with the further simplification. This was introduced in a
refactoring (r225640) to match the original behavior.
However, this leads to problems when successive simplifications
generate several similar instructions, none of which are removed
by the custom replaceAllUsesWith.
For instance, InstCombine (the main user) doesn't erase the
instruction in its custom RAUW. When trying to simplify say
__stpcpy_chk:
- first, an stpcpy is created (fortified simplifier),
- second, a memcpy is created (normal simplifier), but the
stpcpy call isn't removed.
- third, InstCombine later revisits the instructions,
and simplifies the first stpcpy to a memcpy. We now have
two memcpys.
llvm-svn: 227250
2015-01-28 05:52:16 +08:00
|
|
|
define i8* @test_simplify2() {
|
2013-07-14 09:42:54 +08:00
|
|
|
; CHECK-LABEL: @test_simplify2(
|
2012-09-28 05:21:21 +08:00
|
|
|
%dst = bitcast %struct.T1* @t1 to i8*
|
|
|
|
%src = bitcast %struct.T3* @t3 to i8*
|
|
|
|
|
Change memcpy/memset/memmove to have dest and source alignments.
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
2015-11-19 06:17:24 +08:00
|
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 bitcast (%struct.T1* @t1 to i8*), i8* align 4 bitcast (%struct.T3* @t3 to i8*), i64 1824, i1 false)
|
[SimplifyLibCalls] Don't confuse strcpy_chk for stpcpy_chk.
This was introduced in a faulty refactoring (r225640, mea culpa):
the tests weren't testing the return values, so, for both
__strcpy_chk and __stpcpy_chk, we would return the end of the
buffer (matching stpcpy) instead of the beginning (for strcpy).
The root cause was the prefix "__" being ignored when comparing,
which made us always pick LibFunc::stpcpy_chk.
Pass the LibFunc::Func directly to avoid this kind of error.
Also, make the testcases as explicit as possible to prevent this.
The now-useful testcases expose another, entangled, stpcpy problem,
with the further simplification. This was introduced in a
refactoring (r225640) to match the original behavior.
However, this leads to problems when successive simplifications
generate several similar instructions, none of which are removed
by the custom replaceAllUsesWith.
For instance, InstCombine (the main user) doesn't erase the
instruction in its custom RAUW. When trying to simplify say
__stpcpy_chk:
- first, an stpcpy is created (fortified simplifier),
- second, a memcpy is created (normal simplifier), but the
stpcpy call isn't removed.
- third, InstCombine later revisits the instructions,
and simplifies the first stpcpy to a memcpy. We now have
two memcpys.
llvm-svn: 227250
2015-01-28 05:52:16 +08:00
|
|
|
; CHECK-NEXT: ret i8* bitcast (%struct.T1* @t1 to i8*)
|
|
|
|
%ret = call i8* @__memcpy_chk(i8* %dst, i8* %src, i64 1824, i64 2848)
|
|
|
|
ret i8* %ret
|
2012-09-28 05:21:21 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
; Check cases where dstlen < len.
|
|
|
|
|
[SimplifyLibCalls] Don't confuse strcpy_chk for stpcpy_chk.
This was introduced in a faulty refactoring (r225640, mea culpa):
the tests weren't testing the return values, so, for both
__strcpy_chk and __stpcpy_chk, we would return the end of the
buffer (matching stpcpy) instead of the beginning (for strcpy).
The root cause was the prefix "__" being ignored when comparing,
which made us always pick LibFunc::stpcpy_chk.
Pass the LibFunc::Func directly to avoid this kind of error.
Also, make the testcases as explicit as possible to prevent this.
The now-useful testcases expose another, entangled, stpcpy problem,
with the further simplification. This was introduced in a
refactoring (r225640) to match the original behavior.
However, this leads to problems when successive simplifications
generate several similar instructions, none of which are removed
by the custom replaceAllUsesWith.
For instance, InstCombine (the main user) doesn't erase the
instruction in its custom RAUW. When trying to simplify say
__stpcpy_chk:
- first, an stpcpy is created (fortified simplifier),
- second, a memcpy is created (normal simplifier), but the
stpcpy call isn't removed.
- third, InstCombine later revisits the instructions,
and simplifies the first stpcpy to a memcpy. We now have
two memcpys.
llvm-svn: 227250
2015-01-28 05:52:16 +08:00
|
|
|
define i8* @test_no_simplify1() {
|
2013-07-14 09:42:54 +08:00
|
|
|
; CHECK-LABEL: @test_no_simplify1(
|
2012-09-28 05:21:21 +08:00
|
|
|
%dst = bitcast %struct.T3* @t3 to i8*
|
|
|
|
%src = bitcast %struct.T1* @t1 to i8*
|
|
|
|
|
[SimplifyLibCalls] Don't confuse strcpy_chk for stpcpy_chk.
This was introduced in a faulty refactoring (r225640, mea culpa):
the tests weren't testing the return values, so, for both
__strcpy_chk and __stpcpy_chk, we would return the end of the
buffer (matching stpcpy) instead of the beginning (for strcpy).
The root cause was the prefix "__" being ignored when comparing,
which made us always pick LibFunc::stpcpy_chk.
Pass the LibFunc::Func directly to avoid this kind of error.
Also, make the testcases as explicit as possible to prevent this.
The now-useful testcases expose another, entangled, stpcpy problem,
with the further simplification. This was introduced in a
refactoring (r225640) to match the original behavior.
However, this leads to problems when successive simplifications
generate several similar instructions, none of which are removed
by the custom replaceAllUsesWith.
For instance, InstCombine (the main user) doesn't erase the
instruction in its custom RAUW. When trying to simplify say
__stpcpy_chk:
- first, an stpcpy is created (fortified simplifier),
- second, a memcpy is created (normal simplifier), but the
stpcpy call isn't removed.
- third, InstCombine later revisits the instructions,
and simplifies the first stpcpy to a memcpy. We now have
two memcpys.
llvm-svn: 227250
2015-01-28 05:52:16 +08:00
|
|
|
; CHECK-NEXT: %ret = call i8* @__memcpy_chk(i8* bitcast (%struct.T3* @t3 to i8*), i8* bitcast (%struct.T1* @t1 to i8*), i64 2848, i64 1824)
|
|
|
|
; CHECK-NEXT: ret i8* %ret
|
|
|
|
%ret = call i8* @__memcpy_chk(i8* %dst, i8* %src, i64 2848, i64 1824)
|
|
|
|
ret i8* %ret
|
2012-09-28 05:21:21 +08:00
|
|
|
}
|
|
|
|
|
[SimplifyLibCalls] Don't confuse strcpy_chk for stpcpy_chk.
This was introduced in a faulty refactoring (r225640, mea culpa):
the tests weren't testing the return values, so, for both
__strcpy_chk and __stpcpy_chk, we would return the end of the
buffer (matching stpcpy) instead of the beginning (for strcpy).
The root cause was the prefix "__" being ignored when comparing,
which made us always pick LibFunc::stpcpy_chk.
Pass the LibFunc::Func directly to avoid this kind of error.
Also, make the testcases as explicit as possible to prevent this.
The now-useful testcases expose another, entangled, stpcpy problem,
with the further simplification. This was introduced in a
refactoring (r225640) to match the original behavior.
However, this leads to problems when successive simplifications
generate several similar instructions, none of which are removed
by the custom replaceAllUsesWith.
For instance, InstCombine (the main user) doesn't erase the
instruction in its custom RAUW. When trying to simplify say
__stpcpy_chk:
- first, an stpcpy is created (fortified simplifier),
- second, a memcpy is created (normal simplifier), but the
stpcpy call isn't removed.
- third, InstCombine later revisits the instructions,
and simplifies the first stpcpy to a memcpy. We now have
two memcpys.
llvm-svn: 227250
2015-01-28 05:52:16 +08:00
|
|
|
define i8* @test_no_simplify2() {
|
2013-07-14 09:42:54 +08:00
|
|
|
; CHECK-LABEL: @test_no_simplify2(
|
2012-09-28 05:21:21 +08:00
|
|
|
%dst = bitcast %struct.T1* @t1 to i8*
|
|
|
|
%src = bitcast %struct.T2* @t2 to i8*
|
|
|
|
|
[SimplifyLibCalls] Don't confuse strcpy_chk for stpcpy_chk.
This was introduced in a faulty refactoring (r225640, mea culpa):
the tests weren't testing the return values, so, for both
__strcpy_chk and __stpcpy_chk, we would return the end of the
buffer (matching stpcpy) instead of the beginning (for strcpy).
The root cause was the prefix "__" being ignored when comparing,
which made us always pick LibFunc::stpcpy_chk.
Pass the LibFunc::Func directly to avoid this kind of error.
Also, make the testcases as explicit as possible to prevent this.
The now-useful testcases expose another, entangled, stpcpy problem,
with the further simplification. This was introduced in a
refactoring (r225640) to match the original behavior.
However, this leads to problems when successive simplifications
generate several similar instructions, none of which are removed
by the custom replaceAllUsesWith.
For instance, InstCombine (the main user) doesn't erase the
instruction in its custom RAUW. When trying to simplify say
__stpcpy_chk:
- first, an stpcpy is created (fortified simplifier),
- second, a memcpy is created (normal simplifier), but the
stpcpy call isn't removed.
- third, InstCombine later revisits the instructions,
and simplifies the first stpcpy to a memcpy. We now have
two memcpys.
llvm-svn: 227250
2015-01-28 05:52:16 +08:00
|
|
|
; CHECK-NEXT: %ret = call i8* @__memcpy_chk(i8* bitcast (%struct.T1* @t1 to i8*), i8* bitcast (%struct.T2* @t2 to i8*), i64 1024, i64 0)
|
|
|
|
; CHECK-NEXT: ret i8* %ret
|
|
|
|
%ret = call i8* @__memcpy_chk(i8* %dst, i8* %src, i64 1024, i64 0)
|
|
|
|
ret i8* %ret
|
2012-09-28 05:21:21 +08:00
|
|
|
}
|
|
|
|
|
2015-01-14 08:55:05 +08:00
|
|
|
define i8* @test_simplify_return_indcall(i8* ()* %alloc) {
|
|
|
|
; CHECK-LABEL: @test_simplify_return_indcall(
|
|
|
|
%src = bitcast %struct.T2* @t2 to i8*
|
|
|
|
|
|
|
|
; CHECK-NEXT: %dst = call i8* %alloc()
|
|
|
|
%dst = call i8* %alloc()
|
|
|
|
|
|
|
|
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64
|
|
|
|
%ret = call i8* @__memcpy_chk(i8* %dst, i8* %src, i64 1824, i64 1824)
|
|
|
|
; CHECK-NEXT: ret i8* %dst
|
|
|
|
ret i8* %ret
|
|
|
|
}
|
|
|
|
|
2012-09-28 05:21:21 +08:00
|
|
|
declare i8* @__memcpy_chk(i8*, i8*, i64, i64)
|