llvm-project/llvm/test/Transforms/Inline/attributes.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

449 lines
14 KiB
LLVM
Raw Normal View History

; RUN: opt < %s -inline -S | FileCheck %s
; RUN: opt < %s -passes='cgscc(inline)' -S | FileCheck %s
target datalayout = "E-p:64:64:64-a0:0:8-f32:32:32-f64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-v64:64:64-v128:128:128"
define i32 @noattr_callee(i32 %i) {
ret i32 %i
}
define i32 @sanitize_address_callee(i32 %i) sanitize_address {
ret i32 %i
}
define i32 @sanitize_hwaddress_callee(i32 %i) sanitize_hwaddress {
ret i32 %i
}
define i32 @sanitize_thread_callee(i32 %i) sanitize_thread {
ret i32 %i
}
define i32 @sanitize_memory_callee(i32 %i) sanitize_memory {
ret i32 %i
}
define i32 @sanitize_memtag_callee(i32 %i) sanitize_memtag {
ret i32 %i
}
define i32 @safestack_callee(i32 %i) safestack {
ret i32 %i
}
define i32 @slh_callee(i32 %i) speculative_load_hardening {
ret i32 %i
}
define i32 @alwaysinline_callee(i32 %i) alwaysinline {
ret i32 %i
}
define i32 @alwaysinline_sanitize_address_callee(i32 %i) alwaysinline sanitize_address {
ret i32 %i
}
define i32 @alwaysinline_sanitize_hwaddress_callee(i32 %i) alwaysinline sanitize_hwaddress {
ret i32 %i
}
define i32 @alwaysinline_sanitize_thread_callee(i32 %i) alwaysinline sanitize_thread {
ret i32 %i
}
define i32 @alwaysinline_sanitize_memory_callee(i32 %i) alwaysinline sanitize_memory {
ret i32 %i
}
define i32 @alwaysinline_sanitize_memtag_callee(i32 %i) alwaysinline sanitize_memtag {
ret i32 %i
}
define i32 @alwaysinline_safestack_callee(i32 %i) alwaysinline safestack {
ret i32 %i
}
; Check that:
; * noattr callee is inlined into noattr caller,
; * sanitize_(address|memory|thread) callee is not inlined into noattr caller,
; * alwaysinline callee is always inlined no matter what sanitize_* attributes are present.
define i32 @test_no_sanitize_address(i32 %arg) {
%x1 = call i32 @noattr_callee(i32 %arg)
%x2 = call i32 @sanitize_address_callee(i32 %x1)
%x3 = call i32 @alwaysinline_callee(i32 %x2)
%x4 = call i32 @alwaysinline_sanitize_address_callee(i32 %x3)
ret i32 %x4
; CHECK-LABEL: @test_no_sanitize_address(
; CHECK-NEXT: @sanitize_address_callee
; CHECK-NEXT: ret i32
}
define i32 @test_no_sanitize_hwaddress(i32 %arg) {
%x1 = call i32 @noattr_callee(i32 %arg)
%x2 = call i32 @sanitize_hwaddress_callee(i32 %x1)
%x3 = call i32 @alwaysinline_callee(i32 %x2)
%x4 = call i32 @alwaysinline_sanitize_hwaddress_callee(i32 %x3)
ret i32 %x4
; CHECK-LABEL: @test_no_sanitize_hwaddress(
; CHECK-NEXT: @sanitize_hwaddress_callee
; CHECK-NEXT: ret i32
}
define i32 @test_no_sanitize_memory(i32 %arg) {
%x1 = call i32 @noattr_callee(i32 %arg)
%x2 = call i32 @sanitize_memory_callee(i32 %x1)
%x3 = call i32 @alwaysinline_callee(i32 %x2)
%x4 = call i32 @alwaysinline_sanitize_memory_callee(i32 %x3)
ret i32 %x4
; CHECK-LABEL: @test_no_sanitize_memory(
; CHECK-NEXT: @sanitize_memory_callee
; CHECK-NEXT: ret i32
}
define i32 @test_no_sanitize_thread(i32 %arg) {
%x1 = call i32 @noattr_callee(i32 %arg)
%x2 = call i32 @sanitize_thread_callee(i32 %x1)
%x3 = call i32 @alwaysinline_callee(i32 %x2)
%x4 = call i32 @alwaysinline_sanitize_thread_callee(i32 %x3)
ret i32 %x4
; CHECK-LABEL: @test_no_sanitize_thread(
; CHECK-NEXT: @sanitize_thread_callee
; CHECK-NEXT: ret i32
}
define i32 @test_no_sanitize_memtag(i32 %arg) {
%x1 = call i32 @noattr_callee(i32 %arg)
%x2 = call i32 @sanitize_memtag_callee(i32 %x1)
%x3 = call i32 @alwaysinline_callee(i32 %x2)
%x4 = call i32 @alwaysinline_sanitize_memtag_callee(i32 %x3)
ret i32 %x4
; CHECK-LABEL: @test_no_sanitize_memtag(
; CHECK-NEXT: @sanitize_memtag_callee
; CHECK-NEXT: ret i32
}
; Check that:
; * noattr callee is not inlined into sanitize_(address|memory|thread) caller,
; * sanitize_(address|memory|thread) callee is inlined into the caller with the same attribute,
; * alwaysinline callee is always inlined no matter what sanitize_* attributes are present.
define i32 @test_sanitize_address(i32 %arg) sanitize_address {
%x1 = call i32 @noattr_callee(i32 %arg)
%x2 = call i32 @sanitize_address_callee(i32 %x1)
%x3 = call i32 @alwaysinline_callee(i32 %x2)
%x4 = call i32 @alwaysinline_sanitize_address_callee(i32 %x3)
ret i32 %x4
; CHECK-LABEL: @test_sanitize_address(
; CHECK-NEXT: @noattr_callee
; CHECK-NEXT: ret i32
}
define i32 @test_sanitize_hwaddress(i32 %arg) sanitize_hwaddress {
%x1 = call i32 @noattr_callee(i32 %arg)
%x2 = call i32 @sanitize_hwaddress_callee(i32 %x1)
%x3 = call i32 @alwaysinline_callee(i32 %x2)
%x4 = call i32 @alwaysinline_sanitize_hwaddress_callee(i32 %x3)
ret i32 %x4
; CHECK-LABEL: @test_sanitize_hwaddress(
; CHECK-NEXT: @noattr_callee
; CHECK-NEXT: ret i32
}
define i32 @test_sanitize_memory(i32 %arg) sanitize_memory {
%x1 = call i32 @noattr_callee(i32 %arg)
%x2 = call i32 @sanitize_memory_callee(i32 %x1)
%x3 = call i32 @alwaysinline_callee(i32 %x2)
%x4 = call i32 @alwaysinline_sanitize_memory_callee(i32 %x3)
ret i32 %x4
; CHECK-LABEL: @test_sanitize_memory(
; CHECK-NEXT: @noattr_callee
; CHECK-NEXT: ret i32
}
define i32 @test_sanitize_thread(i32 %arg) sanitize_thread {
%x1 = call i32 @noattr_callee(i32 %arg)
%x2 = call i32 @sanitize_thread_callee(i32 %x1)
%x3 = call i32 @alwaysinline_callee(i32 %x2)
%x4 = call i32 @alwaysinline_sanitize_thread_callee(i32 %x3)
ret i32 %x4
; CHECK-LABEL: @test_sanitize_thread(
; CHECK-NEXT: @noattr_callee
; CHECK-NEXT: ret i32
}
define i32 @test_sanitize_memtag(i32 %arg) sanitize_memtag {
%x1 = call i32 @noattr_callee(i32 %arg)
%x2 = call i32 @sanitize_memtag_callee(i32 %x1)
%x3 = call i32 @alwaysinline_callee(i32 %x2)
%x4 = call i32 @alwaysinline_sanitize_memtag_callee(i32 %x3)
ret i32 %x4
; CHECK-LABEL: @test_sanitize_memtag(
; CHECK-NEXT: @noattr_callee
; CHECK-NEXT: ret i32
}
define i32 @test_safestack(i32 %arg) safestack {
%x1 = call i32 @noattr_callee(i32 %arg)
%x2 = call i32 @safestack_callee(i32 %x1)
%x3 = call i32 @alwaysinline_callee(i32 %x2)
%x4 = call i32 @alwaysinline_safestack_callee(i32 %x3)
ret i32 %x4
; CHECK-LABEL: @test_safestack(
; CHECK-NEXT: @noattr_callee
; CHECK-NEXT: ret i32
}
; Can inline a normal function into an SLH'ed function.
define i32 @test_caller_slh(i32 %i) speculative_load_hardening {
; CHECK-LABEL: @test_caller_slh(
; CHECK-SAME: ) [[SLH:.*]] {
; CHECK-NOT: call
; CHECK: ret i32
entry:
%callee = call i32 @noattr_callee(i32 %i)
ret i32 %callee
}
; Can inline a SLH'ed function into a normal one, propagating SLH.
define i32 @test_callee_slh(i32 %i) {
; CHECK-LABEL: @test_callee_slh(
; CHECK-SAME: ) [[SLH:.*]] {
; CHECK-NOT: call
; CHECK: ret i32
entry:
%callee = call i32 @slh_callee(i32 %i)
ret i32 %callee
}
; Check that a function doesn't get inlined if target-cpu strings don't match
; exactly.
define i32 @test_target_cpu_callee0(i32 %i) "target-cpu"="corei7" {
ret i32 %i
}
define i32 @test_target_cpu0(i32 %i) "target-cpu"="corei7" {
%1 = call i32 @test_target_cpu_callee0(i32 %i)
ret i32 %1
; CHECK-LABEL: @test_target_cpu0(
; CHECK-NOT: @test_target_cpu_callee0
}
define i32 @test_target_cpu_callee1(i32 %i) "target-cpu"="x86-64" {
ret i32 %i
}
define i32 @test_target_cpu1(i32 %i) "target-cpu"="corei7" {
%1 = call i32 @test_target_cpu_callee1(i32 %i)
ret i32 %1
; CHECK-LABEL: @test_target_cpu1(
; CHECK-NEXT: @test_target_cpu_callee1
; CHECK-NEXT: ret i32
}
; Check that a function doesn't get inlined if target-features strings don't
; match exactly.
define i32 @test_target_features_callee0(i32 %i) "target-features"="+sse4.2" {
ret i32 %i
}
define i32 @test_target_features0(i32 %i) "target-features"="+sse4.2" {
%1 = call i32 @test_target_features_callee0(i32 %i)
ret i32 %1
; CHECK-LABEL: @test_target_features0(
; CHECK-NOT: @test_target_features_callee0
}
define i32 @test_target_features_callee1(i32 %i) "target-features"="+avx2" {
ret i32 %i
}
define i32 @test_target_features1(i32 %i) "target-features"="+sse4.2" {
%1 = call i32 @test_target_features_callee1(i32 %i)
ret i32 %1
; CHECK-LABEL: @test_target_features1(
; CHECK-NEXT: @test_target_features_callee1
; CHECK-NEXT: ret i32
}
define i32 @less-precise-fpmad_callee0(i32 %i) "less-precise-fpmad"="false" {
ret i32 %i
; CHECK: @less-precise-fpmad_callee0(i32 %i) [[FPMAD_FALSE:#[0-9]+]] {
; CHECK-NEXT: ret i32
}
define i32 @less-precise-fpmad_callee1(i32 %i) "less-precise-fpmad"="true" {
ret i32 %i
; CHECK: @less-precise-fpmad_callee1(i32 %i) [[FPMAD_TRUE:#[0-9]+]] {
; CHECK-NEXT: ret i32
}
define i32 @test_less-precise-fpmad0(i32 %i) "less-precise-fpmad"="false" {
%1 = call i32 @less-precise-fpmad_callee0(i32 %i)
ret i32 %1
; CHECK: @test_less-precise-fpmad0(i32 %i) [[FPMAD_FALSE]] {
; CHECK-NEXT: ret i32
}
define i32 @test_less-precise-fpmad1(i32 %i) "less-precise-fpmad"="false" {
%1 = call i32 @less-precise-fpmad_callee1(i32 %i)
ret i32 %1
; CHECK: @test_less-precise-fpmad1(i32 %i) [[FPMAD_FALSE]] {
; CHECK-NEXT: ret i32
}
define i32 @test_less-precise-fpmad2(i32 %i) "less-precise-fpmad"="true" {
%1 = call i32 @less-precise-fpmad_callee0(i32 %i)
ret i32 %1
; CHECK: @test_less-precise-fpmad2(i32 %i) [[FPMAD_FALSE]] {
; CHECK-NEXT: ret i32
}
define i32 @test_less-precise-fpmad3(i32 %i) "less-precise-fpmad"="true" {
%1 = call i32 @less-precise-fpmad_callee1(i32 %i)
ret i32 %1
; CHECK: @test_less-precise-fpmad3(i32 %i) [[FPMAD_TRUE]] {
; CHECK-NEXT: ret i32
}
define i32 @no-implicit-float_callee0(i32 %i) {
ret i32 %i
; CHECK: @no-implicit-float_callee0(i32 %i) {
; CHECK-NEXT: ret i32
}
define i32 @no-implicit-float_callee1(i32 %i) noimplicitfloat {
ret i32 %i
; CHECK: @no-implicit-float_callee1(i32 %i) [[NOIMPLICITFLOAT:#[0-9]+]] {
; CHECK-NEXT: ret i32
}
define i32 @test_no-implicit-float0(i32 %i) {
%1 = call i32 @no-implicit-float_callee0(i32 %i)
ret i32 %1
; CHECK: @test_no-implicit-float0(i32 %i) {
; CHECK-NEXT: ret i32
}
define i32 @test_no-implicit-float1(i32 %i) {
%1 = call i32 @no-implicit-float_callee1(i32 %i)
ret i32 %1
; CHECK: @test_no-implicit-float1(i32 %i) [[NOIMPLICITFLOAT]] {
; CHECK-NEXT: ret i32
}
define i32 @test_no-implicit-float2(i32 %i) noimplicitfloat {
%1 = call i32 @no-implicit-float_callee0(i32 %i)
ret i32 %1
; CHECK: @test_no-implicit-float2(i32 %i) [[NOIMPLICITFLOAT]] {
; CHECK-NEXT: ret i32
}
define i32 @test_no-implicit-float3(i32 %i) noimplicitfloat {
%1 = call i32 @no-implicit-float_callee1(i32 %i)
ret i32 %1
; CHECK: @test_no-implicit-float3(i32 %i) [[NOIMPLICITFLOAT]] {
; CHECK-NEXT: ret i32
}
; Check that no-jump-tables flag propagates from inlined callee to caller
define i32 @no-use-jump-tables_callee0(i32 %i) {
ret i32 %i
; CHECK: @no-use-jump-tables_callee0(i32 %i) {
; CHECK-NEXT: ret i32
}
define i32 @no-use-jump-tables_callee1(i32 %i) "no-jump-tables"="true" {
ret i32 %i
; CHECK: @no-use-jump-tables_callee1(i32 %i) [[NOUSEJUMPTABLES:#[0-9]+]] {
; CHECK-NEXT: ret i32
}
define i32 @test_no-use-jump-tables0(i32 %i) {
%1 = call i32 @no-use-jump-tables_callee0(i32 %i)
ret i32 %1
; CHECK: @test_no-use-jump-tables0(i32 %i) {
; CHECK-NEXT: ret i32
}
define i32 @test_no-use-jump-tables1(i32 %i) {
%1 = call i32 @no-use-jump-tables_callee1(i32 %i)
ret i32 %1
; CHECK: @test_no-use-jump-tables1(i32 %i) [[NOUSEJUMPTABLES]] {
; CHECK-NEXT: ret i32
}
define i32 @test_no-use-jump-tables2(i32 %i) "no-jump-tables"="true" {
%1 = call i32 @no-use-jump-tables_callee0(i32 %i)
ret i32 %1
; CHECK: @test_no-use-jump-tables2(i32 %i) [[NOUSEJUMPTABLES]] {
; CHECK-NEXT: ret i32
}
define i32 @test_no-use-jump-tables3(i32 %i) "no-jump-tables"="true" {
%1 = call i32 @no-use-jump-tables_callee1(i32 %i)
ret i32 %1
; CHECK: @test_no-use-jump-tables3(i32 %i) [[NOUSEJUMPTABLES]] {
; CHECK-NEXT: ret i32
}
; Callee with null_pointer_is_valid attribute should not be inlined
; into a caller without this attribute.
; Exception: alwaysinline callee can still be inlined but
; null_pointer_is_valid should get copied to caller.
define i32 @null-pointer-is-valid_callee0(i32 %i) null_pointer_is_valid {
ret i32 %i
; CHECK: @null-pointer-is-valid_callee0(i32 %i)
; CHECK-NEXT: ret i32
}
define i32 @null-pointer-is-valid_callee1(i32 %i) alwaysinline null_pointer_is_valid {
ret i32 %i
; CHECK: @null-pointer-is-valid_callee1(i32 %i)
; CHECK-NEXT: ret i32
}
define i32 @null-pointer-is-valid_callee2(i32 %i) {
ret i32 %i
; CHECK: @null-pointer-is-valid_callee2(i32 %i)
; CHECK-NEXT: ret i32
}
; No inlining since caller does not have null_pointer_is_valid attribute.
define i32 @test_null-pointer-is-valid0(i32 %i) {
%1 = call i32 @null-pointer-is-valid_callee0(i32 %i)
ret i32 %1
; CHECK: @test_null-pointer-is-valid0(
; CHECK: call i32 @null-pointer-is-valid_callee0
; CHECK-NEXT: ret i32
}
; alwaysinline should force inlining even when caller does not have
; null_pointer_is_valid attribute. However, the attribute should be
; copied to caller.
define i32 @test_null-pointer-is-valid1(i32 %i) {
%1 = call i32 @null-pointer-is-valid_callee1(i32 %i)
ret i32 %1
; CHECK: @test_null-pointer-is-valid1(i32 %i) [[NULLPOINTERISVALID:#[0-9]+]] {
; CHECK-NEXT: ret i32
}
; Can inline since both caller and callee have null_pointer_is_valid
; attribute.
define i32 @test_null-pointer-is-valid2(i32 %i) null_pointer_is_valid {
%1 = call i32 @null-pointer-is-valid_callee2(i32 %i)
ret i32 %1
; CHECK: @test_null-pointer-is-valid2(i32 %i) [[NULLPOINTERISVALID]] {
; CHECK-NEXT: ret i32
}
; CHECK: attributes [[SLH]] = { speculative_load_hardening }
; CHECK: attributes [[FPMAD_FALSE]] = { "less-precise-fpmad"="false" }
; CHECK: attributes [[FPMAD_TRUE]] = { "less-precise-fpmad"="true" }
; CHECK: attributes [[NOIMPLICITFLOAT]] = { noimplicitfloat }
; CHECK: attributes [[NOUSEJUMPTABLES]] = { "no-jump-tables"="true" }
; CHECK: attributes [[NULLPOINTERISVALID]] = { null_pointer_is_valid }