llvm-project/llvm/lib/Target/Mips/MCTargetDesc/MipsABIFlagsSection.h

239 lines
7.2 KiB
C
Raw Normal View History

//===-- MipsABIFlagsSection.h - Mips ELF ABI Flags Section -----*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSABIFLAGSSECTION_H
#define LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSABIFLAGSSECTION_H
#include "llvm/MC/MCStreamer.h"
namespace llvm {
class MCStreamer;
struct MipsABIFlagsSection {
// Values for the xxx_size bytes of an ABI flags structure.
enum AFL_REG {
AFL_REG_NONE = 0x00, // No registers.
AFL_REG_32 = 0x01, // 32-bit registers.
AFL_REG_64 = 0x02, // 64-bit registers.
AFL_REG_128 = 0x03 // 128-bit registers.
};
// Masks for the ases word of an ABI flags structure.
enum AFL_ASE {
AFL_ASE_DSP = 0x00000001, // DSP ASE.
AFL_ASE_DSPR2 = 0x00000002, // DSP R2 ASE.
AFL_ASE_EVA = 0x00000004, // Enhanced VA Scheme.
AFL_ASE_MCU = 0x00000008, // MCU (MicroController) ASE.
AFL_ASE_MDMX = 0x00000010, // MDMX ASE.
AFL_ASE_MIPS3D = 0x00000020, // MIPS-3D ASE.
AFL_ASE_MT = 0x00000040, // MT ASE.
AFL_ASE_SMARTMIPS = 0x00000080, // SmartMIPS ASE.
AFL_ASE_VIRT = 0x00000100, // VZ ASE.
AFL_ASE_MSA = 0x00000200, // MSA ASE.
AFL_ASE_MIPS16 = 0x00000400, // MIPS16 ASE.
AFL_ASE_MICROMIPS = 0x00000800, // MICROMIPS ASE.
AFL_ASE_XPA = 0x00001000 // XPA ASE.
};
// Values for the isa_ext word of an ABI flags structure.
enum AFL_EXT {
AFL_EXT_XLR = 1, // RMI Xlr instruction.
AFL_EXT_OCTEON2 = 2, // Cavium Networks Octeon2.
AFL_EXT_OCTEONP = 3, // Cavium Networks OcteonP.
AFL_EXT_LOONGSON_3A = 4, // Loongson 3A.
AFL_EXT_OCTEON = 5, // Cavium Networks Octeon.
AFL_EXT_5900 = 6, // MIPS R5900 instruction.
AFL_EXT_4650 = 7, // MIPS R4650 instruction.
AFL_EXT_4010 = 8, // LSI R4010 instruction.
AFL_EXT_4100 = 9, // NEC VR4100 instruction.
AFL_EXT_3900 = 10, // Toshiba R3900 instruction.
AFL_EXT_10000 = 11, // MIPS R10000 instruction.
AFL_EXT_SB1 = 12, // Broadcom SB-1 instruction.
AFL_EXT_4111 = 13, // NEC VR4111/VR4181 instruction.
AFL_EXT_4120 = 14, // NEC VR4120 instruction.
AFL_EXT_5400 = 15, // NEC VR5400 instruction.
AFL_EXT_5500 = 16, // NEC VR5500 instruction.
AFL_EXT_LOONGSON_2E = 17, // ST Microelectronics Loongson 2E.
AFL_EXT_LOONGSON_2F = 18 // ST Microelectronics Loongson 2F.
};
// Values for the fp_abi word of an ABI flags structure.
enum Val_GNU_MIPS_ABI {
Val_GNU_MIPS_ABI_FP_ANY = 0,
Val_GNU_MIPS_ABI_FP_DOUBLE = 1,
Val_GNU_MIPS_ABI_FP_XX = 5,
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
Val_GNU_MIPS_ABI_FP_64 = 6,
Val_GNU_MIPS_ABI_FP_64A = 7
};
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
enum AFL_FLAGS1 {
AFL_FLAGS1_ODDSPREG = 1
};
// Internal representation of the values used in .module fp=value
enum class FpABIKind { ANY, XX, S32, S64 };
// Version of flags structure.
uint16_t Version;
// The level of the ISA: 1-5, 32, 64.
uint8_t ISALevel;
// The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
uint8_t ISARevision;
// The size of general purpose registers.
AFL_REG GPRSize;
// The size of co-processor 1 registers.
AFL_REG CPR1Size;
// The size of co-processor 2 registers.
AFL_REG CPR2Size;
// Processor-specific extension.
uint32_t ISAExtensionSet;
// Mask of ASEs used.
uint32_t ASESet;
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
bool OddSPReg;
bool Is32BitABI;
protected:
// The floating-point ABI.
FpABIKind FpABI;
public:
MipsABIFlagsSection()
: Version(0), ISALevel(0), ISARevision(0), GPRSize(AFL_REG_NONE),
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
CPR1Size(AFL_REG_NONE), CPR2Size(AFL_REG_NONE), ISAExtensionSet(0),
ASESet(0), OddSPReg(false), Is32BitABI(false), FpABI(FpABIKind::ANY) {}
uint16_t getVersionValue() { return (uint16_t)Version; }
uint8_t getISALevelValue() { return (uint8_t)ISALevel; }
uint8_t getISARevisionValue() { return (uint8_t)ISARevision; }
uint8_t getGPRSizeValue() { return (uint8_t)GPRSize; }
uint8_t getCPR1SizeValue();
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
uint8_t getCPR2SizeValue() { return (uint8_t)CPR2Size; }
uint8_t getFpABIValue();
uint32_t getISAExtensionSetValue() { return (uint32_t)ISAExtensionSet; }
uint32_t getASESetValue() { return (uint32_t)ASESet; }
uint32_t getFlags1Value() {
uint32_t Value = 0;
if (OddSPReg)
Value |= (uint32_t)AFL_FLAGS1_ODDSPREG;
return Value;
}
uint32_t getFlags2Value() { return 0; }
FpABIKind getFpABI() { return FpABI; }
void setFpABI(FpABIKind Value, bool IsABI32Bit) {
FpABI = Value;
Is32BitABI = IsABI32Bit;
}
StringRef getFpABIString(FpABIKind Value);
template <class PredicateLibrary>
void setISALevelAndRevisionFromPredicates(const PredicateLibrary &P) {
if (P.hasMips64()) {
ISALevel = 64;
if (P.hasMips64r6())
ISARevision = 6;
else if (P.hasMips64r2())
ISARevision = 2;
else
ISARevision = 1;
} else if (P.hasMips32()) {
ISALevel = 32;
if (P.hasMips32r6())
ISARevision = 6;
else if (P.hasMips32r2())
ISARevision = 2;
else
ISARevision = 1;
} else {
ISARevision = 0;
if (P.hasMips5())
ISALevel = 5;
else if (P.hasMips4())
ISALevel = 4;
else if (P.hasMips3())
ISALevel = 3;
else if (P.hasMips2())
ISALevel = 2;
else if (P.hasMips1())
ISALevel = 1;
else
llvm_unreachable("Unknown ISA level!");
}
}
template <class PredicateLibrary>
void setGPRSizeFromPredicates(const PredicateLibrary &P) {
GPRSize = P.isGP64bit() ? AFL_REG_64 : AFL_REG_32;
}
template <class PredicateLibrary>
void setCPR1SizeFromPredicates(const PredicateLibrary &P) {
if (P.abiUsesSoftFloat())
CPR1Size = AFL_REG_NONE;
else if (P.hasMSA())
CPR1Size = AFL_REG_128;
else
CPR1Size = P.isFP64bit() ? AFL_REG_64 : AFL_REG_32;
}
template <class PredicateLibrary>
void setASESetFromPredicates(const PredicateLibrary &P) {
ASESet = 0;
if (P.hasDSP())
ASESet |= AFL_ASE_DSP;
if (P.hasDSPR2())
ASESet |= AFL_ASE_DSPR2;
if (P.hasMSA())
ASESet |= AFL_ASE_MSA;
if (P.inMicroMipsMode())
ASESet |= AFL_ASE_MICROMIPS;
if (P.inMips16Mode())
ASESet |= AFL_ASE_MIPS16;
}
template <class PredicateLibrary>
void setFpAbiFromPredicates(const PredicateLibrary &P) {
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
Is32BitABI = P.isABI_O32();
FpABI = FpABIKind::ANY;
if (P.isABI_N32() || P.isABI_N64())
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
FpABI = FpABIKind::S64;
else if (P.isABI_O32()) {
if (P.isABI_FPXX())
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
FpABI = FpABIKind::XX;
else if (P.isFP64bit())
FpABI = FpABIKind::S64;
else
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
FpABI = FpABIKind::S32;
}
}
template <class PredicateLibrary>
void setAllFromPredicates(const PredicateLibrary &P) {
setISALevelAndRevisionFromPredicates(P);
setGPRSizeFromPredicates(P);
setCPR1SizeFromPredicates(P);
setASESetFromPredicates(P);
setFpAbiFromPredicates(P);
OddSPReg = P.useOddSPReg();
}
};
MCStreamer &operator<<(MCStreamer &OS, MipsABIFlagsSection &ABIFlagsSection);
}
#endif