llvm-project/llvm/lib/VMCore/iMemory.cpp

238 lines
8.3 KiB
C++
Raw Normal View History

//===-- iMemory.cpp - Implement Memory instructions -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the various memory related classes defined in iMemory.h
//
//===----------------------------------------------------------------------===//
#include "llvm/iMemory.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
using namespace llvm;
void AllocationInst::init(const Type *Ty, Value *ArraySize, unsigned iTy)
{
// ArraySize defaults to 1.
if (!ArraySize) ArraySize = ConstantUInt::get(Type::UIntTy, 1);
Operands.reserve(1);
assert(ArraySize->getType() == Type::UIntTy &&
"Malloc/Allocation array size != UIntTy!");
Operands.push_back(Use(ArraySize, this));
}
AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
const std::string &Name,
Instruction *InsertBefore)
: Instruction(PointerType::get(Ty), iTy, Name, InsertBefore) {
init(Ty, ArraySize, iTy);
}
AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(PointerType::get(Ty), iTy, Name, InsertAtEnd) {
init(Ty, ArraySize, iTy);
}
bool AllocationInst::isArrayAllocation() const {
return getOperand(0) != ConstantUInt::get(Type::UIntTy, 1);
}
const Type *AllocationInst::getAllocatedType() const {
return getType()->getElementType();
}
AllocaInst::AllocaInst(const AllocaInst &AI)
: AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0),
Instruction::Alloca) {
}
MallocInst::MallocInst(const MallocInst &MI)
: AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0),
Instruction::Malloc) {
}
//===----------------------------------------------------------------------===//
// FreeInst Implementation
//===----------------------------------------------------------------------===//
void FreeInst::init(Value *Ptr)
{
assert(Ptr && isa<PointerType>(Ptr->getType()) && "Can't free nonpointer!");
Operands.reserve(1);
Operands.push_back(Use(Ptr, this));
}
FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
: Instruction(Type::VoidTy, Free, "", InsertBefore) {
init(Ptr);
}
FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
: Instruction(Type::VoidTy, Free, "", InsertAtEnd) {
init(Ptr);
}
//===----------------------------------------------------------------------===//
// LoadInst Implementation
//===----------------------------------------------------------------------===//
void LoadInst::init(Value *Ptr) {
assert(Ptr && isa<PointerType>(Ptr->getType()) &&
"Ptr must have pointer type.");
Operands.reserve(1);
Operands.push_back(Use(Ptr, this));
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef)
: Instruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Name, InsertBef), Volatile(false) {
init(Ptr);
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE)
: Instruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Name, InsertAE), Volatile(false) {
init(Ptr);
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
Instruction *InsertBef)
: Instruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Name, InsertBef), Volatile(isVolatile) {
init(Ptr);
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
BasicBlock *InsertAE)
: Instruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Name, InsertAE), Volatile(isVolatile) {
init(Ptr);
}
//===----------------------------------------------------------------------===//
// StoreInst Implementation
//===----------------------------------------------------------------------===//
StoreInst::StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore)
: Instruction(Type::VoidTy, Store, "", InsertBefore), Volatile(false) {
init(Val, Ptr);
}
StoreInst::StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd)
: Instruction(Type::VoidTy, Store, "", InsertAtEnd), Volatile(false) {
init(Val, Ptr);
}
StoreInst::StoreInst(Value *Val, Value *Ptr, bool isVolatile,
Instruction *InsertBefore)
: Instruction(Type::VoidTy, Store, "", InsertBefore), Volatile(isVolatile) {
init(Val, Ptr);
}
StoreInst::StoreInst(Value *Val, Value *Ptr, bool isVolatile,
BasicBlock *InsertAtEnd)
: Instruction(Type::VoidTy, Store, "", InsertAtEnd), Volatile(isVolatile) {
init(Val, Ptr);
}
void StoreInst::init(Value *Val, Value *Ptr) {
assert(isa<PointerType>(Ptr->getType()) &&
Val->getType() == cast<PointerType>(Ptr->getType())->getElementType()
&& "Ptr must have pointer type.");
Operands.reserve(2);
Operands.push_back(Use(Val, this));
Operands.push_back(Use(Ptr, this));
}
//===----------------------------------------------------------------------===//
// GetElementPtrInst Implementation
//===----------------------------------------------------------------------===//
// checkType - Simple wrapper function to give a better assertion failure
// message on bad indexes for a gep instruction.
//
static inline const Type *checkType(const Type *Ty) {
assert(Ty && "Invalid indices for type!");
return Ty;
}
void GetElementPtrInst::init(Value *Ptr, const std::vector<Value*> &Idx)
{
Operands.reserve(1+Idx.size());
Operands.push_back(Use(Ptr, this));
for (unsigned i = 0, E = Idx.size(); i != E; ++i)
Operands.push_back(Use(Idx[i], this));
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
const std::string &Name, Instruction *InBe)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
Idx, true))),
GetElementPtr, Name, InBe) {
init(Ptr, Idx);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
const std::string &Name, BasicBlock *IAE)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
Idx, true))),
GetElementPtr, Name, IAE) {
init(Ptr, Idx);
}
// getIndexedType - Returns the type of the element that would be loaded with
// a load instruction with the specified parameters.
//
// A null type is returned if the indices are invalid for the specified
// pointer type.
//
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
const std::vector<Value*> &Idx,
bool AllowCompositeLeaf) {
if (!isa<PointerType>(Ptr)) return 0; // Type isn't a pointer type!
// Handle the special case of the empty set index set...
if (Idx.empty())
if (AllowCompositeLeaf ||
cast<PointerType>(Ptr)->getElementType()->isFirstClassType())
return cast<PointerType>(Ptr)->getElementType();
else
return 0;
unsigned CurIdx = 0;
while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
if (Idx.size() == CurIdx) {
if (AllowCompositeLeaf || CT->isFirstClassType()) return Ptr;
return 0; // Can't load a whole structure or array!?!?
}
Value *Index = Idx[CurIdx++];
if (isa<PointerType>(CT) && CurIdx != 1)
return 0; // Can only index into pointer types at the first index!
if (!CT->indexValid(Index)) return 0;
Ptr = CT->getTypeAtIndex(Index);
// If the new type forwards to another type, then it is in the middle
// of being refined to another type (and hence, may have dropped all
// references to what it was using before). So, use the new forwarded
// type.
if (const Type * Ty = Ptr->getForwardedType()) {
Ptr = Ty;
}
}
return CurIdx == Idx.size() ? Ptr : 0;
}