2020-04-22 04:37:57 +08:00
|
|
|
//===- SyntheticSections.h -------------------------------------*- C++ -*-===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#ifndef LLD_MACHO_SYNTHETIC_SECTIONS_H
|
|
|
|
#define LLD_MACHO_SYNTHETIC_SECTIONS_H
|
|
|
|
|
2020-05-19 11:28:50 +08:00
|
|
|
#include "Config.h"
|
2020-04-30 06:42:19 +08:00
|
|
|
#include "ExportTrie.h"
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
#include "InputSection.h"
|
2020-05-02 07:29:06 +08:00
|
|
|
#include "OutputSection.h"
|
2020-08-13 10:50:09 +08:00
|
|
|
#include "OutputSegment.h"
|
2020-04-22 04:37:57 +08:00
|
|
|
#include "Target.h"
|
[lld-macho] Have ICF operate on all sections at once
ICF previously operated only within a given OutputSection. We would
merge all CFStrings first, then merge all regular code sections in a
second phase. This worked fine since CFStrings would never reference
regular `__text` sections. However, I would like to expand ICF to merge
functions that reference unwind info. Unwind info references the LSDA
section, which can in turn reference the `__text` section, so we cannot
perform ICF in phases.
In order to have ICF operate on InputSections spanning multiple
OutputSections, we need a way to distinguish InputSections that are
destined for different OutputSections, so that we don't fold across
section boundaries. We achieve this by creating OutputSections early,
and setting `InputSection::parent` to point to them. This is what
LLD-ELF does. (This change should also make it easier to implement the
`section$start$` symbols.)
This diff also folds InputSections w/o checking their flags, which I
think is the right behavior -- if they are destined for the same
OutputSection, they will have the same flags in the output (even if
their input flags differ). I.e. the `parent` pointer check subsumes the
`flags` check. In practice this has nearly no effect (ICF did not become
any more effective on chromium_framework).
I've also updated ICF.cpp's block comment to better reflect its current
status.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D105641
2021-07-18 01:42:26 +08:00
|
|
|
#include "Writer.h"
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
|
2021-07-06 08:00:09 +08:00
|
|
|
#include "llvm/ADT/DenseMap.h"
|
2021-05-26 02:58:06 +08:00
|
|
|
#include "llvm/ADT/Hashing.h"
|
2022-07-24 00:11:46 +08:00
|
|
|
#include "llvm/ADT/Optional.h"
|
2020-04-22 04:37:57 +08:00
|
|
|
#include "llvm/ADT/SetVector.h"
|
[lld-macho] Implement cstring deduplication
Our implementation draws heavily from LLD-ELF's, which in turn delegates
its string deduplication to llvm-mc's StringTableBuilder. The messiness of
this diff is largely due to the fact that we've previously assumed that
all InputSections get concatenated together to form the output. This is
no longer true with CStringInputSections, which split their contents into
StringPieces. StringPieces are much more lightweight than InputSections,
which is important as we create a lot of them. They may also overlap in
the output, which makes it possible for strings to be tail-merged. In
fact, the initial version of this diff implemented tail merging, but
I've dropped it for reasons I'll explain later.
**Alignment Issues**
Mergeable cstring literals are found under the `__TEXT,__cstring`
section. In contrast to ELF, which puts strings that need different
alignments into different sections, clang's Mach-O backend puts them all
in one section. Strings that need to be aligned have the `.p2align`
directive emitted before them, which simply translates into zero padding
in the object file.
I *think* ld64 extracts the desired per-string alignment from this data
by preserving each string's offset from the last section-aligned
address. I'm not entirely certain since it doesn't seem consistent about
doing this; but perhaps this can be chalked up to cases where ld64 has
to deduplicate strings with different offset/alignment combos -- it
seems to pick one of their alignments to preserve. This doesn't seem
correct in general; we can in fact can induce ld64 to produce a crashing
binary just by linking in an additional object file that only contains
cstrings and no code. See PR50563 for details.
Moreover, this scheme seems rather inefficient: since unaligned and
aligned strings are all put in the same section, which has a single
alignment value, it doesn't seem possible to tell whether a given string
doesn't have any alignment requirements. Preserving offset+alignments
for strings that don't need it is wasteful.
In practice, the crashes seen so far seem to stem from x86_64 SIMD
operations on cstrings. X86_64 requires SIMD accesses to be
16-byte-aligned. So for now, I'm thinking of just aligning all strings
to 16 bytes on x86_64. This is indeed wasteful, but implementation-wise
it's simpler than preserving per-string alignment+offsets. It also
avoids the aforementioned crash after deduplication of
differently-aligned strings. Finally, the overhead is not huge: using
16-byte alignment (vs no alignment) is only a 0.5% size overhead when
linking chromium_framework.
With these alignment requirements, it doesn't make sense to attempt tail
merging -- most strings will not be eligible since their overlaps aren't
likely to start at a 16-byte boundary. Tail-merging (with alignment) for
chromium_framework only improves size by 0.3%.
It's worth noting that LLD-ELF only does tail merging at `-O2`. By
default (at `-O1`), it just deduplicates w/o tail merging. @thakis has
also mentioned that they saw it regress compressed size in some cases
and therefore turned it off. `ld64` does not seem to do tail merging at
all.
**Performance Numbers**
CString deduplication reduces chromium_framework from 250MB to 242MB, or
about a 3.2% reduction.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.99 4.14 4.015 4.0365 0.0492336
Difference at 95.0% confidence
0.0865 +/- 0.027245
2.18987% +/- 0.689746%
(Student's t, pooled s = 0.0425673)
As expected, cstring merging incurs some non-trivial overhead.
When passing `--no-literal-merge`, it seems that performance is the
same, i.e. the refactoring in this diff didn't cost us.
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.89 4.02 3.935 3.9435 0.043197831
No difference proven at 95.0% confidence
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D102964
2021-06-08 11:47:12 +08:00
|
|
|
#include "llvm/MC/StringTableBuilder.h"
|
2021-01-07 10:11:44 +08:00
|
|
|
#include "llvm/Support/MathExtras.h"
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
#include "llvm/Support/raw_ostream.h"
|
2020-04-22 04:37:57 +08:00
|
|
|
|
[lld-macho] Deduplicate fixed-width literals
Conceptually, the implementation is pretty straightforward: we put each
literal value into a hashtable, and then write out the keys of that
hashtable at the end.
In contrast with ELF, the Mach-O format does not support variable-length
literals that aren't strings. Its literals are either 4, 8, or 16 bytes
in length. LLD-ELF dedups its literals via sorting + uniq'ing, but since
we don't need to worry about overly-long values, we should be able to do
a faster job by just hashing.
That said, the implementation right now is far from optimal, because we
add to those hashtables serially. To parallelize this, we'll need a
basic concurrent hashtable (only needs to support concurrent writes w/o
interleave reads), which shouldn't be to hard to implement, but I'd like
to punt on it for now.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 4.27 4.39 4.315 4.3225 0.033225703
+ 20 4.36 4.82 4.44 4.4845 0.13152846
Difference at 95.0% confidence
0.162 +/- 0.0613971
3.74783% +/- 1.42041%
(Student's t, pooled s = 0.0959262)
This corresponds to binary size savings of 2MB out of 335MB, or 0.6%.
It's not a great tradeoff as-is, but as mentioned our implementation can
be signficantly optimized, and literal dedup will unlock more
opportunities for ICF to identify identical structures that reference
the same literals.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D103113
2021-06-12 07:49:50 +08:00
|
|
|
#include <unordered_map>
|
|
|
|
|
[lld-macho] Emit STABS symbols for debugging, and drop debug sections
Debug sections contain a large amount of data. In order not to bloat the size
of the final binary, we remove them and instead emit STABS symbols for
`dsymutil` and the debugger to locate their contents in the object files.
With this diff, `dsymutil` is able to locate the debug info. However, we need
a few more features before `lldb` is able to work well with our binaries --
e.g. having `LC_DYSYMTAB` accurately reflect the number of local symbols,
emitting `LC_UUID`, and more. Those will be handled in follow-up diffs.
Note also that the STABS we emit differ slightly from what ld64 does. First, we
emit the path to the source file as one `N_SO` symbol instead of two. (`ld64`
emits one `N_SO` for the dirname and one of the basename.) Second, we do not
emit `N_BNSYM` and `N_ENSYM` STABS to mark the start and end of functions,
because the `N_FUN` STABS already serve that purpose. @clayborg recommended
these changes based on his knowledge of what the debugging tools look for.
Additionally, this current implementation doesn't accurately reflect the size
of function symbols. It uses the size of their containing sectioins as a proxy,
but that is only accurate if `.subsections_with_symbols` is set, and if there
isn't an `N_ALT_ENTRY` in that particular subsection. I think we have two
options to solve this:
1. We can split up subsections by symbol even if `.subsections_with_symbols`
is not set, but include constraints to ensure those subsections retain
their order in the final output. This is `ld64`'s approach.
2. We could just add a `size` field to our `Symbol` class. This seems simpler,
and I'm more inclined toward it, but I'm not sure if there are use cases
that it doesn't handle well. As such I'm punting on the decision for now.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D89257
2020-12-02 06:45:01 +08:00
|
|
|
namespace llvm {
|
|
|
|
class DWARFUnit;
|
|
|
|
} // namespace llvm
|
|
|
|
|
2020-04-22 04:37:57 +08:00
|
|
|
namespace lld {
|
|
|
|
namespace macho {
|
|
|
|
|
2020-08-28 06:59:30 +08:00
|
|
|
class Defined;
|
2020-04-22 04:37:57 +08:00
|
|
|
class DylibSymbol;
|
2020-04-28 03:50:59 +08:00
|
|
|
class LoadCommand;
|
[lld-macho] Emit STABS symbols for debugging, and drop debug sections
Debug sections contain a large amount of data. In order not to bloat the size
of the final binary, we remove them and instead emit STABS symbols for
`dsymutil` and the debugger to locate their contents in the object files.
With this diff, `dsymutil` is able to locate the debug info. However, we need
a few more features before `lldb` is able to work well with our binaries --
e.g. having `LC_DYSYMTAB` accurately reflect the number of local symbols,
emitting `LC_UUID`, and more. Those will be handled in follow-up diffs.
Note also that the STABS we emit differ slightly from what ld64 does. First, we
emit the path to the source file as one `N_SO` symbol instead of two. (`ld64`
emits one `N_SO` for the dirname and one of the basename.) Second, we do not
emit `N_BNSYM` and `N_ENSYM` STABS to mark the start and end of functions,
because the `N_FUN` STABS already serve that purpose. @clayborg recommended
these changes based on his knowledge of what the debugging tools look for.
Additionally, this current implementation doesn't accurately reflect the size
of function symbols. It uses the size of their containing sectioins as a proxy,
but that is only accurate if `.subsections_with_symbols` is set, and if there
isn't an `N_ALT_ENTRY` in that particular subsection. I think we have two
options to solve this:
1. We can split up subsections by symbol even if `.subsections_with_symbols`
is not set, but include constraints to ensure those subsections retain
their order in the final output. This is `ld64`'s approach.
2. We could just add a `size` field to our `Symbol` class. This seems simpler,
and I'm more inclined toward it, but I'm not sure if there are use cases
that it doesn't handle well. As such I'm punting on the decision for now.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D89257
2020-12-02 06:45:01 +08:00
|
|
|
class ObjFile;
|
2021-04-16 09:14:33 +08:00
|
|
|
class UnwindInfoSection;
|
2020-04-28 03:50:59 +08:00
|
|
|
|
2020-05-02 07:29:06 +08:00
|
|
|
class SyntheticSection : public OutputSection {
|
|
|
|
public:
|
|
|
|
SyntheticSection(const char *segname, const char *name);
|
|
|
|
virtual ~SyntheticSection() = default;
|
2020-05-06 07:37:34 +08:00
|
|
|
|
|
|
|
static bool classof(const OutputSection *sec) {
|
|
|
|
return sec->kind() == SyntheticKind;
|
|
|
|
}
|
[lld-macho] Refactor segment/section creation, sorting, and merging
Summary:
There were a few issues with the previous setup:
1. The section sorting comparator used a declarative map of section names to
determine the correct order, but it turns out we need to match on more than
just names -- in particular, an upcoming diff will sort based on whether the
S_ZERO_FILL flag is set. This diff changes the sorter to a more imperative but
flexible form.
2. We were sorting OutputSections stored in a MapVector, which left the
MapVector in an inconsistent state -- the wrong keys map to the wrong values!
In practice, we weren't doing key lookups (only container iteration) after the
sort, so this was fine, but it was still a dubious state of affairs. This diff
copies the OutputSections to a vector before sorting them.
3. We were adding unneeded OutputSections to OutputSegments and then filtering
them out later, which meant that we had to remember whether an OutputSegment
was in a pre- or post-filtered state. This diff only adds the sections to the
segments if they are needed.
In addition to those major changes, two minor ones worth noting:
1. I renamed all OutputSection variable names to `osec`, to parallel `isec`.
Previously we were using some inconsistent combination of `osec`, `os`, and
`section`.
2. I added a check (and a test) for InputSections with names that clashed with
those of our synthetic OutputSections.
Reviewers: #lld-macho
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81887
2020-06-15 15:03:24 +08:00
|
|
|
|
2021-07-01 06:55:36 +08:00
|
|
|
StringRef segname;
|
2021-03-13 06:26:12 +08:00
|
|
|
// This fake InputSection makes it easier for us to write code that applies
|
|
|
|
// generically to both user inputs and synthetics.
|
|
|
|
InputSection *isec;
|
2020-05-02 07:29:06 +08:00
|
|
|
};
|
|
|
|
|
2020-07-31 05:29:14 +08:00
|
|
|
// All sections in __LINKEDIT should inherit from this.
|
|
|
|
class LinkEditSection : public SyntheticSection {
|
|
|
|
public:
|
|
|
|
LinkEditSection(const char *segname, const char *name)
|
|
|
|
: SyntheticSection(segname, name) {
|
2021-04-03 06:46:18 +08:00
|
|
|
align = target->wordSize;
|
2020-07-31 05:29:14 +08:00
|
|
|
}
|
|
|
|
|
2022-02-02 02:45:38 +08:00
|
|
|
// Implementations of this method can assume that the regular (non-__LINKEDIT)
|
|
|
|
// sections already have their addresses assigned.
|
2021-04-08 07:55:45 +08:00
|
|
|
virtual void finalizeContents() {}
|
|
|
|
|
2020-08-28 08:43:19 +08:00
|
|
|
// Sections in __LINKEDIT are special: their offsets are recorded in the
|
|
|
|
// load commands like LC_DYLD_INFO_ONLY and LC_SYMTAB, instead of in section
|
|
|
|
// headers.
|
2022-07-25 13:28:11 +08:00
|
|
|
bool isHidden() const final { return true; }
|
2020-08-28 08:43:19 +08:00
|
|
|
|
2020-07-31 05:29:14 +08:00
|
|
|
virtual uint64_t getRawSize() const = 0;
|
|
|
|
|
|
|
|
// codesign (or more specifically libstuff) checks that each section in
|
|
|
|
// __LINKEDIT ends where the next one starts -- no gaps are permitted. We
|
|
|
|
// therefore align every section's start and end points to WordSize.
|
|
|
|
//
|
|
|
|
// NOTE: This assumes that the extra bytes required for alignment can be
|
|
|
|
// zero-valued bytes.
|
2022-07-25 13:28:11 +08:00
|
|
|
uint64_t getSize() const final { return llvm::alignTo(getRawSize(), align); }
|
2020-07-31 05:29:14 +08:00
|
|
|
};
|
|
|
|
|
2020-04-28 03:50:59 +08:00
|
|
|
// The header of the Mach-O file, which must have a file offset of zero.
|
2021-06-14 07:43:37 +08:00
|
|
|
class MachHeaderSection final : public SyntheticSection {
|
2020-04-28 03:50:59 +08:00
|
|
|
public:
|
2021-05-04 06:31:23 +08:00
|
|
|
MachHeaderSection();
|
2020-04-28 03:50:59 +08:00
|
|
|
bool isHidden() const override { return true; }
|
2021-05-04 06:31:23 +08:00
|
|
|
uint64_t getSize() const override;
|
|
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
|
|
|
|
void addLoadCommand(LoadCommand *);
|
2020-04-28 03:50:59 +08:00
|
|
|
|
2021-04-03 06:46:18 +08:00
|
|
|
protected:
|
2020-04-28 03:50:59 +08:00
|
|
|
std::vector<LoadCommand *> loadCommands;
|
|
|
|
uint32_t sizeOfCmds = 0;
|
|
|
|
};
|
|
|
|
|
|
|
|
// A hidden section that exists solely for the purpose of creating the
|
|
|
|
// __PAGEZERO segment, which is used to catch null pointer dereferences.
|
2021-06-14 07:43:37 +08:00
|
|
|
class PageZeroSection final : public SyntheticSection {
|
2020-04-28 03:50:59 +08:00
|
|
|
public:
|
|
|
|
PageZeroSection();
|
|
|
|
bool isHidden() const override { return true; }
|
2022-02-07 01:36:12 +08:00
|
|
|
bool isNeeded() const override { return target->pageZeroSize != 0; }
|
2021-04-03 06:46:18 +08:00
|
|
|
uint64_t getSize() const override { return target->pageZeroSize; }
|
2020-04-28 03:50:59 +08:00
|
|
|
uint64_t getFileSize() const override { return 0; }
|
2020-05-02 07:29:06 +08:00
|
|
|
void writeTo(uint8_t *buf) const override {}
|
2020-04-28 03:50:59 +08:00
|
|
|
};
|
2020-04-22 04:37:57 +08:00
|
|
|
|
2020-08-13 10:50:09 +08:00
|
|
|
// This is the base class for the GOT and TLVPointer sections, which are nearly
|
|
|
|
// functionally identical -- they will both be populated by dyld with addresses
|
|
|
|
// to non-lazily-loaded dylib symbols. The main difference is that the
|
|
|
|
// TLVPointerSection stores references to thread-local variables.
|
|
|
|
class NonLazyPointerSectionBase : public SyntheticSection {
|
2020-04-22 04:37:57 +08:00
|
|
|
public:
|
2020-08-13 10:50:09 +08:00
|
|
|
NonLazyPointerSectionBase(const char *segname, const char *name);
|
2020-06-14 11:00:06 +08:00
|
|
|
const llvm::SetVector<const Symbol *> &getEntries() const { return entries; }
|
2020-04-28 03:50:59 +08:00
|
|
|
bool isNeeded() const override { return !entries.empty(); }
|
2021-04-03 06:46:18 +08:00
|
|
|
uint64_t getSize() const override {
|
|
|
|
return entries.size() * target->wordSize;
|
|
|
|
}
|
2020-06-14 11:00:06 +08:00
|
|
|
void writeTo(uint8_t *buf) const override;
|
2020-08-21 05:45:51 +08:00
|
|
|
void addEntry(Symbol *sym);
|
2021-03-30 08:33:48 +08:00
|
|
|
uint64_t getVA(uint32_t gotIndex) const {
|
|
|
|
return addr + gotIndex * target->wordSize;
|
|
|
|
}
|
|
|
|
|
2020-04-22 04:37:57 +08:00
|
|
|
private:
|
2020-06-14 11:00:06 +08:00
|
|
|
llvm::SetVector<const Symbol *> entries;
|
2020-04-22 04:37:57 +08:00
|
|
|
};
|
|
|
|
|
2021-06-14 07:43:37 +08:00
|
|
|
class GotSection final : public NonLazyPointerSectionBase {
|
2020-08-13 10:50:09 +08:00
|
|
|
public:
|
2021-06-19 21:54:11 +08:00
|
|
|
GotSection();
|
2020-08-13 10:50:09 +08:00
|
|
|
};
|
|
|
|
|
2021-06-14 07:43:37 +08:00
|
|
|
class TlvPointerSection final : public NonLazyPointerSectionBase {
|
2020-08-13 10:50:09 +08:00
|
|
|
public:
|
2021-06-19 21:54:11 +08:00
|
|
|
TlvPointerSection();
|
2020-08-13 10:50:09 +08:00
|
|
|
};
|
|
|
|
|
2020-09-06 01:55:33 +08:00
|
|
|
struct Location {
|
2021-03-13 06:26:12 +08:00
|
|
|
const InputSection *isec;
|
|
|
|
uint64_t offset;
|
2020-08-21 05:45:51 +08:00
|
|
|
|
2021-03-13 06:26:12 +08:00
|
|
|
Location(const InputSection *isec, uint64_t offset)
|
|
|
|
: isec(isec), offset(offset) {}
|
[lld-macho] Implement cstring deduplication
Our implementation draws heavily from LLD-ELF's, which in turn delegates
its string deduplication to llvm-mc's StringTableBuilder. The messiness of
this diff is largely due to the fact that we've previously assumed that
all InputSections get concatenated together to form the output. This is
no longer true with CStringInputSections, which split their contents into
StringPieces. StringPieces are much more lightweight than InputSections,
which is important as we create a lot of them. They may also overlap in
the output, which makes it possible for strings to be tail-merged. In
fact, the initial version of this diff implemented tail merging, but
I've dropped it for reasons I'll explain later.
**Alignment Issues**
Mergeable cstring literals are found under the `__TEXT,__cstring`
section. In contrast to ELF, which puts strings that need different
alignments into different sections, clang's Mach-O backend puts them all
in one section. Strings that need to be aligned have the `.p2align`
directive emitted before them, which simply translates into zero padding
in the object file.
I *think* ld64 extracts the desired per-string alignment from this data
by preserving each string's offset from the last section-aligned
address. I'm not entirely certain since it doesn't seem consistent about
doing this; but perhaps this can be chalked up to cases where ld64 has
to deduplicate strings with different offset/alignment combos -- it
seems to pick one of their alignments to preserve. This doesn't seem
correct in general; we can in fact can induce ld64 to produce a crashing
binary just by linking in an additional object file that only contains
cstrings and no code. See PR50563 for details.
Moreover, this scheme seems rather inefficient: since unaligned and
aligned strings are all put in the same section, which has a single
alignment value, it doesn't seem possible to tell whether a given string
doesn't have any alignment requirements. Preserving offset+alignments
for strings that don't need it is wasteful.
In practice, the crashes seen so far seem to stem from x86_64 SIMD
operations on cstrings. X86_64 requires SIMD accesses to be
16-byte-aligned. So for now, I'm thinking of just aligning all strings
to 16 bytes on x86_64. This is indeed wasteful, but implementation-wise
it's simpler than preserving per-string alignment+offsets. It also
avoids the aforementioned crash after deduplication of
differently-aligned strings. Finally, the overhead is not huge: using
16-byte alignment (vs no alignment) is only a 0.5% size overhead when
linking chromium_framework.
With these alignment requirements, it doesn't make sense to attempt tail
merging -- most strings will not be eligible since their overlaps aren't
likely to start at a 16-byte boundary. Tail-merging (with alignment) for
chromium_framework only improves size by 0.3%.
It's worth noting that LLD-ELF only does tail merging at `-O2`. By
default (at `-O1`), it just deduplicates w/o tail merging. @thakis has
also mentioned that they saw it regress compressed size in some cases
and therefore turned it off. `ld64` does not seem to do tail merging at
all.
**Performance Numbers**
CString deduplication reduces chromium_framework from 250MB to 242MB, or
about a 3.2% reduction.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.99 4.14 4.015 4.0365 0.0492336
Difference at 95.0% confidence
0.0865 +/- 0.027245
2.18987% +/- 0.689746%
(Student's t, pooled s = 0.0425673)
As expected, cstring merging incurs some non-trivial overhead.
When passing `--no-literal-merge`, it seems that performance is the
same, i.e. the refactoring in this diff didn't cost us.
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.89 4.02 3.935 3.9435 0.043197831
No difference proven at 95.0% confidence
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D102964
2021-06-08 11:47:12 +08:00
|
|
|
uint64_t getVA() const { return isec->getVA(offset); }
|
2020-07-03 12:19:55 +08:00
|
|
|
};
|
|
|
|
|
2020-09-06 01:55:33 +08:00
|
|
|
// Stores rebase opcodes, which tell dyld where absolute addresses have been
|
|
|
|
// encoded in the binary. If the binary is not loaded at its preferred address,
|
|
|
|
// dyld has to rebase these addresses by adding an offset to them.
|
2021-06-14 07:43:37 +08:00
|
|
|
class RebaseSection final : public LinkEditSection {
|
2020-09-06 01:55:33 +08:00
|
|
|
public:
|
|
|
|
RebaseSection();
|
2021-04-08 07:55:45 +08:00
|
|
|
void finalizeContents() override;
|
2020-09-06 01:55:33 +08:00
|
|
|
uint64_t getRawSize() const override { return contents.size(); }
|
|
|
|
bool isNeeded() const override { return !locations.empty(); }
|
|
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
|
2021-03-13 06:26:12 +08:00
|
|
|
void addEntry(const InputSection *isec, uint64_t offset) {
|
2020-09-06 01:55:33 +08:00
|
|
|
if (config->isPic)
|
2021-03-13 06:26:12 +08:00
|
|
|
locations.push_back({isec, offset});
|
2020-09-06 01:55:33 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::vector<Location> locations;
|
|
|
|
SmallVector<char, 128> contents;
|
|
|
|
};
|
|
|
|
|
2020-08-25 12:57:59 +08:00
|
|
|
struct BindingEntry {
|
2020-09-06 01:55:33 +08:00
|
|
|
int64_t addend;
|
|
|
|
Location target;
|
2021-07-06 08:00:09 +08:00
|
|
|
BindingEntry(int64_t addend, Location target)
|
|
|
|
: addend(addend), target(std::move(target)) {}
|
2020-08-25 12:57:59 +08:00
|
|
|
};
|
|
|
|
|
2021-07-06 08:00:09 +08:00
|
|
|
template <class Sym>
|
|
|
|
using BindingsMap = llvm::DenseMap<Sym, std::vector<BindingEntry>>;
|
|
|
|
|
2020-04-28 03:50:59 +08:00
|
|
|
// Stores bind opcodes for telling dyld which symbols to load non-lazily.
|
2021-06-14 07:43:37 +08:00
|
|
|
class BindingSection final : public LinkEditSection {
|
2020-04-28 03:50:59 +08:00
|
|
|
public:
|
|
|
|
BindingSection();
|
2021-04-08 07:55:45 +08:00
|
|
|
void finalizeContents() override;
|
2020-07-31 05:29:14 +08:00
|
|
|
uint64_t getRawSize() const override { return contents.size(); }
|
2021-07-06 08:00:09 +08:00
|
|
|
bool isNeeded() const override { return !bindingsMap.empty(); }
|
2020-05-02 07:29:06 +08:00
|
|
|
void writeTo(uint8_t *buf) const override;
|
2020-04-28 03:50:59 +08:00
|
|
|
|
2022-03-15 09:51:11 +08:00
|
|
|
void addEntry(const Symbol *dysym, const InputSection *isec, uint64_t offset,
|
|
|
|
int64_t addend = 0) {
|
2021-07-06 08:00:09 +08:00
|
|
|
bindingsMap[dysym].emplace_back(addend, Location(isec, offset));
|
2020-07-03 12:19:55 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
2022-03-15 09:51:11 +08:00
|
|
|
BindingsMap<const Symbol *> bindingsMap;
|
2020-04-28 03:50:59 +08:00
|
|
|
SmallVector<char, 128> contents;
|
|
|
|
};
|
|
|
|
|
2020-08-28 06:59:30 +08:00
|
|
|
// Stores bind opcodes for telling dyld which weak symbols need coalescing.
|
|
|
|
// There are two types of entries in this section:
|
|
|
|
//
|
|
|
|
// 1) Non-weak definitions: This is a symbol definition that weak symbols in
|
|
|
|
// other dylibs should coalesce to.
|
|
|
|
//
|
|
|
|
// 2) Weak bindings: These tell dyld that a given symbol reference should
|
[lld/mac] Implement -dead_strip
Also adds support for live_support sections, no_dead_strip sections,
.no_dead_strip symbols.
Chromium Framework 345MB unstripped -> 250MB stripped
(vs 290MB unstripped -> 236M stripped with ld64).
Doing dead stripping is a bit faster than not, because so much less
data needs to be processed:
% ministat lld_*
x lld_nostrip.txt
+ lld_strip.txt
N Min Max Median Avg Stddev
x 10 3.929414 4.07692 4.0269079 4.0089678 0.044214794
+ 10 3.8129408 3.9025559 3.8670411 3.8642573 0.024779651
Difference at 95.0% confidence
-0.144711 +/- 0.0336749
-3.60967% +/- 0.839989%
(Student's t, pooled s = 0.0358398)
This interacts with many parts of the linker. I tried to add test coverage
for all added `isLive()` checks, so that some test will fail if any of them
is removed. I checked that the test expectations for the most part match
ld64's behavior (except for live-support-iterations.s, see the comment
in the test). Interacts with:
- debug info
- export tries
- import opcodes
- flags like -exported_symbol(s_list)
- -U / dynamic_lookup
- mod_init_funcs, mod_term_funcs
- weak symbol handling
- unwind info
- stubs
- map files
- -sectcreate
- undefined, dylib, common, defined (both absolute and normal) symbols
It's possible it interacts with more features I didn't think of,
of course.
I also did some manual testing:
- check-llvm check-clang check-lld work with lld with this patch
as host linker and -dead_strip enabled
- Chromium still starts
- Chromium's base_unittests still pass, including unwind tests
Implemenation-wise, this is InputSection-based, so it'll work for
object files with .subsections_via_symbols (which includes all
object files generated by clang). I first based this on the COFF
implementation, but later realized that things are more similar to ELF.
I think it'd be good to refactor MarkLive.cpp to look more like the ELF
part at some point, but I'd like to get a working state checked in first.
Mechanical parts:
- Rename canOmitFromOutput to wasCoalesced (no behavior change)
since it really is for weak coalesced symbols
- Add noDeadStrip to Defined, corresponding to N_NO_DEAD_STRIP
(`.no_dead_strip` in asm)
Fixes PR49276.
Differential Revision: https://reviews.llvm.org/D103324
2021-05-08 05:10:05 +08:00
|
|
|
// coalesce to a non-weak definition if one is found. Note that unlike the
|
2020-08-28 06:59:30 +08:00
|
|
|
// entries in the BindingSection, the bindings here only refer to these
|
|
|
|
// symbols by name, but do not specify which dylib to load them from.
|
2021-06-14 07:43:37 +08:00
|
|
|
class WeakBindingSection final : public LinkEditSection {
|
2020-08-25 12:57:59 +08:00
|
|
|
public:
|
|
|
|
WeakBindingSection();
|
2021-04-08 07:55:45 +08:00
|
|
|
void finalizeContents() override;
|
2020-08-25 12:57:59 +08:00
|
|
|
uint64_t getRawSize() const override { return contents.size(); }
|
2020-08-28 06:59:30 +08:00
|
|
|
bool isNeeded() const override {
|
2021-07-06 08:00:09 +08:00
|
|
|
return !bindingsMap.empty() || !definitions.empty();
|
2020-08-28 06:59:30 +08:00
|
|
|
}
|
2020-08-25 12:57:59 +08:00
|
|
|
|
|
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
|
2021-03-13 06:26:12 +08:00
|
|
|
void addEntry(const Symbol *symbol, const InputSection *isec, uint64_t offset,
|
|
|
|
int64_t addend = 0) {
|
2021-07-06 08:00:09 +08:00
|
|
|
bindingsMap[symbol].emplace_back(addend, Location(isec, offset));
|
2020-08-25 12:57:59 +08:00
|
|
|
}
|
|
|
|
|
2021-07-06 08:00:09 +08:00
|
|
|
bool hasEntry() const { return !bindingsMap.empty(); }
|
2020-08-28 06:59:30 +08:00
|
|
|
|
|
|
|
void addNonWeakDefinition(const Defined *defined) {
|
|
|
|
definitions.emplace_back(defined);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool hasNonWeakDefinition() const { return !definitions.empty(); }
|
|
|
|
|
2020-08-25 12:57:59 +08:00
|
|
|
private:
|
2021-07-06 08:00:09 +08:00
|
|
|
BindingsMap<const Symbol *> bindingsMap;
|
2020-08-28 06:59:30 +08:00
|
|
|
std::vector<const Defined *> definitions;
|
2020-08-25 12:57:59 +08:00
|
|
|
SmallVector<char, 128> contents;
|
|
|
|
};
|
|
|
|
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
// The following sections implement lazy symbol binding -- very similar to the
|
|
|
|
// PLT mechanism in ELF.
|
|
|
|
//
|
2020-08-28 06:54:42 +08:00
|
|
|
// ELF's .plt section is broken up into two sections in Mach-O: StubsSection
|
|
|
|
// and StubHelperSection. Calls to functions in dylibs will end up calling into
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
// StubsSection, which contains indirect jumps to addresses stored in the
|
|
|
|
// LazyPointerSection (the counterpart to ELF's .plt.got).
|
|
|
|
//
|
2020-08-28 06:54:42 +08:00
|
|
|
// We will first describe how non-weak symbols are handled.
|
|
|
|
//
|
|
|
|
// At program start, the LazyPointerSection contains addresses that point into
|
|
|
|
// one of the entry points in the middle of the StubHelperSection. The code in
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
// StubHelperSection will push on the stack an offset into the
|
|
|
|
// LazyBindingSection. The push is followed by a jump to the beginning of the
|
|
|
|
// StubHelperSection (similar to PLT0), which then calls into dyld_stub_binder.
|
|
|
|
// dyld_stub_binder is a non-lazily-bound symbol, so this call looks it up in
|
|
|
|
// the GOT.
|
|
|
|
//
|
|
|
|
// The stub binder will look up the bind opcodes in the LazyBindingSection at
|
2020-08-28 06:54:42 +08:00
|
|
|
// the given offset. The bind opcodes will tell the binder to update the
|
|
|
|
// address in the LazyPointerSection to point to the symbol, so that subsequent
|
|
|
|
// calls don't have to redo the symbol resolution. The binder will then jump to
|
|
|
|
// the resolved symbol.
|
|
|
|
//
|
|
|
|
// With weak symbols, the situation is slightly different. Since there is no
|
|
|
|
// "weak lazy" lookup, function calls to weak symbols are always non-lazily
|
|
|
|
// bound. We emit both regular non-lazy bindings as well as weak bindings, in
|
|
|
|
// order that the weak bindings may overwrite the non-lazy bindings if an
|
|
|
|
// appropriate symbol is found at runtime. However, the bound addresses will
|
|
|
|
// still be written (non-lazily) into the LazyPointerSection.
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
|
2021-06-14 07:43:37 +08:00
|
|
|
class StubsSection final : public SyntheticSection {
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
public:
|
|
|
|
StubsSection();
|
2020-06-17 08:27:28 +08:00
|
|
|
uint64_t getSize() const override;
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
bool isNeeded() const override { return !entries.empty(); }
|
2021-03-30 08:33:48 +08:00
|
|
|
void finalize() override;
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
void writeTo(uint8_t *buf) const override;
|
2020-08-28 06:54:42 +08:00
|
|
|
const llvm::SetVector<Symbol *> &getEntries() const { return entries; }
|
|
|
|
// Returns whether the symbol was added. Note that every stubs entry will
|
|
|
|
// have a corresponding entry in the LazyPointerSection.
|
|
|
|
bool addEntry(Symbol *);
|
2021-03-30 08:33:48 +08:00
|
|
|
uint64_t getVA(uint32_t stubsIndex) const {
|
[lld-macho] Deduplicate fixed-width literals
Conceptually, the implementation is pretty straightforward: we put each
literal value into a hashtable, and then write out the keys of that
hashtable at the end.
In contrast with ELF, the Mach-O format does not support variable-length
literals that aren't strings. Its literals are either 4, 8, or 16 bytes
in length. LLD-ELF dedups its literals via sorting + uniq'ing, but since
we don't need to worry about overly-long values, we should be able to do
a faster job by just hashing.
That said, the implementation right now is far from optimal, because we
add to those hashtables serially. To parallelize this, we'll need a
basic concurrent hashtable (only needs to support concurrent writes w/o
interleave reads), which shouldn't be to hard to implement, but I'd like
to punt on it for now.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 4.27 4.39 4.315 4.3225 0.033225703
+ 20 4.36 4.82 4.44 4.4845 0.13152846
Difference at 95.0% confidence
0.162 +/- 0.0613971
3.74783% +/- 1.42041%
(Student's t, pooled s = 0.0959262)
This corresponds to binary size savings of 2MB out of 335MB, or 0.6%.
It's not a great tradeoff as-is, but as mentioned our implementation can
be signficantly optimized, and literal dedup will unlock more
opportunities for ICF to identify identical structures that reference
the same literals.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D103113
2021-06-12 07:49:50 +08:00
|
|
|
assert(isFinal || target->usesThunks());
|
2021-05-26 02:57:16 +08:00
|
|
|
// ConcatOutputSection::finalize() can seek the address of a
|
2021-03-30 08:33:48 +08:00
|
|
|
// stub before its address is assigned. Before __stubs is
|
|
|
|
// finalized, return a contrived out-of-range address.
|
|
|
|
return isFinal ? addr + stubsIndex * target->stubSize
|
|
|
|
: TargetInfo::outOfRangeVA;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool isFinal = false; // is address assigned?
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
|
|
|
|
private:
|
2020-08-28 06:54:42 +08:00
|
|
|
llvm::SetVector<Symbol *> entries;
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
};
|
|
|
|
|
2021-06-14 07:43:37 +08:00
|
|
|
class StubHelperSection final : public SyntheticSection {
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
public:
|
|
|
|
StubHelperSection();
|
2020-06-17 08:27:28 +08:00
|
|
|
uint64_t getSize() const override;
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
bool isNeeded() const override;
|
|
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
|
|
|
|
void setup();
|
|
|
|
|
|
|
|
DylibSymbol *stubBinder = nullptr;
|
[lld/mac] Implement support for private extern symbols
Private extern symbols are used for things scoped to the linkage unit.
They cause duplicate symbol errors (so they're in the symbol table,
unlike TU-scoped truly local symbols), but they don't make it into the
export trie. They are created e.g. by compiling with
-fvisibility=hidden.
If two weak symbols have differing privateness, the combined symbol is
non-private external. (Example: inline functions and some TUs that
include the header defining it were built with
-fvisibility-inlines-hidden and some weren't).
A weak private external symbol implicitly has its "weak" dropped and
behaves like a regular strong private external symbol: Weak is an export
trie concept, and private symbols are not in the export trie.
If a weak and a strong symbol have different privateness, the strong
symbol wins.
If two common symbols have differing privateness, the larger symbol
wins. If they have the same size, the privateness of the symbol seen
later during the link wins (!) -- this is a bit lame, but it matches
ld64 and this behavior takes 2 lines less to implement than the less
surprising "result is non-private external), so match ld64.
(Example: `int a` in two .c files, both built with -fcommon,
one built with -fvisibility=hidden and one without.)
This also makes `__dyld_private` a true TU-local symbol, matching ld64.
To make this work, make the `const char*` StringRefZ ctor to correctly
set `size` (without this, writing the string table crashed when calling
getName() on the __dyld_private symbol).
Mention in CommonSymbol's comment that common symbols are now disabled
by default in clang.
Mention in -keep_private_externs's HelpText that the flag only has an
effect with `-r` (which we don't implement yet -- so this patch here
doesn't regress any behavior around -r + -keep_private_externs)). ld64
doesn't explicitly document it, but the commit text of
http://reviews.llvm.org/rL216146 does, and ld64's
OutputFile::buildSymbolTable() checks `_options.outputKind() ==
Options::kObjectFile` before calling `_options.keepPrivateExterns()`
(the only reference to that function).
Fixes PR48536.
Differential Revision: https://reviews.llvm.org/D93609
2020-12-18 02:30:18 +08:00
|
|
|
Defined *dyldPrivate = nullptr;
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
};
|
|
|
|
|
2020-08-28 06:54:42 +08:00
|
|
|
// Note that this section may also be targeted by non-lazy bindings. In
|
|
|
|
// particular, this happens when branch relocations target weak symbols.
|
2021-06-14 07:43:37 +08:00
|
|
|
class LazyPointerSection final : public SyntheticSection {
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
public:
|
|
|
|
LazyPointerSection();
|
2020-06-17 08:27:28 +08:00
|
|
|
uint64_t getSize() const override;
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
bool isNeeded() const override;
|
|
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
};
|
|
|
|
|
2021-06-14 07:43:37 +08:00
|
|
|
class LazyBindingSection final : public LinkEditSection {
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
public:
|
|
|
|
LazyBindingSection();
|
2021-04-08 07:55:45 +08:00
|
|
|
void finalizeContents() override;
|
2020-07-31 05:29:14 +08:00
|
|
|
uint64_t getRawSize() const override { return contents.size(); }
|
2020-08-28 06:54:42 +08:00
|
|
|
bool isNeeded() const override { return !entries.empty(); }
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
void writeTo(uint8_t *buf) const override;
|
2020-08-28 06:54:42 +08:00
|
|
|
// Note that every entry here will by referenced by a corresponding entry in
|
|
|
|
// the StubHelperSection.
|
2022-03-15 09:51:11 +08:00
|
|
|
void addEntry(Symbol *dysym);
|
|
|
|
const llvm::SetVector<Symbol *> &getEntries() const { return entries; }
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
|
|
|
|
private:
|
2022-03-15 09:51:11 +08:00
|
|
|
uint32_t encode(const Symbol &);
|
2020-08-28 06:54:42 +08:00
|
|
|
|
2022-03-15 09:51:11 +08:00
|
|
|
llvm::SetVector<Symbol *> entries;
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
SmallVector<char, 128> contents;
|
|
|
|
llvm::raw_svector_ostream os{contents};
|
|
|
|
};
|
|
|
|
|
2020-04-29 07:58:22 +08:00
|
|
|
// Stores a trie that describes the set of exported symbols.
|
2021-06-14 07:43:37 +08:00
|
|
|
class ExportSection final : public LinkEditSection {
|
2020-04-29 07:58:22 +08:00
|
|
|
public:
|
|
|
|
ExportSection();
|
2021-04-08 07:55:45 +08:00
|
|
|
void finalizeContents() override;
|
2020-07-31 05:29:14 +08:00
|
|
|
uint64_t getRawSize() const override { return size; }
|
2021-10-28 02:58:15 +08:00
|
|
|
bool isNeeded() const override { return size; }
|
2020-05-02 07:29:06 +08:00
|
|
|
void writeTo(uint8_t *buf) const override;
|
2020-04-29 07:58:22 +08:00
|
|
|
|
2020-08-28 06:59:15 +08:00
|
|
|
bool hasWeakSymbol = false;
|
|
|
|
|
2020-04-30 06:42:19 +08:00
|
|
|
private:
|
|
|
|
TrieBuilder trieBuilder;
|
|
|
|
size_t size = 0;
|
2020-04-29 07:58:22 +08:00
|
|
|
};
|
|
|
|
|
2021-06-15 10:21:43 +08:00
|
|
|
// Stores 'data in code' entries that describe the locations of
|
|
|
|
// data regions inside code sections.
|
|
|
|
class DataInCodeSection final : public LinkEditSection {
|
|
|
|
public:
|
|
|
|
DataInCodeSection();
|
|
|
|
void finalizeContents() override;
|
|
|
|
uint64_t getRawSize() const override {
|
|
|
|
return sizeof(llvm::MachO::data_in_code_entry) * entries.size();
|
|
|
|
}
|
|
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::vector<llvm::MachO::data_in_code_entry> entries;
|
|
|
|
};
|
|
|
|
|
2021-06-12 08:47:28 +08:00
|
|
|
// Stores ULEB128 delta encoded addresses of functions.
|
2021-06-14 07:43:37 +08:00
|
|
|
class FunctionStartsSection final : public LinkEditSection {
|
2021-03-09 14:00:37 +08:00
|
|
|
public:
|
|
|
|
FunctionStartsSection();
|
2021-04-08 07:55:45 +08:00
|
|
|
void finalizeContents() override;
|
2021-03-09 14:00:37 +08:00
|
|
|
uint64_t getRawSize() const override { return contents.size(); }
|
|
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
|
|
|
|
private:
|
|
|
|
SmallVector<char, 128> contents;
|
|
|
|
};
|
|
|
|
|
[lld-macho][reland] Add basic symbol table output
This diff implements basic support for writing a symbol table.
Attributes are loosely supported for extern symbols and not at all for
other types.
Initial version by Kellie Medlin <kelliem@fb.com>
Originally committed in a3d95a50ee33 and reverted in fbae153ca583 due to
UBSAN erroring over unaligned writes. That has been fixed in the
current diff with the following changes:
```
diff --git a/lld/MachO/SyntheticSections.cpp b/lld/MachO/SyntheticSections.cpp
--- a/lld/MachO/SyntheticSections.cpp
+++ b/lld/MachO/SyntheticSections.cpp
@@ -133,6 +133,9 @@ SymtabSection::SymtabSection(StringTableSection &stringTableSection)
: stringTableSection(stringTableSection) {
segname = segment_names::linkEdit;
name = section_names::symbolTable;
+ // TODO: When we introduce the SyntheticSections superclass, we should make
+ // all synthetic sections aligned to WordSize by default.
+ align = WordSize;
}
size_t SymtabSection::getSize() const {
diff --git a/lld/MachO/Writer.cpp b/lld/MachO/Writer.cpp
--- a/lld/MachO/Writer.cpp
+++ b/lld/MachO/Writer.cpp
@@ -371,6 +371,7 @@ void Writer::assignAddresses(OutputSegment *seg) {
ArrayRef<InputSection *> sections = p.second;
for (InputSection *isec : sections) {
addr = alignTo(addr, isec->align);
+ // We must align the file offsets too to avoid misaligned writes of
+ // structs.
+ fileOff = alignTo(fileOff, isec->align);
isec->addr = addr;
addr += isec->getSize();
fileOff += isec->getFileSize();
@@ -396,6 +397,7 @@ void Writer::writeSections() {
uint64_t fileOff = seg->fileOff;
for (auto § : seg->getSections()) {
for (InputSection *isec : sect.second) {
+ fileOff = alignTo(fileOff, isec->align);
isec->writeTo(buf + fileOff);
fileOff += isec->getFileSize();
}
```
I don't think it's easy to write a test for alignment (that doesn't
involve brittly hard-coding file offsets), so there isn't one... but
UBSAN builds pass now.
Differential Revision: https://reviews.llvm.org/D79050
2020-04-29 07:58:19 +08:00
|
|
|
// Stores the strings referenced by the symbol table.
|
2021-06-14 07:43:37 +08:00
|
|
|
class StringTableSection final : public LinkEditSection {
|
[lld-macho][reland] Add basic symbol table output
This diff implements basic support for writing a symbol table.
Attributes are loosely supported for extern symbols and not at all for
other types.
Initial version by Kellie Medlin <kelliem@fb.com>
Originally committed in a3d95a50ee33 and reverted in fbae153ca583 due to
UBSAN erroring over unaligned writes. That has been fixed in the
current diff with the following changes:
```
diff --git a/lld/MachO/SyntheticSections.cpp b/lld/MachO/SyntheticSections.cpp
--- a/lld/MachO/SyntheticSections.cpp
+++ b/lld/MachO/SyntheticSections.cpp
@@ -133,6 +133,9 @@ SymtabSection::SymtabSection(StringTableSection &stringTableSection)
: stringTableSection(stringTableSection) {
segname = segment_names::linkEdit;
name = section_names::symbolTable;
+ // TODO: When we introduce the SyntheticSections superclass, we should make
+ // all synthetic sections aligned to WordSize by default.
+ align = WordSize;
}
size_t SymtabSection::getSize() const {
diff --git a/lld/MachO/Writer.cpp b/lld/MachO/Writer.cpp
--- a/lld/MachO/Writer.cpp
+++ b/lld/MachO/Writer.cpp
@@ -371,6 +371,7 @@ void Writer::assignAddresses(OutputSegment *seg) {
ArrayRef<InputSection *> sections = p.second;
for (InputSection *isec : sections) {
addr = alignTo(addr, isec->align);
+ // We must align the file offsets too to avoid misaligned writes of
+ // structs.
+ fileOff = alignTo(fileOff, isec->align);
isec->addr = addr;
addr += isec->getSize();
fileOff += isec->getFileSize();
@@ -396,6 +397,7 @@ void Writer::writeSections() {
uint64_t fileOff = seg->fileOff;
for (auto § : seg->getSections()) {
for (InputSection *isec : sect.second) {
+ fileOff = alignTo(fileOff, isec->align);
isec->writeTo(buf + fileOff);
fileOff += isec->getFileSize();
}
```
I don't think it's easy to write a test for alignment (that doesn't
involve brittly hard-coding file offsets), so there isn't one... but
UBSAN builds pass now.
Differential Revision: https://reviews.llvm.org/D79050
2020-04-29 07:58:19 +08:00
|
|
|
public:
|
|
|
|
StringTableSection();
|
|
|
|
// Returns the start offset of the added string.
|
|
|
|
uint32_t addString(StringRef);
|
2020-07-31 05:29:14 +08:00
|
|
|
uint64_t getRawSize() const override { return size; }
|
2020-05-02 07:29:06 +08:00
|
|
|
void writeTo(uint8_t *buf) const override;
|
[lld-macho][reland] Add basic symbol table output
This diff implements basic support for writing a symbol table.
Attributes are loosely supported for extern symbols and not at all for
other types.
Initial version by Kellie Medlin <kelliem@fb.com>
Originally committed in a3d95a50ee33 and reverted in fbae153ca583 due to
UBSAN erroring over unaligned writes. That has been fixed in the
current diff with the following changes:
```
diff --git a/lld/MachO/SyntheticSections.cpp b/lld/MachO/SyntheticSections.cpp
--- a/lld/MachO/SyntheticSections.cpp
+++ b/lld/MachO/SyntheticSections.cpp
@@ -133,6 +133,9 @@ SymtabSection::SymtabSection(StringTableSection &stringTableSection)
: stringTableSection(stringTableSection) {
segname = segment_names::linkEdit;
name = section_names::symbolTable;
+ // TODO: When we introduce the SyntheticSections superclass, we should make
+ // all synthetic sections aligned to WordSize by default.
+ align = WordSize;
}
size_t SymtabSection::getSize() const {
diff --git a/lld/MachO/Writer.cpp b/lld/MachO/Writer.cpp
--- a/lld/MachO/Writer.cpp
+++ b/lld/MachO/Writer.cpp
@@ -371,6 +371,7 @@ void Writer::assignAddresses(OutputSegment *seg) {
ArrayRef<InputSection *> sections = p.second;
for (InputSection *isec : sections) {
addr = alignTo(addr, isec->align);
+ // We must align the file offsets too to avoid misaligned writes of
+ // structs.
+ fileOff = alignTo(fileOff, isec->align);
isec->addr = addr;
addr += isec->getSize();
fileOff += isec->getFileSize();
@@ -396,6 +397,7 @@ void Writer::writeSections() {
uint64_t fileOff = seg->fileOff;
for (auto § : seg->getSections()) {
for (InputSection *isec : sect.second) {
+ fileOff = alignTo(fileOff, isec->align);
isec->writeTo(buf + fileOff);
fileOff += isec->getFileSize();
}
```
I don't think it's easy to write a test for alignment (that doesn't
involve brittly hard-coding file offsets), so there isn't one... but
UBSAN builds pass now.
Differential Revision: https://reviews.llvm.org/D79050
2020-04-29 07:58:19 +08:00
|
|
|
|
2021-04-08 00:08:14 +08:00
|
|
|
static constexpr size_t emptyStringIndex = 1;
|
|
|
|
|
[lld-macho][reland] Add basic symbol table output
This diff implements basic support for writing a symbol table.
Attributes are loosely supported for extern symbols and not at all for
other types.
Initial version by Kellie Medlin <kelliem@fb.com>
Originally committed in a3d95a50ee33 and reverted in fbae153ca583 due to
UBSAN erroring over unaligned writes. That has been fixed in the
current diff with the following changes:
```
diff --git a/lld/MachO/SyntheticSections.cpp b/lld/MachO/SyntheticSections.cpp
--- a/lld/MachO/SyntheticSections.cpp
+++ b/lld/MachO/SyntheticSections.cpp
@@ -133,6 +133,9 @@ SymtabSection::SymtabSection(StringTableSection &stringTableSection)
: stringTableSection(stringTableSection) {
segname = segment_names::linkEdit;
name = section_names::symbolTable;
+ // TODO: When we introduce the SyntheticSections superclass, we should make
+ // all synthetic sections aligned to WordSize by default.
+ align = WordSize;
}
size_t SymtabSection::getSize() const {
diff --git a/lld/MachO/Writer.cpp b/lld/MachO/Writer.cpp
--- a/lld/MachO/Writer.cpp
+++ b/lld/MachO/Writer.cpp
@@ -371,6 +371,7 @@ void Writer::assignAddresses(OutputSegment *seg) {
ArrayRef<InputSection *> sections = p.second;
for (InputSection *isec : sections) {
addr = alignTo(addr, isec->align);
+ // We must align the file offsets too to avoid misaligned writes of
+ // structs.
+ fileOff = alignTo(fileOff, isec->align);
isec->addr = addr;
addr += isec->getSize();
fileOff += isec->getFileSize();
@@ -396,6 +397,7 @@ void Writer::writeSections() {
uint64_t fileOff = seg->fileOff;
for (auto § : seg->getSections()) {
for (InputSection *isec : sect.second) {
+ fileOff = alignTo(fileOff, isec->align);
isec->writeTo(buf + fileOff);
fileOff += isec->getFileSize();
}
```
I don't think it's easy to write a test for alignment (that doesn't
involve brittly hard-coding file offsets), so there isn't one... but
UBSAN builds pass now.
Differential Revision: https://reviews.llvm.org/D79050
2020-04-29 07:58:19 +08:00
|
|
|
private:
|
2020-12-02 06:45:10 +08:00
|
|
|
// ld64 emits string tables which start with a space and a zero byte. We
|
|
|
|
// match its behavior here since some tools depend on it.
|
2021-04-08 00:08:14 +08:00
|
|
|
// Consequently, the empty string will be at index 1, not zero.
|
2020-12-02 06:45:10 +08:00
|
|
|
std::vector<StringRef> strings{" "};
|
|
|
|
size_t size = 2;
|
[lld-macho][reland] Add basic symbol table output
This diff implements basic support for writing a symbol table.
Attributes are loosely supported for extern symbols and not at all for
other types.
Initial version by Kellie Medlin <kelliem@fb.com>
Originally committed in a3d95a50ee33 and reverted in fbae153ca583 due to
UBSAN erroring over unaligned writes. That has been fixed in the
current diff with the following changes:
```
diff --git a/lld/MachO/SyntheticSections.cpp b/lld/MachO/SyntheticSections.cpp
--- a/lld/MachO/SyntheticSections.cpp
+++ b/lld/MachO/SyntheticSections.cpp
@@ -133,6 +133,9 @@ SymtabSection::SymtabSection(StringTableSection &stringTableSection)
: stringTableSection(stringTableSection) {
segname = segment_names::linkEdit;
name = section_names::symbolTable;
+ // TODO: When we introduce the SyntheticSections superclass, we should make
+ // all synthetic sections aligned to WordSize by default.
+ align = WordSize;
}
size_t SymtabSection::getSize() const {
diff --git a/lld/MachO/Writer.cpp b/lld/MachO/Writer.cpp
--- a/lld/MachO/Writer.cpp
+++ b/lld/MachO/Writer.cpp
@@ -371,6 +371,7 @@ void Writer::assignAddresses(OutputSegment *seg) {
ArrayRef<InputSection *> sections = p.second;
for (InputSection *isec : sections) {
addr = alignTo(addr, isec->align);
+ // We must align the file offsets too to avoid misaligned writes of
+ // structs.
+ fileOff = alignTo(fileOff, isec->align);
isec->addr = addr;
addr += isec->getSize();
fileOff += isec->getFileSize();
@@ -396,6 +397,7 @@ void Writer::writeSections() {
uint64_t fileOff = seg->fileOff;
for (auto § : seg->getSections()) {
for (InputSection *isec : sect.second) {
+ fileOff = alignTo(fileOff, isec->align);
isec->writeTo(buf + fileOff);
fileOff += isec->getFileSize();
}
```
I don't think it's easy to write a test for alignment (that doesn't
involve brittly hard-coding file offsets), so there isn't one... but
UBSAN builds pass now.
Differential Revision: https://reviews.llvm.org/D79050
2020-04-29 07:58:19 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
struct SymtabEntry {
|
|
|
|
Symbol *sym;
|
|
|
|
size_t strx;
|
|
|
|
};
|
|
|
|
|
[lld-macho] Emit STABS symbols for debugging, and drop debug sections
Debug sections contain a large amount of data. In order not to bloat the size
of the final binary, we remove them and instead emit STABS symbols for
`dsymutil` and the debugger to locate their contents in the object files.
With this diff, `dsymutil` is able to locate the debug info. However, we need
a few more features before `lldb` is able to work well with our binaries --
e.g. having `LC_DYSYMTAB` accurately reflect the number of local symbols,
emitting `LC_UUID`, and more. Those will be handled in follow-up diffs.
Note also that the STABS we emit differ slightly from what ld64 does. First, we
emit the path to the source file as one `N_SO` symbol instead of two. (`ld64`
emits one `N_SO` for the dirname and one of the basename.) Second, we do not
emit `N_BNSYM` and `N_ENSYM` STABS to mark the start and end of functions,
because the `N_FUN` STABS already serve that purpose. @clayborg recommended
these changes based on his knowledge of what the debugging tools look for.
Additionally, this current implementation doesn't accurately reflect the size
of function symbols. It uses the size of their containing sectioins as a proxy,
but that is only accurate if `.subsections_with_symbols` is set, and if there
isn't an `N_ALT_ENTRY` in that particular subsection. I think we have two
options to solve this:
1. We can split up subsections by symbol even if `.subsections_with_symbols`
is not set, but include constraints to ensure those subsections retain
their order in the final output. This is `ld64`'s approach.
2. We could just add a `size` field to our `Symbol` class. This seems simpler,
and I'm more inclined toward it, but I'm not sure if there are use cases
that it doesn't handle well. As such I'm punting on the decision for now.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D89257
2020-12-02 06:45:01 +08:00
|
|
|
struct StabsEntry {
|
2020-12-02 06:45:12 +08:00
|
|
|
uint8_t type = 0;
|
2021-04-08 00:08:14 +08:00
|
|
|
uint32_t strx = StringTableSection::emptyStringIndex;
|
[lld-macho] Emit STABS symbols for debugging, and drop debug sections
Debug sections contain a large amount of data. In order not to bloat the size
of the final binary, we remove them and instead emit STABS symbols for
`dsymutil` and the debugger to locate their contents in the object files.
With this diff, `dsymutil` is able to locate the debug info. However, we need
a few more features before `lldb` is able to work well with our binaries --
e.g. having `LC_DYSYMTAB` accurately reflect the number of local symbols,
emitting `LC_UUID`, and more. Those will be handled in follow-up diffs.
Note also that the STABS we emit differ slightly from what ld64 does. First, we
emit the path to the source file as one `N_SO` symbol instead of two. (`ld64`
emits one `N_SO` for the dirname and one of the basename.) Second, we do not
emit `N_BNSYM` and `N_ENSYM` STABS to mark the start and end of functions,
because the `N_FUN` STABS already serve that purpose. @clayborg recommended
these changes based on his knowledge of what the debugging tools look for.
Additionally, this current implementation doesn't accurately reflect the size
of function symbols. It uses the size of their containing sectioins as a proxy,
but that is only accurate if `.subsections_with_symbols` is set, and if there
isn't an `N_ALT_ENTRY` in that particular subsection. I think we have two
options to solve this:
1. We can split up subsections by symbol even if `.subsections_with_symbols`
is not set, but include constraints to ensure those subsections retain
their order in the final output. This is `ld64`'s approach.
2. We could just add a `size` field to our `Symbol` class. This seems simpler,
and I'm more inclined toward it, but I'm not sure if there are use cases
that it doesn't handle well. As such I'm punting on the decision for now.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D89257
2020-12-02 06:45:01 +08:00
|
|
|
uint8_t sect = 0;
|
|
|
|
uint16_t desc = 0;
|
|
|
|
uint64_t value = 0;
|
|
|
|
|
2020-12-02 06:45:12 +08:00
|
|
|
StabsEntry() = default;
|
[lld-macho] Emit STABS symbols for debugging, and drop debug sections
Debug sections contain a large amount of data. In order not to bloat the size
of the final binary, we remove them and instead emit STABS symbols for
`dsymutil` and the debugger to locate their contents in the object files.
With this diff, `dsymutil` is able to locate the debug info. However, we need
a few more features before `lldb` is able to work well with our binaries --
e.g. having `LC_DYSYMTAB` accurately reflect the number of local symbols,
emitting `LC_UUID`, and more. Those will be handled in follow-up diffs.
Note also that the STABS we emit differ slightly from what ld64 does. First, we
emit the path to the source file as one `N_SO` symbol instead of two. (`ld64`
emits one `N_SO` for the dirname and one of the basename.) Second, we do not
emit `N_BNSYM` and `N_ENSYM` STABS to mark the start and end of functions,
because the `N_FUN` STABS already serve that purpose. @clayborg recommended
these changes based on his knowledge of what the debugging tools look for.
Additionally, this current implementation doesn't accurately reflect the size
of function symbols. It uses the size of their containing sectioins as a proxy,
but that is only accurate if `.subsections_with_symbols` is set, and if there
isn't an `N_ALT_ENTRY` in that particular subsection. I think we have two
options to solve this:
1. We can split up subsections by symbol even if `.subsections_with_symbols`
is not set, but include constraints to ensure those subsections retain
their order in the final output. This is `ld64`'s approach.
2. We could just add a `size` field to our `Symbol` class. This seems simpler,
and I'm more inclined toward it, but I'm not sure if there are use cases
that it doesn't handle well. As such I'm punting on the decision for now.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D89257
2020-12-02 06:45:01 +08:00
|
|
|
explicit StabsEntry(uint8_t type) : type(type) {}
|
|
|
|
};
|
|
|
|
|
2020-12-02 06:45:09 +08:00
|
|
|
// Symbols of the same type must be laid out contiguously: we choose to emit
|
|
|
|
// all local symbols first, then external symbols, and finally undefined
|
|
|
|
// symbols. For each symbol type, the LC_DYSYMTAB load command will record the
|
|
|
|
// range (start index and total number) of those symbols in the symbol table.
|
2020-08-28 08:43:19 +08:00
|
|
|
class SymtabSection : public LinkEditSection {
|
[lld-macho][reland] Add basic symbol table output
This diff implements basic support for writing a symbol table.
Attributes are loosely supported for extern symbols and not at all for
other types.
Initial version by Kellie Medlin <kelliem@fb.com>
Originally committed in a3d95a50ee33 and reverted in fbae153ca583 due to
UBSAN erroring over unaligned writes. That has been fixed in the
current diff with the following changes:
```
diff --git a/lld/MachO/SyntheticSections.cpp b/lld/MachO/SyntheticSections.cpp
--- a/lld/MachO/SyntheticSections.cpp
+++ b/lld/MachO/SyntheticSections.cpp
@@ -133,6 +133,9 @@ SymtabSection::SymtabSection(StringTableSection &stringTableSection)
: stringTableSection(stringTableSection) {
segname = segment_names::linkEdit;
name = section_names::symbolTable;
+ // TODO: When we introduce the SyntheticSections superclass, we should make
+ // all synthetic sections aligned to WordSize by default.
+ align = WordSize;
}
size_t SymtabSection::getSize() const {
diff --git a/lld/MachO/Writer.cpp b/lld/MachO/Writer.cpp
--- a/lld/MachO/Writer.cpp
+++ b/lld/MachO/Writer.cpp
@@ -371,6 +371,7 @@ void Writer::assignAddresses(OutputSegment *seg) {
ArrayRef<InputSection *> sections = p.second;
for (InputSection *isec : sections) {
addr = alignTo(addr, isec->align);
+ // We must align the file offsets too to avoid misaligned writes of
+ // structs.
+ fileOff = alignTo(fileOff, isec->align);
isec->addr = addr;
addr += isec->getSize();
fileOff += isec->getFileSize();
@@ -396,6 +397,7 @@ void Writer::writeSections() {
uint64_t fileOff = seg->fileOff;
for (auto § : seg->getSections()) {
for (InputSection *isec : sect.second) {
+ fileOff = alignTo(fileOff, isec->align);
isec->writeTo(buf + fileOff);
fileOff += isec->getFileSize();
}
```
I don't think it's easy to write a test for alignment (that doesn't
involve brittly hard-coding file offsets), so there isn't one... but
UBSAN builds pass now.
Differential Revision: https://reviews.llvm.org/D79050
2020-04-29 07:58:19 +08:00
|
|
|
public:
|
2021-04-08 07:55:45 +08:00
|
|
|
void finalizeContents() override;
|
2020-12-02 06:45:09 +08:00
|
|
|
uint32_t getNumSymbols() const;
|
|
|
|
uint32_t getNumLocalSymbols() const {
|
|
|
|
return stabs.size() + localSymbols.size();
|
|
|
|
}
|
|
|
|
uint32_t getNumExternalSymbols() const { return externalSymbols.size(); }
|
|
|
|
uint32_t getNumUndefinedSymbols() const { return undefinedSymbols.size(); }
|
[lld-macho][reland] Add basic symbol table output
This diff implements basic support for writing a symbol table.
Attributes are loosely supported for extern symbols and not at all for
other types.
Initial version by Kellie Medlin <kelliem@fb.com>
Originally committed in a3d95a50ee33 and reverted in fbae153ca583 due to
UBSAN erroring over unaligned writes. That has been fixed in the
current diff with the following changes:
```
diff --git a/lld/MachO/SyntheticSections.cpp b/lld/MachO/SyntheticSections.cpp
--- a/lld/MachO/SyntheticSections.cpp
+++ b/lld/MachO/SyntheticSections.cpp
@@ -133,6 +133,9 @@ SymtabSection::SymtabSection(StringTableSection &stringTableSection)
: stringTableSection(stringTableSection) {
segname = segment_names::linkEdit;
name = section_names::symbolTable;
+ // TODO: When we introduce the SyntheticSections superclass, we should make
+ // all synthetic sections aligned to WordSize by default.
+ align = WordSize;
}
size_t SymtabSection::getSize() const {
diff --git a/lld/MachO/Writer.cpp b/lld/MachO/Writer.cpp
--- a/lld/MachO/Writer.cpp
+++ b/lld/MachO/Writer.cpp
@@ -371,6 +371,7 @@ void Writer::assignAddresses(OutputSegment *seg) {
ArrayRef<InputSection *> sections = p.second;
for (InputSection *isec : sections) {
addr = alignTo(addr, isec->align);
+ // We must align the file offsets too to avoid misaligned writes of
+ // structs.
+ fileOff = alignTo(fileOff, isec->align);
isec->addr = addr;
addr += isec->getSize();
fileOff += isec->getFileSize();
@@ -396,6 +397,7 @@ void Writer::writeSections() {
uint64_t fileOff = seg->fileOff;
for (auto § : seg->getSections()) {
for (InputSection *isec : sect.second) {
+ fileOff = alignTo(fileOff, isec->align);
isec->writeTo(buf + fileOff);
fileOff += isec->getFileSize();
}
```
I don't think it's easy to write a test for alignment (that doesn't
involve brittly hard-coding file offsets), so there isn't one... but
UBSAN builds pass now.
Differential Revision: https://reviews.llvm.org/D79050
2020-04-29 07:58:19 +08:00
|
|
|
|
|
|
|
private:
|
2022-06-22 04:40:27 +08:00
|
|
|
void emitBeginSourceStab(StringRef);
|
[lld-macho] Emit STABS symbols for debugging, and drop debug sections
Debug sections contain a large amount of data. In order not to bloat the size
of the final binary, we remove them and instead emit STABS symbols for
`dsymutil` and the debugger to locate their contents in the object files.
With this diff, `dsymutil` is able to locate the debug info. However, we need
a few more features before `lldb` is able to work well with our binaries --
e.g. having `LC_DYSYMTAB` accurately reflect the number of local symbols,
emitting `LC_UUID`, and more. Those will be handled in follow-up diffs.
Note also that the STABS we emit differ slightly from what ld64 does. First, we
emit the path to the source file as one `N_SO` symbol instead of two. (`ld64`
emits one `N_SO` for the dirname and one of the basename.) Second, we do not
emit `N_BNSYM` and `N_ENSYM` STABS to mark the start and end of functions,
because the `N_FUN` STABS already serve that purpose. @clayborg recommended
these changes based on his knowledge of what the debugging tools look for.
Additionally, this current implementation doesn't accurately reflect the size
of function symbols. It uses the size of their containing sectioins as a proxy,
but that is only accurate if `.subsections_with_symbols` is set, and if there
isn't an `N_ALT_ENTRY` in that particular subsection. I think we have two
options to solve this:
1. We can split up subsections by symbol even if `.subsections_with_symbols`
is not set, but include constraints to ensure those subsections retain
their order in the final output. This is `ld64`'s approach.
2. We could just add a `size` field to our `Symbol` class. This seems simpler,
and I'm more inclined toward it, but I'm not sure if there are use cases
that it doesn't handle well. As such I'm punting on the decision for now.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D89257
2020-12-02 06:45:01 +08:00
|
|
|
void emitEndSourceStab();
|
|
|
|
void emitObjectFileStab(ObjFile *);
|
2020-12-02 06:45:12 +08:00
|
|
|
void emitEndFunStab(Defined *);
|
|
|
|
void emitStabs();
|
[lld-macho] Emit STABS symbols for debugging, and drop debug sections
Debug sections contain a large amount of data. In order not to bloat the size
of the final binary, we remove them and instead emit STABS symbols for
`dsymutil` and the debugger to locate their contents in the object files.
With this diff, `dsymutil` is able to locate the debug info. However, we need
a few more features before `lldb` is able to work well with our binaries --
e.g. having `LC_DYSYMTAB` accurately reflect the number of local symbols,
emitting `LC_UUID`, and more. Those will be handled in follow-up diffs.
Note also that the STABS we emit differ slightly from what ld64 does. First, we
emit the path to the source file as one `N_SO` symbol instead of two. (`ld64`
emits one `N_SO` for the dirname and one of the basename.) Second, we do not
emit `N_BNSYM` and `N_ENSYM` STABS to mark the start and end of functions,
because the `N_FUN` STABS already serve that purpose. @clayborg recommended
these changes based on his knowledge of what the debugging tools look for.
Additionally, this current implementation doesn't accurately reflect the size
of function symbols. It uses the size of their containing sectioins as a proxy,
but that is only accurate if `.subsections_with_symbols` is set, and if there
isn't an `N_ALT_ENTRY` in that particular subsection. I think we have two
options to solve this:
1. We can split up subsections by symbol even if `.subsections_with_symbols`
is not set, but include constraints to ensure those subsections retain
their order in the final output. This is `ld64`'s approach.
2. We could just add a `size` field to our `Symbol` class. This seems simpler,
and I'm more inclined toward it, but I'm not sure if there are use cases
that it doesn't handle well. As such I'm punting on the decision for now.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D89257
2020-12-02 06:45:01 +08:00
|
|
|
|
2021-04-03 06:46:18 +08:00
|
|
|
protected:
|
|
|
|
SymtabSection(StringTableSection &);
|
|
|
|
|
[lld-macho][reland] Add basic symbol table output
This diff implements basic support for writing a symbol table.
Attributes are loosely supported for extern symbols and not at all for
other types.
Initial version by Kellie Medlin <kelliem@fb.com>
Originally committed in a3d95a50ee33 and reverted in fbae153ca583 due to
UBSAN erroring over unaligned writes. That has been fixed in the
current diff with the following changes:
```
diff --git a/lld/MachO/SyntheticSections.cpp b/lld/MachO/SyntheticSections.cpp
--- a/lld/MachO/SyntheticSections.cpp
+++ b/lld/MachO/SyntheticSections.cpp
@@ -133,6 +133,9 @@ SymtabSection::SymtabSection(StringTableSection &stringTableSection)
: stringTableSection(stringTableSection) {
segname = segment_names::linkEdit;
name = section_names::symbolTable;
+ // TODO: When we introduce the SyntheticSections superclass, we should make
+ // all synthetic sections aligned to WordSize by default.
+ align = WordSize;
}
size_t SymtabSection::getSize() const {
diff --git a/lld/MachO/Writer.cpp b/lld/MachO/Writer.cpp
--- a/lld/MachO/Writer.cpp
+++ b/lld/MachO/Writer.cpp
@@ -371,6 +371,7 @@ void Writer::assignAddresses(OutputSegment *seg) {
ArrayRef<InputSection *> sections = p.second;
for (InputSection *isec : sections) {
addr = alignTo(addr, isec->align);
+ // We must align the file offsets too to avoid misaligned writes of
+ // structs.
+ fileOff = alignTo(fileOff, isec->align);
isec->addr = addr;
addr += isec->getSize();
fileOff += isec->getFileSize();
@@ -396,6 +397,7 @@ void Writer::writeSections() {
uint64_t fileOff = seg->fileOff;
for (auto § : seg->getSections()) {
for (InputSection *isec : sect.second) {
+ fileOff = alignTo(fileOff, isec->align);
isec->writeTo(buf + fileOff);
fileOff += isec->getFileSize();
}
```
I don't think it's easy to write a test for alignment (that doesn't
involve brittly hard-coding file offsets), so there isn't one... but
UBSAN builds pass now.
Differential Revision: https://reviews.llvm.org/D79050
2020-04-29 07:58:19 +08:00
|
|
|
StringTableSection &stringTableSection;
|
2020-12-02 06:45:09 +08:00
|
|
|
// STABS symbols are always local symbols, but we represent them with special
|
|
|
|
// entries because they may use fields like n_sect and n_desc differently.
|
[lld-macho] Emit STABS symbols for debugging, and drop debug sections
Debug sections contain a large amount of data. In order not to bloat the size
of the final binary, we remove them and instead emit STABS symbols for
`dsymutil` and the debugger to locate their contents in the object files.
With this diff, `dsymutil` is able to locate the debug info. However, we need
a few more features before `lldb` is able to work well with our binaries --
e.g. having `LC_DYSYMTAB` accurately reflect the number of local symbols,
emitting `LC_UUID`, and more. Those will be handled in follow-up diffs.
Note also that the STABS we emit differ slightly from what ld64 does. First, we
emit the path to the source file as one `N_SO` symbol instead of two. (`ld64`
emits one `N_SO` for the dirname and one of the basename.) Second, we do not
emit `N_BNSYM` and `N_ENSYM` STABS to mark the start and end of functions,
because the `N_FUN` STABS already serve that purpose. @clayborg recommended
these changes based on his knowledge of what the debugging tools look for.
Additionally, this current implementation doesn't accurately reflect the size
of function symbols. It uses the size of their containing sectioins as a proxy,
but that is only accurate if `.subsections_with_symbols` is set, and if there
isn't an `N_ALT_ENTRY` in that particular subsection. I think we have two
options to solve this:
1. We can split up subsections by symbol even if `.subsections_with_symbols`
is not set, but include constraints to ensure those subsections retain
their order in the final output. This is `ld64`'s approach.
2. We could just add a `size` field to our `Symbol` class. This seems simpler,
and I'm more inclined toward it, but I'm not sure if there are use cases
that it doesn't handle well. As such I'm punting on the decision for now.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D89257
2020-12-02 06:45:01 +08:00
|
|
|
std::vector<StabsEntry> stabs;
|
2020-12-02 06:45:09 +08:00
|
|
|
std::vector<SymtabEntry> localSymbols;
|
|
|
|
std::vector<SymtabEntry> externalSymbols;
|
|
|
|
std::vector<SymtabEntry> undefinedSymbols;
|
[lld-macho][reland] Add basic symbol table output
This diff implements basic support for writing a symbol table.
Attributes are loosely supported for extern symbols and not at all for
other types.
Initial version by Kellie Medlin <kelliem@fb.com>
Originally committed in a3d95a50ee33 and reverted in fbae153ca583 due to
UBSAN erroring over unaligned writes. That has been fixed in the
current diff with the following changes:
```
diff --git a/lld/MachO/SyntheticSections.cpp b/lld/MachO/SyntheticSections.cpp
--- a/lld/MachO/SyntheticSections.cpp
+++ b/lld/MachO/SyntheticSections.cpp
@@ -133,6 +133,9 @@ SymtabSection::SymtabSection(StringTableSection &stringTableSection)
: stringTableSection(stringTableSection) {
segname = segment_names::linkEdit;
name = section_names::symbolTable;
+ // TODO: When we introduce the SyntheticSections superclass, we should make
+ // all synthetic sections aligned to WordSize by default.
+ align = WordSize;
}
size_t SymtabSection::getSize() const {
diff --git a/lld/MachO/Writer.cpp b/lld/MachO/Writer.cpp
--- a/lld/MachO/Writer.cpp
+++ b/lld/MachO/Writer.cpp
@@ -371,6 +371,7 @@ void Writer::assignAddresses(OutputSegment *seg) {
ArrayRef<InputSection *> sections = p.second;
for (InputSection *isec : sections) {
addr = alignTo(addr, isec->align);
+ // We must align the file offsets too to avoid misaligned writes of
+ // structs.
+ fileOff = alignTo(fileOff, isec->align);
isec->addr = addr;
addr += isec->getSize();
fileOff += isec->getFileSize();
@@ -396,6 +397,7 @@ void Writer::writeSections() {
uint64_t fileOff = seg->fileOff;
for (auto § : seg->getSections()) {
for (InputSection *isec : sect.second) {
+ fileOff = alignTo(fileOff, isec->align);
isec->writeTo(buf + fileOff);
fileOff += isec->getFileSize();
}
```
I don't think it's easy to write a test for alignment (that doesn't
involve brittly hard-coding file offsets), so there isn't one... but
UBSAN builds pass now.
Differential Revision: https://reviews.llvm.org/D79050
2020-04-29 07:58:19 +08:00
|
|
|
};
|
|
|
|
|
2021-04-03 06:46:18 +08:00
|
|
|
template <class LP> SymtabSection *makeSymtabSection(StringTableSection &);
|
|
|
|
|
2020-09-05 09:02:07 +08:00
|
|
|
// The indirect symbol table is a list of 32-bit integers that serve as indices
|
|
|
|
// into the (actual) symbol table. The indirect symbol table is a
|
2020-12-02 09:27:33 +08:00
|
|
|
// concatenation of several sub-arrays of indices, each sub-array belonging to
|
2020-09-05 09:02:07 +08:00
|
|
|
// a separate section. The starting offset of each sub-array is stored in the
|
|
|
|
// reserved1 header field of the respective section.
|
|
|
|
//
|
|
|
|
// These sub-arrays provide symbol information for sections that store
|
|
|
|
// contiguous sequences of symbol references. These references can be pointers
|
|
|
|
// (e.g. those in the GOT and TLVP sections) or assembly sequences (e.g.
|
|
|
|
// function stubs).
|
2021-06-14 07:43:37 +08:00
|
|
|
class IndirectSymtabSection final : public LinkEditSection {
|
2020-09-05 09:02:07 +08:00
|
|
|
public:
|
|
|
|
IndirectSymtabSection();
|
2021-04-08 07:55:45 +08:00
|
|
|
void finalizeContents() override;
|
2020-09-05 09:02:07 +08:00
|
|
|
uint32_t getNumSymbols() const;
|
|
|
|
uint64_t getRawSize() const override {
|
|
|
|
return getNumSymbols() * sizeof(uint32_t);
|
|
|
|
}
|
|
|
|
bool isNeeded() const override;
|
|
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
};
|
|
|
|
|
2021-01-07 10:11:44 +08:00
|
|
|
// The code signature comes at the very end of the linked output file.
|
2021-06-14 07:43:37 +08:00
|
|
|
class CodeSignatureSection final : public LinkEditSection {
|
2021-01-07 10:11:44 +08:00
|
|
|
public:
|
2021-10-27 05:25:34 +08:00
|
|
|
// NOTE: These values are duplicated in llvm-objcopy's MachO/Object.h file
|
|
|
|
// and any changes here, should be repeated there.
|
2021-10-02 05:30:21 +08:00
|
|
|
static constexpr uint8_t blockSizeShift = 12;
|
|
|
|
static constexpr size_t blockSize = (1 << blockSizeShift); // 4 KiB
|
|
|
|
static constexpr size_t hashSize = 256 / 8;
|
|
|
|
static constexpr size_t blobHeadersSize = llvm::alignTo<8>(
|
|
|
|
sizeof(llvm::MachO::CS_SuperBlob) + sizeof(llvm::MachO::CS_BlobIndex));
|
|
|
|
static constexpr uint32_t fixedHeadersSize =
|
|
|
|
blobHeadersSize + sizeof(llvm::MachO::CS_CodeDirectory);
|
|
|
|
|
|
|
|
uint32_t fileNamePad = 0;
|
|
|
|
uint32_t allHeadersSize = 0;
|
|
|
|
StringRef fileName;
|
|
|
|
|
2021-01-07 10:11:44 +08:00
|
|
|
CodeSignatureSection();
|
|
|
|
uint64_t getRawSize() const override;
|
|
|
|
bool isNeeded() const override { return true; }
|
|
|
|
void writeTo(uint8_t *buf) const override;
|
2021-10-02 05:30:21 +08:00
|
|
|
uint32_t getBlockCount() const;
|
2021-01-07 10:11:44 +08:00
|
|
|
void writeHashes(uint8_t *buf) const;
|
|
|
|
};
|
|
|
|
|
2021-06-14 07:43:37 +08:00
|
|
|
class BitcodeBundleSection final : public SyntheticSection {
|
2021-04-17 04:46:45 +08:00
|
|
|
public:
|
|
|
|
BitcodeBundleSection();
|
|
|
|
uint64_t getSize() const override { return xarSize; }
|
|
|
|
void finalize() override;
|
|
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
|
|
|
|
private:
|
|
|
|
llvm::SmallString<261> xarPath;
|
|
|
|
uint64_t xarSize;
|
|
|
|
};
|
|
|
|
|
2021-06-29 10:22:21 +08:00
|
|
|
class CStringSection : public SyntheticSection {
|
[lld-macho] Implement cstring deduplication
Our implementation draws heavily from LLD-ELF's, which in turn delegates
its string deduplication to llvm-mc's StringTableBuilder. The messiness of
this diff is largely due to the fact that we've previously assumed that
all InputSections get concatenated together to form the output. This is
no longer true with CStringInputSections, which split their contents into
StringPieces. StringPieces are much more lightweight than InputSections,
which is important as we create a lot of them. They may also overlap in
the output, which makes it possible for strings to be tail-merged. In
fact, the initial version of this diff implemented tail merging, but
I've dropped it for reasons I'll explain later.
**Alignment Issues**
Mergeable cstring literals are found under the `__TEXT,__cstring`
section. In contrast to ELF, which puts strings that need different
alignments into different sections, clang's Mach-O backend puts them all
in one section. Strings that need to be aligned have the `.p2align`
directive emitted before them, which simply translates into zero padding
in the object file.
I *think* ld64 extracts the desired per-string alignment from this data
by preserving each string's offset from the last section-aligned
address. I'm not entirely certain since it doesn't seem consistent about
doing this; but perhaps this can be chalked up to cases where ld64 has
to deduplicate strings with different offset/alignment combos -- it
seems to pick one of their alignments to preserve. This doesn't seem
correct in general; we can in fact can induce ld64 to produce a crashing
binary just by linking in an additional object file that only contains
cstrings and no code. See PR50563 for details.
Moreover, this scheme seems rather inefficient: since unaligned and
aligned strings are all put in the same section, which has a single
alignment value, it doesn't seem possible to tell whether a given string
doesn't have any alignment requirements. Preserving offset+alignments
for strings that don't need it is wasteful.
In practice, the crashes seen so far seem to stem from x86_64 SIMD
operations on cstrings. X86_64 requires SIMD accesses to be
16-byte-aligned. So for now, I'm thinking of just aligning all strings
to 16 bytes on x86_64. This is indeed wasteful, but implementation-wise
it's simpler than preserving per-string alignment+offsets. It also
avoids the aforementioned crash after deduplication of
differently-aligned strings. Finally, the overhead is not huge: using
16-byte alignment (vs no alignment) is only a 0.5% size overhead when
linking chromium_framework.
With these alignment requirements, it doesn't make sense to attempt tail
merging -- most strings will not be eligible since their overlaps aren't
likely to start at a 16-byte boundary. Tail-merging (with alignment) for
chromium_framework only improves size by 0.3%.
It's worth noting that LLD-ELF only does tail merging at `-O2`. By
default (at `-O1`), it just deduplicates w/o tail merging. @thakis has
also mentioned that they saw it regress compressed size in some cases
and therefore turned it off. `ld64` does not seem to do tail merging at
all.
**Performance Numbers**
CString deduplication reduces chromium_framework from 250MB to 242MB, or
about a 3.2% reduction.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.99 4.14 4.015 4.0365 0.0492336
Difference at 95.0% confidence
0.0865 +/- 0.027245
2.18987% +/- 0.689746%
(Student's t, pooled s = 0.0425673)
As expected, cstring merging incurs some non-trivial overhead.
When passing `--no-literal-merge`, it seems that performance is the
same, i.e. the refactoring in this diff didn't cost us.
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.89 4.02 3.935 3.9435 0.043197831
No difference proven at 95.0% confidence
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D102964
2021-06-08 11:47:12 +08:00
|
|
|
public:
|
|
|
|
CStringSection();
|
|
|
|
void addInput(CStringInputSection *);
|
2021-06-29 10:22:21 +08:00
|
|
|
uint64_t getSize() const override { return size; }
|
|
|
|
virtual void finalizeContents();
|
[lld-macho] Implement cstring deduplication
Our implementation draws heavily from LLD-ELF's, which in turn delegates
its string deduplication to llvm-mc's StringTableBuilder. The messiness of
this diff is largely due to the fact that we've previously assumed that
all InputSections get concatenated together to form the output. This is
no longer true with CStringInputSections, which split their contents into
StringPieces. StringPieces are much more lightweight than InputSections,
which is important as we create a lot of them. They may also overlap in
the output, which makes it possible for strings to be tail-merged. In
fact, the initial version of this diff implemented tail merging, but
I've dropped it for reasons I'll explain later.
**Alignment Issues**
Mergeable cstring literals are found under the `__TEXT,__cstring`
section. In contrast to ELF, which puts strings that need different
alignments into different sections, clang's Mach-O backend puts them all
in one section. Strings that need to be aligned have the `.p2align`
directive emitted before them, which simply translates into zero padding
in the object file.
I *think* ld64 extracts the desired per-string alignment from this data
by preserving each string's offset from the last section-aligned
address. I'm not entirely certain since it doesn't seem consistent about
doing this; but perhaps this can be chalked up to cases where ld64 has
to deduplicate strings with different offset/alignment combos -- it
seems to pick one of their alignments to preserve. This doesn't seem
correct in general; we can in fact can induce ld64 to produce a crashing
binary just by linking in an additional object file that only contains
cstrings and no code. See PR50563 for details.
Moreover, this scheme seems rather inefficient: since unaligned and
aligned strings are all put in the same section, which has a single
alignment value, it doesn't seem possible to tell whether a given string
doesn't have any alignment requirements. Preserving offset+alignments
for strings that don't need it is wasteful.
In practice, the crashes seen so far seem to stem from x86_64 SIMD
operations on cstrings. X86_64 requires SIMD accesses to be
16-byte-aligned. So for now, I'm thinking of just aligning all strings
to 16 bytes on x86_64. This is indeed wasteful, but implementation-wise
it's simpler than preserving per-string alignment+offsets. It also
avoids the aforementioned crash after deduplication of
differently-aligned strings. Finally, the overhead is not huge: using
16-byte alignment (vs no alignment) is only a 0.5% size overhead when
linking chromium_framework.
With these alignment requirements, it doesn't make sense to attempt tail
merging -- most strings will not be eligible since their overlaps aren't
likely to start at a 16-byte boundary. Tail-merging (with alignment) for
chromium_framework only improves size by 0.3%.
It's worth noting that LLD-ELF only does tail merging at `-O2`. By
default (at `-O1`), it just deduplicates w/o tail merging. @thakis has
also mentioned that they saw it regress compressed size in some cases
and therefore turned it off. `ld64` does not seem to do tail merging at
all.
**Performance Numbers**
CString deduplication reduces chromium_framework from 250MB to 242MB, or
about a 3.2% reduction.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.99 4.14 4.015 4.0365 0.0492336
Difference at 95.0% confidence
0.0865 +/- 0.027245
2.18987% +/- 0.689746%
(Student's t, pooled s = 0.0425673)
As expected, cstring merging incurs some non-trivial overhead.
When passing `--no-literal-merge`, it seems that performance is the
same, i.e. the refactoring in this diff didn't cost us.
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.89 4.02 3.935 3.9435 0.043197831
No difference proven at 95.0% confidence
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D102964
2021-06-08 11:47:12 +08:00
|
|
|
bool isNeeded() const override { return !inputs.empty(); }
|
2021-06-29 10:22:21 +08:00
|
|
|
void writeTo(uint8_t *buf) const override;
|
[lld-macho] Implement cstring deduplication
Our implementation draws heavily from LLD-ELF's, which in turn delegates
its string deduplication to llvm-mc's StringTableBuilder. The messiness of
this diff is largely due to the fact that we've previously assumed that
all InputSections get concatenated together to form the output. This is
no longer true with CStringInputSections, which split their contents into
StringPieces. StringPieces are much more lightweight than InputSections,
which is important as we create a lot of them. They may also overlap in
the output, which makes it possible for strings to be tail-merged. In
fact, the initial version of this diff implemented tail merging, but
I've dropped it for reasons I'll explain later.
**Alignment Issues**
Mergeable cstring literals are found under the `__TEXT,__cstring`
section. In contrast to ELF, which puts strings that need different
alignments into different sections, clang's Mach-O backend puts them all
in one section. Strings that need to be aligned have the `.p2align`
directive emitted before them, which simply translates into zero padding
in the object file.
I *think* ld64 extracts the desired per-string alignment from this data
by preserving each string's offset from the last section-aligned
address. I'm not entirely certain since it doesn't seem consistent about
doing this; but perhaps this can be chalked up to cases where ld64 has
to deduplicate strings with different offset/alignment combos -- it
seems to pick one of their alignments to preserve. This doesn't seem
correct in general; we can in fact can induce ld64 to produce a crashing
binary just by linking in an additional object file that only contains
cstrings and no code. See PR50563 for details.
Moreover, this scheme seems rather inefficient: since unaligned and
aligned strings are all put in the same section, which has a single
alignment value, it doesn't seem possible to tell whether a given string
doesn't have any alignment requirements. Preserving offset+alignments
for strings that don't need it is wasteful.
In practice, the crashes seen so far seem to stem from x86_64 SIMD
operations on cstrings. X86_64 requires SIMD accesses to be
16-byte-aligned. So for now, I'm thinking of just aligning all strings
to 16 bytes on x86_64. This is indeed wasteful, but implementation-wise
it's simpler than preserving per-string alignment+offsets. It also
avoids the aforementioned crash after deduplication of
differently-aligned strings. Finally, the overhead is not huge: using
16-byte alignment (vs no alignment) is only a 0.5% size overhead when
linking chromium_framework.
With these alignment requirements, it doesn't make sense to attempt tail
merging -- most strings will not be eligible since their overlaps aren't
likely to start at a 16-byte boundary. Tail-merging (with alignment) for
chromium_framework only improves size by 0.3%.
It's worth noting that LLD-ELF only does tail merging at `-O2`. By
default (at `-O1`), it just deduplicates w/o tail merging. @thakis has
also mentioned that they saw it regress compressed size in some cases
and therefore turned it off. `ld64` does not seem to do tail merging at
all.
**Performance Numbers**
CString deduplication reduces chromium_framework from 250MB to 242MB, or
about a 3.2% reduction.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.99 4.14 4.015 4.0365 0.0492336
Difference at 95.0% confidence
0.0865 +/- 0.027245
2.18987% +/- 0.689746%
(Student's t, pooled s = 0.0425673)
As expected, cstring merging incurs some non-trivial overhead.
When passing `--no-literal-merge`, it seems that performance is the
same, i.e. the refactoring in this diff didn't cost us.
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.89 4.02 3.935 3.9435 0.043197831
No difference proven at 95.0% confidence
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D102964
2021-06-08 11:47:12 +08:00
|
|
|
|
|
|
|
std::vector<CStringInputSection *> inputs;
|
|
|
|
|
2021-06-29 10:22:21 +08:00
|
|
|
private:
|
|
|
|
uint64_t size;
|
|
|
|
};
|
|
|
|
|
|
|
|
class DeduplicatedCStringSection final : public CStringSection {
|
|
|
|
public:
|
[lld-macho] Align cstrings less conservatively
Previously, we aligned every cstring to 16 bytes as a temporary hack to
deal with https://github.com/llvm/llvm-project/issues/50135. However, it
was highly wasteful in terms of binary size.
To recap, in contrast to ELF, which puts strings that need different
alignments into different sections, `clang`'s Mach-O backend puts them
all in one section. Strings that need to be aligned have the .p2align
directive emitted before them, which simply translates into zero padding
in the object file. In other words, we have to infer the alignment of
the cstrings from their addresses.
We differ slightly from ld64 in how we've chosen to align these
cstrings. Both LLD and ld64 preserve the number of trailing zeros in
each cstring's address in the input object files. When deduplicating
identical cstrings, both linkers pick the cstring whose address has more
trailing zeros, and preserve the alignment of that address in the final
binary. However, ld64 goes a step further and also preserves the offset
of the cstring from the last section-aligned address. I.e. if a cstring
is at offset 18 in the input, with a section alignment of 16, then both
LLD and ld64 will ensure the final address is 2-byte aligned (since
`18 == 16 + 2`). But ld64 will also ensure that the final address is of
the form 16 * k + 2 for some k (which implies 2-byte alignment).
Note that ld64's heuristic means that a dedup'ed cstring's final address is
dependent on the order of the input object files. E.g. if in addition to the
cstring at offset 18 above, we have a duplicate one in another file with a
`.cstring` section alignment of 2 and an offset of zero, then ld64 will pick
the cstring from the object file earlier on the command line (since both have
the same number of trailing zeros in their address). So the final cstring may
either be at some address `16 * k + 2` or at some address `2 * k`.
I've opted not to follow this behavior primarily for implementation
simplicity, and secondarily to save a few more bytes. It's not clear to me
that preserving the section alignment + offset is ever necessary, and there
are many cases that are clearly redundant. In particular, if an x86_64 object
file contains some strings that are accessed via SIMD instructions, then the
.cstring section in the object file will be 16-byte-aligned (since SIMD
requires its operand addresses to be 16-byte aligned). However, there will
typically also be other cstrings in the same file that aren't used via SIMD
and don't need this alignment. They will be emitted at some arbitrary address
`A`, but ld64 will treat them as being 16-byte aligned with an offset of
`16 % A`.
I have verified that the two repros in https://github.com/llvm/llvm-project/issues/50135
work well with the new alignment behavior.
Fixes https://github.com/llvm/llvm-project/issues/54036.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D121342
2022-03-11 04:04:31 +08:00
|
|
|
uint64_t getSize() const override { return size; }
|
2021-06-29 10:22:21 +08:00
|
|
|
void finalizeContents() override;
|
[lld-macho] Align cstrings less conservatively
Previously, we aligned every cstring to 16 bytes as a temporary hack to
deal with https://github.com/llvm/llvm-project/issues/50135. However, it
was highly wasteful in terms of binary size.
To recap, in contrast to ELF, which puts strings that need different
alignments into different sections, `clang`'s Mach-O backend puts them
all in one section. Strings that need to be aligned have the .p2align
directive emitted before them, which simply translates into zero padding
in the object file. In other words, we have to infer the alignment of
the cstrings from their addresses.
We differ slightly from ld64 in how we've chosen to align these
cstrings. Both LLD and ld64 preserve the number of trailing zeros in
each cstring's address in the input object files. When deduplicating
identical cstrings, both linkers pick the cstring whose address has more
trailing zeros, and preserve the alignment of that address in the final
binary. However, ld64 goes a step further and also preserves the offset
of the cstring from the last section-aligned address. I.e. if a cstring
is at offset 18 in the input, with a section alignment of 16, then both
LLD and ld64 will ensure the final address is 2-byte aligned (since
`18 == 16 + 2`). But ld64 will also ensure that the final address is of
the form 16 * k + 2 for some k (which implies 2-byte alignment).
Note that ld64's heuristic means that a dedup'ed cstring's final address is
dependent on the order of the input object files. E.g. if in addition to the
cstring at offset 18 above, we have a duplicate one in another file with a
`.cstring` section alignment of 2 and an offset of zero, then ld64 will pick
the cstring from the object file earlier on the command line (since both have
the same number of trailing zeros in their address). So the final cstring may
either be at some address `16 * k + 2` or at some address `2 * k`.
I've opted not to follow this behavior primarily for implementation
simplicity, and secondarily to save a few more bytes. It's not clear to me
that preserving the section alignment + offset is ever necessary, and there
are many cases that are clearly redundant. In particular, if an x86_64 object
file contains some strings that are accessed via SIMD instructions, then the
.cstring section in the object file will be 16-byte-aligned (since SIMD
requires its operand addresses to be 16-byte aligned). However, there will
typically also be other cstrings in the same file that aren't used via SIMD
and don't need this alignment. They will be emitted at some arbitrary address
`A`, but ld64 will treat them as being 16-byte aligned with an offset of
`16 % A`.
I have verified that the two repros in https://github.com/llvm/llvm-project/issues/50135
work well with the new alignment behavior.
Fixes https://github.com/llvm/llvm-project/issues/54036.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D121342
2022-03-11 04:04:31 +08:00
|
|
|
void writeTo(uint8_t *buf) const override;
|
2021-06-29 10:22:21 +08:00
|
|
|
|
[lld-macho] Implement cstring deduplication
Our implementation draws heavily from LLD-ELF's, which in turn delegates
its string deduplication to llvm-mc's StringTableBuilder. The messiness of
this diff is largely due to the fact that we've previously assumed that
all InputSections get concatenated together to form the output. This is
no longer true with CStringInputSections, which split their contents into
StringPieces. StringPieces are much more lightweight than InputSections,
which is important as we create a lot of them. They may also overlap in
the output, which makes it possible for strings to be tail-merged. In
fact, the initial version of this diff implemented tail merging, but
I've dropped it for reasons I'll explain later.
**Alignment Issues**
Mergeable cstring literals are found under the `__TEXT,__cstring`
section. In contrast to ELF, which puts strings that need different
alignments into different sections, clang's Mach-O backend puts them all
in one section. Strings that need to be aligned have the `.p2align`
directive emitted before them, which simply translates into zero padding
in the object file.
I *think* ld64 extracts the desired per-string alignment from this data
by preserving each string's offset from the last section-aligned
address. I'm not entirely certain since it doesn't seem consistent about
doing this; but perhaps this can be chalked up to cases where ld64 has
to deduplicate strings with different offset/alignment combos -- it
seems to pick one of their alignments to preserve. This doesn't seem
correct in general; we can in fact can induce ld64 to produce a crashing
binary just by linking in an additional object file that only contains
cstrings and no code. See PR50563 for details.
Moreover, this scheme seems rather inefficient: since unaligned and
aligned strings are all put in the same section, which has a single
alignment value, it doesn't seem possible to tell whether a given string
doesn't have any alignment requirements. Preserving offset+alignments
for strings that don't need it is wasteful.
In practice, the crashes seen so far seem to stem from x86_64 SIMD
operations on cstrings. X86_64 requires SIMD accesses to be
16-byte-aligned. So for now, I'm thinking of just aligning all strings
to 16 bytes on x86_64. This is indeed wasteful, but implementation-wise
it's simpler than preserving per-string alignment+offsets. It also
avoids the aforementioned crash after deduplication of
differently-aligned strings. Finally, the overhead is not huge: using
16-byte alignment (vs no alignment) is only a 0.5% size overhead when
linking chromium_framework.
With these alignment requirements, it doesn't make sense to attempt tail
merging -- most strings will not be eligible since their overlaps aren't
likely to start at a 16-byte boundary. Tail-merging (with alignment) for
chromium_framework only improves size by 0.3%.
It's worth noting that LLD-ELF only does tail merging at `-O2`. By
default (at `-O1`), it just deduplicates w/o tail merging. @thakis has
also mentioned that they saw it regress compressed size in some cases
and therefore turned it off. `ld64` does not seem to do tail merging at
all.
**Performance Numbers**
CString deduplication reduces chromium_framework from 250MB to 242MB, or
about a 3.2% reduction.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.99 4.14 4.015 4.0365 0.0492336
Difference at 95.0% confidence
0.0865 +/- 0.027245
2.18987% +/- 0.689746%
(Student's t, pooled s = 0.0425673)
As expected, cstring merging incurs some non-trivial overhead.
When passing `--no-literal-merge`, it seems that performance is the
same, i.e. the refactoring in this diff didn't cost us.
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.89 4.02 3.935 3.9435 0.043197831
No difference proven at 95.0% confidence
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D102964
2021-06-08 11:47:12 +08:00
|
|
|
private:
|
[lld-macho] Align cstrings less conservatively
Previously, we aligned every cstring to 16 bytes as a temporary hack to
deal with https://github.com/llvm/llvm-project/issues/50135. However, it
was highly wasteful in terms of binary size.
To recap, in contrast to ELF, which puts strings that need different
alignments into different sections, `clang`'s Mach-O backend puts them
all in one section. Strings that need to be aligned have the .p2align
directive emitted before them, which simply translates into zero padding
in the object file. In other words, we have to infer the alignment of
the cstrings from their addresses.
We differ slightly from ld64 in how we've chosen to align these
cstrings. Both LLD and ld64 preserve the number of trailing zeros in
each cstring's address in the input object files. When deduplicating
identical cstrings, both linkers pick the cstring whose address has more
trailing zeros, and preserve the alignment of that address in the final
binary. However, ld64 goes a step further and also preserves the offset
of the cstring from the last section-aligned address. I.e. if a cstring
is at offset 18 in the input, with a section alignment of 16, then both
LLD and ld64 will ensure the final address is 2-byte aligned (since
`18 == 16 + 2`). But ld64 will also ensure that the final address is of
the form 16 * k + 2 for some k (which implies 2-byte alignment).
Note that ld64's heuristic means that a dedup'ed cstring's final address is
dependent on the order of the input object files. E.g. if in addition to the
cstring at offset 18 above, we have a duplicate one in another file with a
`.cstring` section alignment of 2 and an offset of zero, then ld64 will pick
the cstring from the object file earlier on the command line (since both have
the same number of trailing zeros in their address). So the final cstring may
either be at some address `16 * k + 2` or at some address `2 * k`.
I've opted not to follow this behavior primarily for implementation
simplicity, and secondarily to save a few more bytes. It's not clear to me
that preserving the section alignment + offset is ever necessary, and there
are many cases that are clearly redundant. In particular, if an x86_64 object
file contains some strings that are accessed via SIMD instructions, then the
.cstring section in the object file will be 16-byte-aligned (since SIMD
requires its operand addresses to be 16-byte aligned). However, there will
typically also be other cstrings in the same file that aren't used via SIMD
and don't need this alignment. They will be emitted at some arbitrary address
`A`, but ld64 will treat them as being 16-byte aligned with an offset of
`16 % A`.
I have verified that the two repros in https://github.com/llvm/llvm-project/issues/50135
work well with the new alignment behavior.
Fixes https://github.com/llvm/llvm-project/issues/54036.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D121342
2022-03-11 04:04:31 +08:00
|
|
|
struct StringOffset {
|
|
|
|
uint8_t trailingZeros;
|
|
|
|
uint64_t outSecOff = UINT64_MAX;
|
|
|
|
|
|
|
|
explicit StringOffset(uint8_t zeros) : trailingZeros(zeros) {}
|
|
|
|
};
|
|
|
|
llvm::DenseMap<llvm::CachedHashStringRef, StringOffset> stringOffsetMap;
|
|
|
|
size_t size = 0;
|
[lld-macho] Implement cstring deduplication
Our implementation draws heavily from LLD-ELF's, which in turn delegates
its string deduplication to llvm-mc's StringTableBuilder. The messiness of
this diff is largely due to the fact that we've previously assumed that
all InputSections get concatenated together to form the output. This is
no longer true with CStringInputSections, which split their contents into
StringPieces. StringPieces are much more lightweight than InputSections,
which is important as we create a lot of them. They may also overlap in
the output, which makes it possible for strings to be tail-merged. In
fact, the initial version of this diff implemented tail merging, but
I've dropped it for reasons I'll explain later.
**Alignment Issues**
Mergeable cstring literals are found under the `__TEXT,__cstring`
section. In contrast to ELF, which puts strings that need different
alignments into different sections, clang's Mach-O backend puts them all
in one section. Strings that need to be aligned have the `.p2align`
directive emitted before them, which simply translates into zero padding
in the object file.
I *think* ld64 extracts the desired per-string alignment from this data
by preserving each string's offset from the last section-aligned
address. I'm not entirely certain since it doesn't seem consistent about
doing this; but perhaps this can be chalked up to cases where ld64 has
to deduplicate strings with different offset/alignment combos -- it
seems to pick one of their alignments to preserve. This doesn't seem
correct in general; we can in fact can induce ld64 to produce a crashing
binary just by linking in an additional object file that only contains
cstrings and no code. See PR50563 for details.
Moreover, this scheme seems rather inefficient: since unaligned and
aligned strings are all put in the same section, which has a single
alignment value, it doesn't seem possible to tell whether a given string
doesn't have any alignment requirements. Preserving offset+alignments
for strings that don't need it is wasteful.
In practice, the crashes seen so far seem to stem from x86_64 SIMD
operations on cstrings. X86_64 requires SIMD accesses to be
16-byte-aligned. So for now, I'm thinking of just aligning all strings
to 16 bytes on x86_64. This is indeed wasteful, but implementation-wise
it's simpler than preserving per-string alignment+offsets. It also
avoids the aforementioned crash after deduplication of
differently-aligned strings. Finally, the overhead is not huge: using
16-byte alignment (vs no alignment) is only a 0.5% size overhead when
linking chromium_framework.
With these alignment requirements, it doesn't make sense to attempt tail
merging -- most strings will not be eligible since their overlaps aren't
likely to start at a 16-byte boundary. Tail-merging (with alignment) for
chromium_framework only improves size by 0.3%.
It's worth noting that LLD-ELF only does tail merging at `-O2`. By
default (at `-O1`), it just deduplicates w/o tail merging. @thakis has
also mentioned that they saw it regress compressed size in some cases
and therefore turned it off. `ld64` does not seem to do tail merging at
all.
**Performance Numbers**
CString deduplication reduces chromium_framework from 250MB to 242MB, or
about a 3.2% reduction.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.99 4.14 4.015 4.0365 0.0492336
Difference at 95.0% confidence
0.0865 +/- 0.027245
2.18987% +/- 0.689746%
(Student's t, pooled s = 0.0425673)
As expected, cstring merging incurs some non-trivial overhead.
When passing `--no-literal-merge`, it seems that performance is the
same, i.e. the refactoring in this diff didn't cost us.
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.89 4.02 3.935 3.9435 0.043197831
No difference proven at 95.0% confidence
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D102964
2021-06-08 11:47:12 +08:00
|
|
|
};
|
|
|
|
|
[lld-macho] Deduplicate fixed-width literals
Conceptually, the implementation is pretty straightforward: we put each
literal value into a hashtable, and then write out the keys of that
hashtable at the end.
In contrast with ELF, the Mach-O format does not support variable-length
literals that aren't strings. Its literals are either 4, 8, or 16 bytes
in length. LLD-ELF dedups its literals via sorting + uniq'ing, but since
we don't need to worry about overly-long values, we should be able to do
a faster job by just hashing.
That said, the implementation right now is far from optimal, because we
add to those hashtables serially. To parallelize this, we'll need a
basic concurrent hashtable (only needs to support concurrent writes w/o
interleave reads), which shouldn't be to hard to implement, but I'd like
to punt on it for now.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 4.27 4.39 4.315 4.3225 0.033225703
+ 20 4.36 4.82 4.44 4.4845 0.13152846
Difference at 95.0% confidence
0.162 +/- 0.0613971
3.74783% +/- 1.42041%
(Student's t, pooled s = 0.0959262)
This corresponds to binary size savings of 2MB out of 335MB, or 0.6%.
It's not a great tradeoff as-is, but as mentioned our implementation can
be signficantly optimized, and literal dedup will unlock more
opportunities for ICF to identify identical structures that reference
the same literals.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D103113
2021-06-12 07:49:50 +08:00
|
|
|
/*
|
|
|
|
* This section contains deduplicated literal values. The 16-byte values are
|
|
|
|
* laid out first, followed by the 8- and then the 4-byte ones.
|
|
|
|
*/
|
2021-06-14 07:43:37 +08:00
|
|
|
class WordLiteralSection final : public SyntheticSection {
|
[lld-macho] Deduplicate fixed-width literals
Conceptually, the implementation is pretty straightforward: we put each
literal value into a hashtable, and then write out the keys of that
hashtable at the end.
In contrast with ELF, the Mach-O format does not support variable-length
literals that aren't strings. Its literals are either 4, 8, or 16 bytes
in length. LLD-ELF dedups its literals via sorting + uniq'ing, but since
we don't need to worry about overly-long values, we should be able to do
a faster job by just hashing.
That said, the implementation right now is far from optimal, because we
add to those hashtables serially. To parallelize this, we'll need a
basic concurrent hashtable (only needs to support concurrent writes w/o
interleave reads), which shouldn't be to hard to implement, but I'd like
to punt on it for now.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 4.27 4.39 4.315 4.3225 0.033225703
+ 20 4.36 4.82 4.44 4.4845 0.13152846
Difference at 95.0% confidence
0.162 +/- 0.0613971
3.74783% +/- 1.42041%
(Student's t, pooled s = 0.0959262)
This corresponds to binary size savings of 2MB out of 335MB, or 0.6%.
It's not a great tradeoff as-is, but as mentioned our implementation can
be signficantly optimized, and literal dedup will unlock more
opportunities for ICF to identify identical structures that reference
the same literals.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D103113
2021-06-12 07:49:50 +08:00
|
|
|
public:
|
|
|
|
using UInt128 = std::pair<uint64_t, uint64_t>;
|
|
|
|
// I don't think the standard guarantees the size of a pair, so let's make
|
|
|
|
// sure it's exact -- that way we can construct it via `mmap`.
|
|
|
|
static_assert(sizeof(UInt128) == 16, "");
|
|
|
|
|
|
|
|
WordLiteralSection();
|
|
|
|
void addInput(WordLiteralInputSection *);
|
[lld-macho] Move ICF earlier to avoid emitting redundant binds
This is a pretty big refactoring diff, so here are the motivations:
Previously, ICF ran after scanRelocations(), where we emitting
bind/rebase opcodes etc. So we had a bunch of redundant leftovers after
ICF. Having ICF run before Writer seems like a better design, and is
what LLD-ELF does, so this diff refactors it accordingly.
However, ICF had two dependencies on things occurring in Writer: 1) it
needs literals to be deduplicated beforehand and 2) it needs to know
which functions have unwind info, which was being handled by
`UnwindInfoSection::prepareRelocations()`.
In order to do literal deduplication earlier, we need to add literal
input sections to their corresponding output sections. So instead of
putting all input sections into the big `inputSections` vector, and then
filtering them by type later on, I've changed things so that literal
sections get added directly to their output sections during the 'gather'
phase. Likewise for compact unwind sections -- they get added directly
to the UnwindInfoSection now. This latter change is not strictly
necessary, but makes it easier for ICF to determine which functions have
unwind info.
Adding literal sections directly to their output sections means that we
can no longer determine `inputOrder` from iterating over
`inputSections`. Instead, we store that order explicitly on
InputSection. Bloating the size of InputSection for this purpose would
be unfortunate -- but LLD-ELF has already solved this problem: it reuses
`outSecOff` to store this order value.
One downside of this refactor is that we now make an additional pass
over the unwind info relocations to figure out which functions have
unwind info, since want to know that before `processRelocations()`. I've
made sure to run that extra loop only if ICF is enabled, so there should
be no overhead in non-optimizing runs of the linker.
The upside of all this is that the `inputSections` vector now contains
only ConcatInputSections that are destined for ConcatOutputSections, so
we can clean up a bunch of code that just existed to filter out other
elements from that vector.
I will test for the lack of redundant binds/rebases in the upcoming
cfstring deduplication diff. While binds/rebases can also happen in the
regular `.text` section, they're more common in `.data` sections, so it
seems more natural to test it that way.
This change is perf-neutral when linking chromium_framework.
Reviewed By: oontvoo
Differential Revision: https://reviews.llvm.org/D105044
2021-07-02 08:33:42 +08:00
|
|
|
void finalizeContents();
|
[lld-macho] Deduplicate fixed-width literals
Conceptually, the implementation is pretty straightforward: we put each
literal value into a hashtable, and then write out the keys of that
hashtable at the end.
In contrast with ELF, the Mach-O format does not support variable-length
literals that aren't strings. Its literals are either 4, 8, or 16 bytes
in length. LLD-ELF dedups its literals via sorting + uniq'ing, but since
we don't need to worry about overly-long values, we should be able to do
a faster job by just hashing.
That said, the implementation right now is far from optimal, because we
add to those hashtables serially. To parallelize this, we'll need a
basic concurrent hashtable (only needs to support concurrent writes w/o
interleave reads), which shouldn't be to hard to implement, but I'd like
to punt on it for now.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 4.27 4.39 4.315 4.3225 0.033225703
+ 20 4.36 4.82 4.44 4.4845 0.13152846
Difference at 95.0% confidence
0.162 +/- 0.0613971
3.74783% +/- 1.42041%
(Student's t, pooled s = 0.0959262)
This corresponds to binary size savings of 2MB out of 335MB, or 0.6%.
It's not a great tradeoff as-is, but as mentioned our implementation can
be signficantly optimized, and literal dedup will unlock more
opportunities for ICF to identify identical structures that reference
the same literals.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D103113
2021-06-12 07:49:50 +08:00
|
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
|
|
|
|
uint64_t getSize() const override {
|
|
|
|
return literal16Map.size() * 16 + literal8Map.size() * 8 +
|
|
|
|
literal4Map.size() * 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool isNeeded() const override {
|
|
|
|
return !literal16Map.empty() || !literal4Map.empty() ||
|
|
|
|
!literal8Map.empty();
|
|
|
|
}
|
|
|
|
|
2021-10-25 22:25:14 +08:00
|
|
|
uint64_t getLiteral16Offset(uintptr_t buf) const {
|
[lld-macho] Deduplicate fixed-width literals
Conceptually, the implementation is pretty straightforward: we put each
literal value into a hashtable, and then write out the keys of that
hashtable at the end.
In contrast with ELF, the Mach-O format does not support variable-length
literals that aren't strings. Its literals are either 4, 8, or 16 bytes
in length. LLD-ELF dedups its literals via sorting + uniq'ing, but since
we don't need to worry about overly-long values, we should be able to do
a faster job by just hashing.
That said, the implementation right now is far from optimal, because we
add to those hashtables serially. To parallelize this, we'll need a
basic concurrent hashtable (only needs to support concurrent writes w/o
interleave reads), which shouldn't be to hard to implement, but I'd like
to punt on it for now.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 4.27 4.39 4.315 4.3225 0.033225703
+ 20 4.36 4.82 4.44 4.4845 0.13152846
Difference at 95.0% confidence
0.162 +/- 0.0613971
3.74783% +/- 1.42041%
(Student's t, pooled s = 0.0959262)
This corresponds to binary size savings of 2MB out of 335MB, or 0.6%.
It's not a great tradeoff as-is, but as mentioned our implementation can
be signficantly optimized, and literal dedup will unlock more
opportunities for ICF to identify identical structures that reference
the same literals.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D103113
2021-06-12 07:49:50 +08:00
|
|
|
return literal16Map.at(*reinterpret_cast<const UInt128 *>(buf)) * 16;
|
|
|
|
}
|
|
|
|
|
2021-10-25 22:25:14 +08:00
|
|
|
uint64_t getLiteral8Offset(uintptr_t buf) const {
|
[lld-macho] Deduplicate fixed-width literals
Conceptually, the implementation is pretty straightforward: we put each
literal value into a hashtable, and then write out the keys of that
hashtable at the end.
In contrast with ELF, the Mach-O format does not support variable-length
literals that aren't strings. Its literals are either 4, 8, or 16 bytes
in length. LLD-ELF dedups its literals via sorting + uniq'ing, but since
we don't need to worry about overly-long values, we should be able to do
a faster job by just hashing.
That said, the implementation right now is far from optimal, because we
add to those hashtables serially. To parallelize this, we'll need a
basic concurrent hashtable (only needs to support concurrent writes w/o
interleave reads), which shouldn't be to hard to implement, but I'd like
to punt on it for now.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 4.27 4.39 4.315 4.3225 0.033225703
+ 20 4.36 4.82 4.44 4.4845 0.13152846
Difference at 95.0% confidence
0.162 +/- 0.0613971
3.74783% +/- 1.42041%
(Student's t, pooled s = 0.0959262)
This corresponds to binary size savings of 2MB out of 335MB, or 0.6%.
It's not a great tradeoff as-is, but as mentioned our implementation can
be signficantly optimized, and literal dedup will unlock more
opportunities for ICF to identify identical structures that reference
the same literals.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D103113
2021-06-12 07:49:50 +08:00
|
|
|
return literal16Map.size() * 16 +
|
|
|
|
literal8Map.at(*reinterpret_cast<const uint64_t *>(buf)) * 8;
|
|
|
|
}
|
|
|
|
|
2021-10-25 22:25:14 +08:00
|
|
|
uint64_t getLiteral4Offset(uintptr_t buf) const {
|
[lld-macho] Deduplicate fixed-width literals
Conceptually, the implementation is pretty straightforward: we put each
literal value into a hashtable, and then write out the keys of that
hashtable at the end.
In contrast with ELF, the Mach-O format does not support variable-length
literals that aren't strings. Its literals are either 4, 8, or 16 bytes
in length. LLD-ELF dedups its literals via sorting + uniq'ing, but since
we don't need to worry about overly-long values, we should be able to do
a faster job by just hashing.
That said, the implementation right now is far from optimal, because we
add to those hashtables serially. To parallelize this, we'll need a
basic concurrent hashtable (only needs to support concurrent writes w/o
interleave reads), which shouldn't be to hard to implement, but I'd like
to punt on it for now.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 4.27 4.39 4.315 4.3225 0.033225703
+ 20 4.36 4.82 4.44 4.4845 0.13152846
Difference at 95.0% confidence
0.162 +/- 0.0613971
3.74783% +/- 1.42041%
(Student's t, pooled s = 0.0959262)
This corresponds to binary size savings of 2MB out of 335MB, or 0.6%.
It's not a great tradeoff as-is, but as mentioned our implementation can
be signficantly optimized, and literal dedup will unlock more
opportunities for ICF to identify identical structures that reference
the same literals.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D103113
2021-06-12 07:49:50 +08:00
|
|
|
return literal16Map.size() * 16 + literal8Map.size() * 8 +
|
|
|
|
literal4Map.at(*reinterpret_cast<const uint32_t *>(buf)) * 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
[lld-macho] Move ICF earlier to avoid emitting redundant binds
This is a pretty big refactoring diff, so here are the motivations:
Previously, ICF ran after scanRelocations(), where we emitting
bind/rebase opcodes etc. So we had a bunch of redundant leftovers after
ICF. Having ICF run before Writer seems like a better design, and is
what LLD-ELF does, so this diff refactors it accordingly.
However, ICF had two dependencies on things occurring in Writer: 1) it
needs literals to be deduplicated beforehand and 2) it needs to know
which functions have unwind info, which was being handled by
`UnwindInfoSection::prepareRelocations()`.
In order to do literal deduplication earlier, we need to add literal
input sections to their corresponding output sections. So instead of
putting all input sections into the big `inputSections` vector, and then
filtering them by type later on, I've changed things so that literal
sections get added directly to their output sections during the 'gather'
phase. Likewise for compact unwind sections -- they get added directly
to the UnwindInfoSection now. This latter change is not strictly
necessary, but makes it easier for ICF to determine which functions have
unwind info.
Adding literal sections directly to their output sections means that we
can no longer determine `inputOrder` from iterating over
`inputSections`. Instead, we store that order explicitly on
InputSection. Bloating the size of InputSection for this purpose would
be unfortunate -- but LLD-ELF has already solved this problem: it reuses
`outSecOff` to store this order value.
One downside of this refactor is that we now make an additional pass
over the unwind info relocations to figure out which functions have
unwind info, since want to know that before `processRelocations()`. I've
made sure to run that extra loop only if ICF is enabled, so there should
be no overhead in non-optimizing runs of the linker.
The upside of all this is that the `inputSections` vector now contains
only ConcatInputSections that are destined for ConcatOutputSections, so
we can clean up a bunch of code that just existed to filter out other
elements from that vector.
I will test for the lack of redundant binds/rebases in the upcoming
cfstring deduplication diff. While binds/rebases can also happen in the
regular `.text` section, they're more common in `.data` sections, so it
seems more natural to test it that way.
This change is perf-neutral when linking chromium_framework.
Reviewed By: oontvoo
Differential Revision: https://reviews.llvm.org/D105044
2021-07-02 08:33:42 +08:00
|
|
|
std::vector<WordLiteralInputSection *> inputs;
|
|
|
|
|
[lld-macho] Deduplicate fixed-width literals
Conceptually, the implementation is pretty straightforward: we put each
literal value into a hashtable, and then write out the keys of that
hashtable at the end.
In contrast with ELF, the Mach-O format does not support variable-length
literals that aren't strings. Its literals are either 4, 8, or 16 bytes
in length. LLD-ELF dedups its literals via sorting + uniq'ing, but since
we don't need to worry about overly-long values, we should be able to do
a faster job by just hashing.
That said, the implementation right now is far from optimal, because we
add to those hashtables serially. To parallelize this, we'll need a
basic concurrent hashtable (only needs to support concurrent writes w/o
interleave reads), which shouldn't be to hard to implement, but I'd like
to punt on it for now.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 4.27 4.39 4.315 4.3225 0.033225703
+ 20 4.36 4.82 4.44 4.4845 0.13152846
Difference at 95.0% confidence
0.162 +/- 0.0613971
3.74783% +/- 1.42041%
(Student's t, pooled s = 0.0959262)
This corresponds to binary size savings of 2MB out of 335MB, or 0.6%.
It's not a great tradeoff as-is, but as mentioned our implementation can
be signficantly optimized, and literal dedup will unlock more
opportunities for ICF to identify identical structures that reference
the same literals.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D103113
2021-06-12 07:49:50 +08:00
|
|
|
template <class T> struct Hasher {
|
|
|
|
llvm::hash_code operator()(T v) const { return llvm::hash_value(v); }
|
|
|
|
};
|
|
|
|
// We're using unordered_map instead of DenseMap here because we need to
|
|
|
|
// support all possible integer values -- there are no suitable tombstone
|
|
|
|
// values for DenseMap.
|
|
|
|
std::unordered_map<UInt128, uint64_t, Hasher<UInt128>> literal16Map;
|
|
|
|
std::unordered_map<uint64_t, uint64_t> literal8Map;
|
|
|
|
std::unordered_map<uint32_t, uint64_t> literal4Map;
|
|
|
|
};
|
|
|
|
|
2022-07-24 00:11:46 +08:00
|
|
|
class ObjCImageInfoSection final : public SyntheticSection {
|
|
|
|
public:
|
|
|
|
ObjCImageInfoSection();
|
|
|
|
bool isNeeded() const override { return !files.empty(); }
|
|
|
|
uint64_t getSize() const override { return 8; }
|
|
|
|
void addFile(const InputFile *file) {
|
|
|
|
assert(!file->objCImageInfo.empty());
|
|
|
|
files.push_back(file);
|
|
|
|
}
|
|
|
|
void finalizeContents();
|
|
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
|
|
|
|
private:
|
|
|
|
struct ImageInfo {
|
|
|
|
uint8_t swiftVersion = 0;
|
|
|
|
bool hasCategoryClassProperties = false;
|
|
|
|
} info;
|
|
|
|
static ImageInfo parseImageInfo(const InputFile *);
|
|
|
|
std::vector<const InputFile *> files; // files with image info
|
|
|
|
};
|
|
|
|
|
2020-04-22 04:37:57 +08:00
|
|
|
struct InStruct {
|
2022-03-01 10:56:38 +08:00
|
|
|
const uint8_t *bufferStart = nullptr;
|
2020-07-31 05:28:41 +08:00
|
|
|
MachHeaderSection *header = nullptr;
|
[lld-macho] Implement cstring deduplication
Our implementation draws heavily from LLD-ELF's, which in turn delegates
its string deduplication to llvm-mc's StringTableBuilder. The messiness of
this diff is largely due to the fact that we've previously assumed that
all InputSections get concatenated together to form the output. This is
no longer true with CStringInputSections, which split their contents into
StringPieces. StringPieces are much more lightweight than InputSections,
which is important as we create a lot of them. They may also overlap in
the output, which makes it possible for strings to be tail-merged. In
fact, the initial version of this diff implemented tail merging, but
I've dropped it for reasons I'll explain later.
**Alignment Issues**
Mergeable cstring literals are found under the `__TEXT,__cstring`
section. In contrast to ELF, which puts strings that need different
alignments into different sections, clang's Mach-O backend puts them all
in one section. Strings that need to be aligned have the `.p2align`
directive emitted before them, which simply translates into zero padding
in the object file.
I *think* ld64 extracts the desired per-string alignment from this data
by preserving each string's offset from the last section-aligned
address. I'm not entirely certain since it doesn't seem consistent about
doing this; but perhaps this can be chalked up to cases where ld64 has
to deduplicate strings with different offset/alignment combos -- it
seems to pick one of their alignments to preserve. This doesn't seem
correct in general; we can in fact can induce ld64 to produce a crashing
binary just by linking in an additional object file that only contains
cstrings and no code. See PR50563 for details.
Moreover, this scheme seems rather inefficient: since unaligned and
aligned strings are all put in the same section, which has a single
alignment value, it doesn't seem possible to tell whether a given string
doesn't have any alignment requirements. Preserving offset+alignments
for strings that don't need it is wasteful.
In practice, the crashes seen so far seem to stem from x86_64 SIMD
operations on cstrings. X86_64 requires SIMD accesses to be
16-byte-aligned. So for now, I'm thinking of just aligning all strings
to 16 bytes on x86_64. This is indeed wasteful, but implementation-wise
it's simpler than preserving per-string alignment+offsets. It also
avoids the aforementioned crash after deduplication of
differently-aligned strings. Finally, the overhead is not huge: using
16-byte alignment (vs no alignment) is only a 0.5% size overhead when
linking chromium_framework.
With these alignment requirements, it doesn't make sense to attempt tail
merging -- most strings will not be eligible since their overlaps aren't
likely to start at a 16-byte boundary. Tail-merging (with alignment) for
chromium_framework only improves size by 0.3%.
It's worth noting that LLD-ELF only does tail merging at `-O2`. By
default (at `-O1`), it just deduplicates w/o tail merging. @thakis has
also mentioned that they saw it regress compressed size in some cases
and therefore turned it off. `ld64` does not seem to do tail merging at
all.
**Performance Numbers**
CString deduplication reduces chromium_framework from 250MB to 242MB, or
about a 3.2% reduction.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.99 4.14 4.015 4.0365 0.0492336
Difference at 95.0% confidence
0.0865 +/- 0.027245
2.18987% +/- 0.689746%
(Student's t, pooled s = 0.0425673)
As expected, cstring merging incurs some non-trivial overhead.
When passing `--no-literal-merge`, it seems that performance is the
same, i.e. the refactoring in this diff didn't cost us.
N Min Max Median Avg Stddev
x 20 3.91 4.03 3.935 3.95 0.034641016
+ 20 3.89 4.02 3.935 3.9435 0.043197831
No difference proven at 95.0% confidence
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D102964
2021-06-08 11:47:12 +08:00
|
|
|
CStringSection *cStringSection = nullptr;
|
[lld-macho] Deduplicate fixed-width literals
Conceptually, the implementation is pretty straightforward: we put each
literal value into a hashtable, and then write out the keys of that
hashtable at the end.
In contrast with ELF, the Mach-O format does not support variable-length
literals that aren't strings. Its literals are either 4, 8, or 16 bytes
in length. LLD-ELF dedups its literals via sorting + uniq'ing, but since
we don't need to worry about overly-long values, we should be able to do
a faster job by just hashing.
That said, the implementation right now is far from optimal, because we
add to those hashtables serially. To parallelize this, we'll need a
basic concurrent hashtable (only needs to support concurrent writes w/o
interleave reads), which shouldn't be to hard to implement, but I'd like
to punt on it for now.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 4.27 4.39 4.315 4.3225 0.033225703
+ 20 4.36 4.82 4.44 4.4845 0.13152846
Difference at 95.0% confidence
0.162 +/- 0.0613971
3.74783% +/- 1.42041%
(Student's t, pooled s = 0.0959262)
This corresponds to binary size savings of 2MB out of 335MB, or 0.6%.
It's not a great tradeoff as-is, but as mentioned our implementation can
be signficantly optimized, and literal dedup will unlock more
opportunities for ICF to identify identical structures that reference
the same literals.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D103113
2021-06-12 07:49:50 +08:00
|
|
|
WordLiteralSection *wordLiteralSection = nullptr;
|
2020-09-06 01:55:33 +08:00
|
|
|
RebaseSection *rebase = nullptr;
|
2020-07-03 12:19:55 +08:00
|
|
|
BindingSection *binding = nullptr;
|
2020-08-25 12:57:59 +08:00
|
|
|
WeakBindingSection *weakBinding = nullptr;
|
2020-08-28 06:54:42 +08:00
|
|
|
LazyBindingSection *lazyBinding = nullptr;
|
2020-08-28 06:59:15 +08:00
|
|
|
ExportSection *exports = nullptr;
|
2020-04-28 03:50:59 +08:00
|
|
|
GotSection *got = nullptr;
|
2020-08-13 10:50:09 +08:00
|
|
|
TlvPointerSection *tlvPointers = nullptr;
|
[lld-macho] Support calls to functions in dylibs
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
2020-05-06 08:38:10 +08:00
|
|
|
LazyPointerSection *lazyPointers = nullptr;
|
|
|
|
StubsSection *stubs = nullptr;
|
|
|
|
StubHelperSection *stubHelper = nullptr;
|
2021-04-16 09:14:33 +08:00
|
|
|
UnwindInfoSection *unwindInfo = nullptr;
|
2022-07-24 00:11:46 +08:00
|
|
|
ObjCImageInfoSection *objCImageInfo = nullptr;
|
2021-06-14 07:43:36 +08:00
|
|
|
ConcatInputSection *imageLoaderCache = nullptr;
|
2020-04-22 04:37:57 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
extern InStruct in;
|
[lld-macho] Refactor segment/section creation, sorting, and merging
Summary:
There were a few issues with the previous setup:
1. The section sorting comparator used a declarative map of section names to
determine the correct order, but it turns out we need to match on more than
just names -- in particular, an upcoming diff will sort based on whether the
S_ZERO_FILL flag is set. This diff changes the sorter to a more imperative but
flexible form.
2. We were sorting OutputSections stored in a MapVector, which left the
MapVector in an inconsistent state -- the wrong keys map to the wrong values!
In practice, we weren't doing key lookups (only container iteration) after the
sort, so this was fine, but it was still a dubious state of affairs. This diff
copies the OutputSections to a vector before sorting them.
3. We were adding unneeded OutputSections to OutputSegments and then filtering
them out later, which meant that we had to remember whether an OutputSegment
was in a pre- or post-filtered state. This diff only adds the sections to the
segments if they are needed.
In addition to those major changes, two minor ones worth noting:
1. I renamed all OutputSection variable names to `osec`, to parallel `isec`.
Previously we were using some inconsistent combination of `osec`, `os`, and
`section`.
2. I added a check (and a test) for InputSections with names that clashed with
those of our synthetic OutputSections.
Reviewers: #lld-macho
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81887
2020-06-15 15:03:24 +08:00
|
|
|
extern std::vector<SyntheticSection *> syntheticSections;
|
2020-04-22 04:37:57 +08:00
|
|
|
|
2021-03-19 06:49:45 +08:00
|
|
|
void createSyntheticSymbols();
|
|
|
|
|
2020-04-22 04:37:57 +08:00
|
|
|
} // namespace macho
|
|
|
|
} // namespace lld
|
|
|
|
|
|
|
|
#endif
|