llvm-project/llvm/lib/CodeGen/AsmPrinter/DIEHash.cpp

515 lines
17 KiB
C++
Raw Normal View History

//===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for DWARF4 hashing of DIEs.
//
//===----------------------------------------------------------------------===//
#include "ByteStreamer.h"
#include "DIEHash.h"
#include "DwarfDebug.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DIE.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "dwarfdebug"
/// \brief Grabs the string in whichever attribute is passed in and returns
/// a reference to it.
static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) {
// Iterate through all the attributes until we find the one we're
// looking for, if we can't find it return an empty string.
for (const auto &V : Die.values())
if (V.getAttribute() == Attr)
return V.getDIEString().getString();
return StringRef("");
}
/// \brief Adds the string in \p Str to the hash. This also hashes
/// a trailing NULL with the string.
void DIEHash::addString(StringRef Str) {
DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
Hash.update(Str);
Hash.update(makeArrayRef((uint8_t)'\0'));
}
// FIXME: The LEB128 routines are copied and only slightly modified out of
// LEB128.h.
/// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128.
void DIEHash::addULEB128(uint64_t Value) {
DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
do {
uint8_t Byte = Value & 0x7f;
Value >>= 7;
if (Value != 0)
Byte |= 0x80; // Mark this byte to show that more bytes will follow.
Hash.update(Byte);
} while (Value != 0);
}
void DIEHash::addSLEB128(int64_t Value) {
DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
bool More;
do {
uint8_t Byte = Value & 0x7f;
Value >>= 7;
2014-02-20 10:40:41 +08:00
More = !((((Value == 0) && ((Byte & 0x40) == 0)) ||
((Value == -1) && ((Byte & 0x40) != 0))));
if (More)
Byte |= 0x80; // Mark this byte to show that more bytes will follow.
Hash.update(Byte);
} while (More);
}
/// \brief Including \p Parent adds the context of Parent to the hash..
void DIEHash::addParentContext(const DIE &Parent) {
DEBUG(dbgs() << "Adding parent context to hash...\n");
// [7.27.2] For each surrounding type or namespace beginning with the
// outermost such construct...
SmallVector<const DIE *, 1> Parents;
const DIE *Cur = &Parent;
while (Cur->getParent()) {
Parents.push_back(Cur);
Cur = Cur->getParent();
}
assert(Cur->getTag() == dwarf::DW_TAG_compile_unit ||
Cur->getTag() == dwarf::DW_TAG_type_unit);
// Reverse iterate over our list to go from the outermost construct to the
// innermost.
for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(),
E = Parents.rend();
I != E; ++I) {
const DIE &Die = **I;
// ... Append the letter "C" to the sequence...
addULEB128('C');
// ... Followed by the DWARF tag of the construct...
addULEB128(Die.getTag());
// ... Then the name, taken from the DW_AT_name attribute.
StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name);
DEBUG(dbgs() << "... adding context: " << Name << "\n");
if (!Name.empty())
addString(Name);
}
}
// Collect all of the attributes for a particular DIE in single structure.
void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) {
#define COLLECT_ATTR(NAME) \
case dwarf::NAME: \
Attrs.NAME = V; \
break
for (const auto &V : Die.values()) {
DEBUG(dbgs() << "Attribute: "
<< dwarf::AttributeString(V.getAttribute())
<< " added.\n");
switch (V.getAttribute()) {
2014-02-20 10:40:41 +08:00
COLLECT_ATTR(DW_AT_name);
COLLECT_ATTR(DW_AT_accessibility);
COLLECT_ATTR(DW_AT_address_class);
COLLECT_ATTR(DW_AT_allocated);
COLLECT_ATTR(DW_AT_artificial);
COLLECT_ATTR(DW_AT_associated);
COLLECT_ATTR(DW_AT_binary_scale);
COLLECT_ATTR(DW_AT_bit_offset);
COLLECT_ATTR(DW_AT_bit_size);
COLLECT_ATTR(DW_AT_bit_stride);
COLLECT_ATTR(DW_AT_byte_size);
COLLECT_ATTR(DW_AT_byte_stride);
COLLECT_ATTR(DW_AT_const_expr);
COLLECT_ATTR(DW_AT_const_value);
COLLECT_ATTR(DW_AT_containing_type);
COLLECT_ATTR(DW_AT_count);
COLLECT_ATTR(DW_AT_data_bit_offset);
COLLECT_ATTR(DW_AT_data_location);
COLLECT_ATTR(DW_AT_data_member_location);
COLLECT_ATTR(DW_AT_decimal_scale);
COLLECT_ATTR(DW_AT_decimal_sign);
COLLECT_ATTR(DW_AT_default_value);
COLLECT_ATTR(DW_AT_digit_count);
COLLECT_ATTR(DW_AT_discr);
COLLECT_ATTR(DW_AT_discr_list);
COLLECT_ATTR(DW_AT_discr_value);
COLLECT_ATTR(DW_AT_encoding);
COLLECT_ATTR(DW_AT_enum_class);
COLLECT_ATTR(DW_AT_endianity);
COLLECT_ATTR(DW_AT_explicit);
COLLECT_ATTR(DW_AT_is_optional);
COLLECT_ATTR(DW_AT_location);
COLLECT_ATTR(DW_AT_lower_bound);
COLLECT_ATTR(DW_AT_mutable);
COLLECT_ATTR(DW_AT_ordering);
COLLECT_ATTR(DW_AT_picture_string);
COLLECT_ATTR(DW_AT_prototyped);
COLLECT_ATTR(DW_AT_small);
COLLECT_ATTR(DW_AT_segment);
COLLECT_ATTR(DW_AT_string_length);
COLLECT_ATTR(DW_AT_threads_scaled);
COLLECT_ATTR(DW_AT_upper_bound);
COLLECT_ATTR(DW_AT_use_location);
COLLECT_ATTR(DW_AT_use_UTF8);
COLLECT_ATTR(DW_AT_variable_parameter);
COLLECT_ATTR(DW_AT_virtuality);
COLLECT_ATTR(DW_AT_visibility);
COLLECT_ATTR(DW_AT_vtable_elem_location);
COLLECT_ATTR(DW_AT_type);
default:
break;
}
}
}
void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute,
const DIE &Entry, StringRef Name) {
// append the letter 'N'
addULEB128('N');
// the DWARF attribute code (DW_AT_type or DW_AT_friend),
addULEB128(Attribute);
// the context of the tag,
if (const DIE *Parent = Entry.getParent())
addParentContext(*Parent);
// the letter 'E',
addULEB128('E');
// and the name of the type.
addString(Name);
// Currently DW_TAG_friends are not used by Clang, but if they do become so,
// here's the relevant spec text to implement:
//
// For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram,
// the context is omitted and the name to be used is the ABI-specific name
// of the subprogram (e.g., the mangled linker name).
}
void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute,
unsigned DieNumber) {
// a) If T is in the list of [previously hashed types], use the letter
// 'R' as the marker
addULEB128('R');
addULEB128(Attribute);
// and use the unsigned LEB128 encoding of [the index of T in the
// list] as the attribute value;
addULEB128(DieNumber);
}
void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
const DIE &Entry) {
assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend "
"tags. Add support here when there's "
"a use case");
// Step 5
// If the tag in Step 3 is one of [the below tags]
if ((Tag == dwarf::DW_TAG_pointer_type ||
Tag == dwarf::DW_TAG_reference_type ||
Tag == dwarf::DW_TAG_rvalue_reference_type ||
Tag == dwarf::DW_TAG_ptr_to_member_type) &&
// and the referenced type (via the [below attributes])
// FIXME: This seems overly restrictive, and causes hash mismatches
// there's a decl/def difference in the containing type of a
// ptr_to_member_type, but it's what DWARF says, for some reason.
Attribute == dwarf::DW_AT_type) {
// ... has a DW_AT_name attribute,
StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name);
if (!Name.empty()) {
hashShallowTypeReference(Attribute, Entry, Name);
return;
}
}
unsigned &DieNumber = Numbering[&Entry];
if (DieNumber) {
hashRepeatedTypeReference(Attribute, DieNumber);
return;
}
// otherwise, b) use the letter 'T' as the marker, ...
addULEB128('T');
addULEB128(Attribute);
// ... process the type T recursively by performing Steps 2 through 7, and
// use the result as the attribute value.
DieNumber = Numbering.size();
computeHash(Entry);
}
// Hash all of the values in a block like set of values. This assumes that
// all of the data is going to be added as integers.
void DIEHash::hashBlockData(const DIE::const_value_range &Values) {
for (const auto &V : Values)
Hash.update((uint64_t)V.getDIEInteger().getValue());
}
// Hash the contents of a loclistptr class.
void DIEHash::hashLocList(const DIELocList &LocList) {
HashingByteStreamer Streamer(*this);
DwarfDebug &DD = *AP->getDwarfDebug();
AsmPrinter: Create a unified .debug_loc stream This commit removes `DebugLocList` and replaces it with `DebugLocStream`. - `DebugLocEntry` no longer contains its byte/comment streams. - The `DebugLocEntry` list for a variable/inlined-at pair is allocated on the stack, and released right after `DebugLocEntry::finalize()` (possible because of the refactoring in r231023). Now, only one list is in memory at a time now. - There's a single unified stream for the `.debug_loc` section that persists, stored in the new `DebugLocStream` data structure. The last point is important: this collapses the nested `SmallVector<>`s from `DebugLocList` into unified streams. We previously had something like the following: vec<tuple<Label, CU, vec<tuple<BeginSym, EndSym, vec<Value>, vec<char>, vec<string>>>>> A `SmallVector` can avoid allocations, but is statically fairly large for a vector: three pointers plus the size of the small storage, which is the number of elements in small mode times the element size). Nesting these is expensive, since an inner vector's size contributes to the element size of an outer one. (Nesting any vector is expensive...) In the old data structure, the outer vector's *element* size was 632B, excluding allocation costs for when the middle and inner vectors exceeded their small sizes. 312B of this was for the "three" pointers in the vector-tree beneath it. If you assume 1M functions with an average of 10 variable/inlined-at pairs each (in an LTO scenario), that's almost 6GB (besides inner allocations), with almost 3GB for the "three" pointers. This came up in a heap profile a little while ago of a `clang -flto -g` bootstrap, with `DwarfDebug::collectVariableInfo()` using something like 10-15% of the total memory. With this commit, we have: tuple<vec<tuple<Label, CU, Offset>>, vec<tuple<BeginSym, EndSym, Offset, Offset>>, vec<char>, vec<string>> The offsets are used to create `ArrayRef` slices of adjacent `SmallVector`s. This reduces the number of vectors to four (unrelated to the number of variable/inlined-at pairs), and caps the number of allocations at the same number. Besides saving memory and limiting allocations, this is NFC. I don't know my way around this code very well yet, but I wonder if we could go further: why stream to a side-table, instead of directly to the output stream? llvm-svn: 235229
2015-04-18 05:34:47 +08:00
const DebugLocStream &Locs = DD.getDebugLocs();
for (const auto &Entry : Locs.getEntries(Locs.getList(LocList.getValue())))
DD.emitDebugLocEntry(Streamer, Entry);
}
// Hash an individual attribute \param Attr based on the type of attribute and
// the form.
void DIEHash::hashAttribute(DIEValue Value, dwarf::Tag Tag) {
dwarf::Attribute Attribute = Value.getAttribute();
// Other attribute values use the letter 'A' as the marker, and the value
// consists of the form code (encoded as an unsigned LEB128 value) followed by
// the encoding of the value according to the form code. To ensure
// reproducibility of the signature, the set of forms used in the signature
// computation is limited to the following: DW_FORM_sdata, DW_FORM_flag,
// DW_FORM_string, and DW_FORM_block.
Reapply "AsmPrinter: Change DIEValue to be stored by value" This reverts commit r238350, effectively reapplying r238349 after fixing (all?) the problems, all somehow related to how I was using `AlignedArrayCharUnion<>` inside `DIEValue`: - MSVC can only handle `sizeof()` on types, not values. Change the assert. - GCC doesn't know the `is_trivially_copyable` type trait. Instead of asserting it, add destructors. - Call placement new even when constructing POD (i.e., the pointers). - Instead of copying the char buffer, copy the casted classes. I've left in a couple of `static_assert`s that I think both MSVC and GCC know how to handle. If the bots disagree with me, I'll remove them. - Check that the constructed type is either standard layout or a pointer. This protects against a programming error: we really want the "small" `DIEValue`s to be small and simple, so don't accidentally change them not to be. - Similarly, check that the size of the buffer is no bigger than a `uint64_t` or a pointer. (I thought checking against `sizeof(uint64_t)` would be good enough, but Chandler suggested that pointers might sometimes be bigger than that in the context of sanitizers.) I've also committed r238359 in the meantime, which introduces a DIEValue.def to simplify dispatching between the various types (thanks to a review comment by David Blaikie). Without that, this commit would be almost unintelligible. Here's the original commit message: -- Change `DIEValue` to be stored/passed/etc. by value, instead of reference. It's now a discriminated union, with a `Val` field storing the actual type. The classes that used to inherit from `DIEValue` no longer do. There are two categories of these: - Small values fit in a single pointer and are stored by value. - Large values require auxiliary storage, and are stored by reference. The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It was relying on `DIEInteger`s being passed around by reference, so I replaced that assumption with a `PatchLocation` type that stores a safe reference to where the `DIEInteger` lives instead. This commit causes a temporary regression in memory usage, since I've left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up drops it lower than the starting point, and I've only recently brought the memory this low anyway, so I'm committing these changes separately to keep them incremental. (I also considered swapping the commits, but the other one first would cause a lot more code churn.) (I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`; see r236629 for details.) -- llvm-svn: 238362
2015-05-28 06:14:58 +08:00
switch (Value.getType()) {
case DIEValue::isNone:
llvm_unreachable("Expected valid DIEValue");
// 7.27 Step 3
// ... An attribute that refers to another type entry T is processed as
// follows:
case DIEValue::isEntry:
Reapply "AsmPrinter: Change DIEValue to be stored by value" This reverts commit r238350, effectively reapplying r238349 after fixing (all?) the problems, all somehow related to how I was using `AlignedArrayCharUnion<>` inside `DIEValue`: - MSVC can only handle `sizeof()` on types, not values. Change the assert. - GCC doesn't know the `is_trivially_copyable` type trait. Instead of asserting it, add destructors. - Call placement new even when constructing POD (i.e., the pointers). - Instead of copying the char buffer, copy the casted classes. I've left in a couple of `static_assert`s that I think both MSVC and GCC know how to handle. If the bots disagree with me, I'll remove them. - Check that the constructed type is either standard layout or a pointer. This protects against a programming error: we really want the "small" `DIEValue`s to be small and simple, so don't accidentally change them not to be. - Similarly, check that the size of the buffer is no bigger than a `uint64_t` or a pointer. (I thought checking against `sizeof(uint64_t)` would be good enough, but Chandler suggested that pointers might sometimes be bigger than that in the context of sanitizers.) I've also committed r238359 in the meantime, which introduces a DIEValue.def to simplify dispatching between the various types (thanks to a review comment by David Blaikie). Without that, this commit would be almost unintelligible. Here's the original commit message: -- Change `DIEValue` to be stored/passed/etc. by value, instead of reference. It's now a discriminated union, with a `Val` field storing the actual type. The classes that used to inherit from `DIEValue` no longer do. There are two categories of these: - Small values fit in a single pointer and are stored by value. - Large values require auxiliary storage, and are stored by reference. The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It was relying on `DIEInteger`s being passed around by reference, so I replaced that assumption with a `PatchLocation` type that stores a safe reference to where the `DIEInteger` lives instead. This commit causes a temporary regression in memory usage, since I've left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up drops it lower than the starting point, and I've only recently brought the memory this low anyway, so I'm committing these changes separately to keep them incremental. (I also considered swapping the commits, but the other one first would cause a lot more code churn.) (I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`; see r236629 for details.) -- llvm-svn: 238362
2015-05-28 06:14:58 +08:00
hashDIEEntry(Attribute, Tag, Value.getDIEEntry().getEntry());
break;
case DIEValue::isInteger: {
addULEB128('A');
addULEB128(Attribute);
switch (Value.getForm()) {
case dwarf::DW_FORM_data1:
case dwarf::DW_FORM_data2:
case dwarf::DW_FORM_data4:
case dwarf::DW_FORM_data8:
case dwarf::DW_FORM_udata:
case dwarf::DW_FORM_sdata:
addULEB128(dwarf::DW_FORM_sdata);
Reapply "AsmPrinter: Change DIEValue to be stored by value" This reverts commit r238350, effectively reapplying r238349 after fixing (all?) the problems, all somehow related to how I was using `AlignedArrayCharUnion<>` inside `DIEValue`: - MSVC can only handle `sizeof()` on types, not values. Change the assert. - GCC doesn't know the `is_trivially_copyable` type trait. Instead of asserting it, add destructors. - Call placement new even when constructing POD (i.e., the pointers). - Instead of copying the char buffer, copy the casted classes. I've left in a couple of `static_assert`s that I think both MSVC and GCC know how to handle. If the bots disagree with me, I'll remove them. - Check that the constructed type is either standard layout or a pointer. This protects against a programming error: we really want the "small" `DIEValue`s to be small and simple, so don't accidentally change them not to be. - Similarly, check that the size of the buffer is no bigger than a `uint64_t` or a pointer. (I thought checking against `sizeof(uint64_t)` would be good enough, but Chandler suggested that pointers might sometimes be bigger than that in the context of sanitizers.) I've also committed r238359 in the meantime, which introduces a DIEValue.def to simplify dispatching between the various types (thanks to a review comment by David Blaikie). Without that, this commit would be almost unintelligible. Here's the original commit message: -- Change `DIEValue` to be stored/passed/etc. by value, instead of reference. It's now a discriminated union, with a `Val` field storing the actual type. The classes that used to inherit from `DIEValue` no longer do. There are two categories of these: - Small values fit in a single pointer and are stored by value. - Large values require auxiliary storage, and are stored by reference. The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It was relying on `DIEInteger`s being passed around by reference, so I replaced that assumption with a `PatchLocation` type that stores a safe reference to where the `DIEInteger` lives instead. This commit causes a temporary regression in memory usage, since I've left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up drops it lower than the starting point, and I've only recently brought the memory this low anyway, so I'm committing these changes separately to keep them incremental. (I also considered swapping the commits, but the other one first would cause a lot more code churn.) (I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`; see r236629 for details.) -- llvm-svn: 238362
2015-05-28 06:14:58 +08:00
addSLEB128((int64_t)Value.getDIEInteger().getValue());
break;
// DW_FORM_flag_present is just flag with a value of one. We still give it a
// value so just use the value.
case dwarf::DW_FORM_flag_present:
case dwarf::DW_FORM_flag:
addULEB128(dwarf::DW_FORM_flag);
Reapply "AsmPrinter: Change DIEValue to be stored by value" This reverts commit r238350, effectively reapplying r238349 after fixing (all?) the problems, all somehow related to how I was using `AlignedArrayCharUnion<>` inside `DIEValue`: - MSVC can only handle `sizeof()` on types, not values. Change the assert. - GCC doesn't know the `is_trivially_copyable` type trait. Instead of asserting it, add destructors. - Call placement new even when constructing POD (i.e., the pointers). - Instead of copying the char buffer, copy the casted classes. I've left in a couple of `static_assert`s that I think both MSVC and GCC know how to handle. If the bots disagree with me, I'll remove them. - Check that the constructed type is either standard layout or a pointer. This protects against a programming error: we really want the "small" `DIEValue`s to be small and simple, so don't accidentally change them not to be. - Similarly, check that the size of the buffer is no bigger than a `uint64_t` or a pointer. (I thought checking against `sizeof(uint64_t)` would be good enough, but Chandler suggested that pointers might sometimes be bigger than that in the context of sanitizers.) I've also committed r238359 in the meantime, which introduces a DIEValue.def to simplify dispatching between the various types (thanks to a review comment by David Blaikie). Without that, this commit would be almost unintelligible. Here's the original commit message: -- Change `DIEValue` to be stored/passed/etc. by value, instead of reference. It's now a discriminated union, with a `Val` field storing the actual type. The classes that used to inherit from `DIEValue` no longer do. There are two categories of these: - Small values fit in a single pointer and are stored by value. - Large values require auxiliary storage, and are stored by reference. The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It was relying on `DIEInteger`s being passed around by reference, so I replaced that assumption with a `PatchLocation` type that stores a safe reference to where the `DIEInteger` lives instead. This commit causes a temporary regression in memory usage, since I've left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up drops it lower than the starting point, and I've only recently brought the memory this low anyway, so I'm committing these changes separately to keep them incremental. (I also considered swapping the commits, but the other one first would cause a lot more code churn.) (I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`; see r236629 for details.) -- llvm-svn: 238362
2015-05-28 06:14:58 +08:00
addULEB128((int64_t)Value.getDIEInteger().getValue());
break;
default:
llvm_unreachable("Unknown integer form!");
}
break;
}
case DIEValue::isString:
addULEB128('A');
addULEB128(Attribute);
addULEB128(dwarf::DW_FORM_string);
Reapply "AsmPrinter: Change DIEValue to be stored by value" This reverts commit r238350, effectively reapplying r238349 after fixing (all?) the problems, all somehow related to how I was using `AlignedArrayCharUnion<>` inside `DIEValue`: - MSVC can only handle `sizeof()` on types, not values. Change the assert. - GCC doesn't know the `is_trivially_copyable` type trait. Instead of asserting it, add destructors. - Call placement new even when constructing POD (i.e., the pointers). - Instead of copying the char buffer, copy the casted classes. I've left in a couple of `static_assert`s that I think both MSVC and GCC know how to handle. If the bots disagree with me, I'll remove them. - Check that the constructed type is either standard layout or a pointer. This protects against a programming error: we really want the "small" `DIEValue`s to be small and simple, so don't accidentally change them not to be. - Similarly, check that the size of the buffer is no bigger than a `uint64_t` or a pointer. (I thought checking against `sizeof(uint64_t)` would be good enough, but Chandler suggested that pointers might sometimes be bigger than that in the context of sanitizers.) I've also committed r238359 in the meantime, which introduces a DIEValue.def to simplify dispatching between the various types (thanks to a review comment by David Blaikie). Without that, this commit would be almost unintelligible. Here's the original commit message: -- Change `DIEValue` to be stored/passed/etc. by value, instead of reference. It's now a discriminated union, with a `Val` field storing the actual type. The classes that used to inherit from `DIEValue` no longer do. There are two categories of these: - Small values fit in a single pointer and are stored by value. - Large values require auxiliary storage, and are stored by reference. The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It was relying on `DIEInteger`s being passed around by reference, so I replaced that assumption with a `PatchLocation` type that stores a safe reference to where the `DIEInteger` lives instead. This commit causes a temporary regression in memory usage, since I've left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up drops it lower than the starting point, and I've only recently brought the memory this low anyway, so I'm committing these changes separately to keep them incremental. (I also considered swapping the commits, but the other one first would cause a lot more code churn.) (I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`; see r236629 for details.) -- llvm-svn: 238362
2015-05-28 06:14:58 +08:00
addString(Value.getDIEString().getString());
break;
case DIEValue::isBlock:
case DIEValue::isLoc:
case DIEValue::isLocList:
addULEB128('A');
addULEB128(Attribute);
addULEB128(dwarf::DW_FORM_block);
Reapply "AsmPrinter: Change DIEValue to be stored by value" This reverts commit r238350, effectively reapplying r238349 after fixing (all?) the problems, all somehow related to how I was using `AlignedArrayCharUnion<>` inside `DIEValue`: - MSVC can only handle `sizeof()` on types, not values. Change the assert. - GCC doesn't know the `is_trivially_copyable` type trait. Instead of asserting it, add destructors. - Call placement new even when constructing POD (i.e., the pointers). - Instead of copying the char buffer, copy the casted classes. I've left in a couple of `static_assert`s that I think both MSVC and GCC know how to handle. If the bots disagree with me, I'll remove them. - Check that the constructed type is either standard layout or a pointer. This protects against a programming error: we really want the "small" `DIEValue`s to be small and simple, so don't accidentally change them not to be. - Similarly, check that the size of the buffer is no bigger than a `uint64_t` or a pointer. (I thought checking against `sizeof(uint64_t)` would be good enough, but Chandler suggested that pointers might sometimes be bigger than that in the context of sanitizers.) I've also committed r238359 in the meantime, which introduces a DIEValue.def to simplify dispatching between the various types (thanks to a review comment by David Blaikie). Without that, this commit would be almost unintelligible. Here's the original commit message: -- Change `DIEValue` to be stored/passed/etc. by value, instead of reference. It's now a discriminated union, with a `Val` field storing the actual type. The classes that used to inherit from `DIEValue` no longer do. There are two categories of these: - Small values fit in a single pointer and are stored by value. - Large values require auxiliary storage, and are stored by reference. The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It was relying on `DIEInteger`s being passed around by reference, so I replaced that assumption with a `PatchLocation` type that stores a safe reference to where the `DIEInteger` lives instead. This commit causes a temporary regression in memory usage, since I've left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up drops it lower than the starting point, and I've only recently brought the memory this low anyway, so I'm committing these changes separately to keep them incremental. (I also considered swapping the commits, but the other one first would cause a lot more code churn.) (I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`; see r236629 for details.) -- llvm-svn: 238362
2015-05-28 06:14:58 +08:00
if (Value.getType() == DIEValue::isBlock) {
addULEB128(Value.getDIEBlock().ComputeSize(AP));
hashBlockData(Value.getDIEBlock().values());
Reapply "AsmPrinter: Change DIEValue to be stored by value" This reverts commit r238350, effectively reapplying r238349 after fixing (all?) the problems, all somehow related to how I was using `AlignedArrayCharUnion<>` inside `DIEValue`: - MSVC can only handle `sizeof()` on types, not values. Change the assert. - GCC doesn't know the `is_trivially_copyable` type trait. Instead of asserting it, add destructors. - Call placement new even when constructing POD (i.e., the pointers). - Instead of copying the char buffer, copy the casted classes. I've left in a couple of `static_assert`s that I think both MSVC and GCC know how to handle. If the bots disagree with me, I'll remove them. - Check that the constructed type is either standard layout or a pointer. This protects against a programming error: we really want the "small" `DIEValue`s to be small and simple, so don't accidentally change them not to be. - Similarly, check that the size of the buffer is no bigger than a `uint64_t` or a pointer. (I thought checking against `sizeof(uint64_t)` would be good enough, but Chandler suggested that pointers might sometimes be bigger than that in the context of sanitizers.) I've also committed r238359 in the meantime, which introduces a DIEValue.def to simplify dispatching between the various types (thanks to a review comment by David Blaikie). Without that, this commit would be almost unintelligible. Here's the original commit message: -- Change `DIEValue` to be stored/passed/etc. by value, instead of reference. It's now a discriminated union, with a `Val` field storing the actual type. The classes that used to inherit from `DIEValue` no longer do. There are two categories of these: - Small values fit in a single pointer and are stored by value. - Large values require auxiliary storage, and are stored by reference. The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It was relying on `DIEInteger`s being passed around by reference, so I replaced that assumption with a `PatchLocation` type that stores a safe reference to where the `DIEInteger` lives instead. This commit causes a temporary regression in memory usage, since I've left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up drops it lower than the starting point, and I've only recently brought the memory this low anyway, so I'm committing these changes separately to keep them incremental. (I also considered swapping the commits, but the other one first would cause a lot more code churn.) (I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`; see r236629 for details.) -- llvm-svn: 238362
2015-05-28 06:14:58 +08:00
} else if (Value.getType() == DIEValue::isLoc) {
addULEB128(Value.getDIELoc().ComputeSize(AP));
hashBlockData(Value.getDIELoc().values());
} else {
// We could add the block length, but that would take
// a bit of work and not add a lot of uniqueness
// to the hash in some way we could test.
Reapply "AsmPrinter: Change DIEValue to be stored by value" This reverts commit r238350, effectively reapplying r238349 after fixing (all?) the problems, all somehow related to how I was using `AlignedArrayCharUnion<>` inside `DIEValue`: - MSVC can only handle `sizeof()` on types, not values. Change the assert. - GCC doesn't know the `is_trivially_copyable` type trait. Instead of asserting it, add destructors. - Call placement new even when constructing POD (i.e., the pointers). - Instead of copying the char buffer, copy the casted classes. I've left in a couple of `static_assert`s that I think both MSVC and GCC know how to handle. If the bots disagree with me, I'll remove them. - Check that the constructed type is either standard layout or a pointer. This protects against a programming error: we really want the "small" `DIEValue`s to be small and simple, so don't accidentally change them not to be. - Similarly, check that the size of the buffer is no bigger than a `uint64_t` or a pointer. (I thought checking against `sizeof(uint64_t)` would be good enough, but Chandler suggested that pointers might sometimes be bigger than that in the context of sanitizers.) I've also committed r238359 in the meantime, which introduces a DIEValue.def to simplify dispatching between the various types (thanks to a review comment by David Blaikie). Without that, this commit would be almost unintelligible. Here's the original commit message: -- Change `DIEValue` to be stored/passed/etc. by value, instead of reference. It's now a discriminated union, with a `Val` field storing the actual type. The classes that used to inherit from `DIEValue` no longer do. There are two categories of these: - Small values fit in a single pointer and are stored by value. - Large values require auxiliary storage, and are stored by reference. The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It was relying on `DIEInteger`s being passed around by reference, so I replaced that assumption with a `PatchLocation` type that stores a safe reference to where the `DIEInteger` lives instead. This commit causes a temporary regression in memory usage, since I've left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up drops it lower than the starting point, and I've only recently brought the memory this low anyway, so I'm committing these changes separately to keep them incremental. (I also considered swapping the commits, but the other one first would cause a lot more code churn.) (I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`; see r236629 for details.) -- llvm-svn: 238362
2015-05-28 06:14:58 +08:00
hashLocList(Value.getDIELocList());
}
break;
// FIXME: It's uncertain whether or not we should handle this at the moment.
case DIEValue::isExpr:
case DIEValue::isLabel:
case DIEValue::isDelta:
llvm_unreachable("Add support for additional value types.");
}
}
// Go through the attributes from \param Attrs in the order specified in 7.27.4
// and hash them.
void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) {
#define ADD_ATTR(ATTR) \
{ \
if (ATTR) \
hashAttribute(ATTR, Tag); \
}
ADD_ATTR(Attrs.DW_AT_name);
ADD_ATTR(Attrs.DW_AT_accessibility);
ADD_ATTR(Attrs.DW_AT_address_class);
ADD_ATTR(Attrs.DW_AT_allocated);
ADD_ATTR(Attrs.DW_AT_artificial);
ADD_ATTR(Attrs.DW_AT_associated);
ADD_ATTR(Attrs.DW_AT_binary_scale);
ADD_ATTR(Attrs.DW_AT_bit_offset);
ADD_ATTR(Attrs.DW_AT_bit_size);
ADD_ATTR(Attrs.DW_AT_bit_stride);
ADD_ATTR(Attrs.DW_AT_byte_size);
ADD_ATTR(Attrs.DW_AT_byte_stride);
ADD_ATTR(Attrs.DW_AT_const_expr);
ADD_ATTR(Attrs.DW_AT_const_value);
ADD_ATTR(Attrs.DW_AT_containing_type);
ADD_ATTR(Attrs.DW_AT_count);
ADD_ATTR(Attrs.DW_AT_data_bit_offset);
ADD_ATTR(Attrs.DW_AT_data_location);
ADD_ATTR(Attrs.DW_AT_data_member_location);
ADD_ATTR(Attrs.DW_AT_decimal_scale);
ADD_ATTR(Attrs.DW_AT_decimal_sign);
ADD_ATTR(Attrs.DW_AT_default_value);
ADD_ATTR(Attrs.DW_AT_digit_count);
ADD_ATTR(Attrs.DW_AT_discr);
ADD_ATTR(Attrs.DW_AT_discr_list);
ADD_ATTR(Attrs.DW_AT_discr_value);
ADD_ATTR(Attrs.DW_AT_encoding);
ADD_ATTR(Attrs.DW_AT_enum_class);
ADD_ATTR(Attrs.DW_AT_endianity);
ADD_ATTR(Attrs.DW_AT_explicit);
ADD_ATTR(Attrs.DW_AT_is_optional);
ADD_ATTR(Attrs.DW_AT_location);
ADD_ATTR(Attrs.DW_AT_lower_bound);
ADD_ATTR(Attrs.DW_AT_mutable);
ADD_ATTR(Attrs.DW_AT_ordering);
ADD_ATTR(Attrs.DW_AT_picture_string);
ADD_ATTR(Attrs.DW_AT_prototyped);
ADD_ATTR(Attrs.DW_AT_small);
ADD_ATTR(Attrs.DW_AT_segment);
ADD_ATTR(Attrs.DW_AT_string_length);
ADD_ATTR(Attrs.DW_AT_threads_scaled);
ADD_ATTR(Attrs.DW_AT_upper_bound);
ADD_ATTR(Attrs.DW_AT_use_location);
ADD_ATTR(Attrs.DW_AT_use_UTF8);
ADD_ATTR(Attrs.DW_AT_variable_parameter);
ADD_ATTR(Attrs.DW_AT_virtuality);
ADD_ATTR(Attrs.DW_AT_visibility);
ADD_ATTR(Attrs.DW_AT_vtable_elem_location);
ADD_ATTR(Attrs.DW_AT_type);
// FIXME: Add the extended attributes.
}
// Add all of the attributes for \param Die to the hash.
void DIEHash::addAttributes(const DIE &Die) {
DIEAttrs Attrs = {};
collectAttributes(Die, Attrs);
hashAttributes(Attrs, Die.getTag());
}
void DIEHash::hashNestedType(const DIE &Die, StringRef Name) {
// 7.27 Step 7
// ... append the letter 'S',
addULEB128('S');
// the tag of C,
addULEB128(Die.getTag());
// and the name.
addString(Name);
}
// Compute the hash of a DIE. This is based on the type signature computation
// given in section 7.27 of the DWARF4 standard. It is the md5 hash of a
// flattened description of the DIE.
void DIEHash::computeHash(const DIE &Die) {
// Append the letter 'D', followed by the DWARF tag of the DIE.
addULEB128('D');
addULEB128(Die.getTag());
// Add each of the attributes of the DIE.
addAttributes(Die);
// Then hash each of the children of the DIE.
for (auto &C : Die.children()) {
// 7.27 Step 7
// If C is a nested type entry or a member function entry, ...
if (isType(C.getTag()) || C.getTag() == dwarf::DW_TAG_subprogram) {
StringRef Name = getDIEStringAttr(C, dwarf::DW_AT_name);
// ... and has a DW_AT_name attribute
if (!Name.empty()) {
hashNestedType(C, Name);
continue;
}
}
computeHash(C);
}
// Following the last (or if there are no children), append a zero byte.
Hash.update(makeArrayRef((uint8_t)'\0'));
}
/// This is based on the type signature computation given in section 7.27 of the
/// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
/// with the inclusion of the full CU and all top level CU entities.
// TODO: Initialize the type chain at 0 instead of 1 for CU signatures.
uint64_t DIEHash::computeCUSignature(const DIE &Die) {
Numbering.clear();
Numbering[&Die] = 1;
// Hash the DIE.
computeHash(Die);
// Now return the result.
MD5::MD5Result Result;
Hash.final(Result);
// ... take the least significant 8 bytes and return those. Our MD5
// implementation always returns its results in little endian, swap bytes
// appropriately.
return support::endian::read64le(Result + 8);
}
/// This is based on the type signature computation given in section 7.27 of the
/// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
/// with the inclusion of additional forms not specifically called out in the
/// standard.
uint64_t DIEHash::computeTypeSignature(const DIE &Die) {
Numbering.clear();
Numbering[&Die] = 1;
if (const DIE *Parent = Die.getParent())
addParentContext(*Parent);
// Hash the DIE.
computeHash(Die);
// Now return the result.
MD5::MD5Result Result;
Hash.final(Result);
// ... take the least significant 8 bytes and return those. Our MD5
// implementation always returns its results in little endian, swap bytes
// appropriately.
return support::endian::read64le(Result + 8);
}