llvm-project/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp

1497 lines
52 KiB
C++
Raw Normal View History

//===-- Execution.cpp - Implement code to simulate the program ------------===//
//
// This file contains the actual instruction interpreter.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "ExecutionAnnotations.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Assembly/Writer.h"
2001-09-29 06:56:43 +08:00
#include "llvm/Target/TargetData.h"
#include "Support/CommandLine.h"
#include <math.h> // For fmod
#include <signal.h>
#include <setjmp.h>
using std::vector;
using std::cout;
using std::cerr;
static cl::opt<bool>
QuietMode("quiet", cl::desc("Do not emit any non-program output"));
static cl::alias
QuietModeA("q", cl::desc("Alias for -quiet"), cl::aliasopt(QuietMode));
static cl::opt<bool>
ArrayChecksEnabled("array-checks", cl::desc("Enable array bound checks"));
static cl::opt<bool>
AbortOnExceptions("abort-on-exception",
cl::desc("Halt execution on a machine exception"));
// Create a TargetData structure to handle memory addressing and size/alignment
// computations
//
TargetData TD("lli Interpreter");
CachedWriter CW; // Object to accelerate printing of LLVM
#ifdef PROFILE_STRUCTURE_FIELDS
static cl::opt<bool>
ProfileStructureFields("profilestructfields",
cl::desc("Profile Structure Field Accesses"));
#include <map>
static std::map<const StructType *, vector<unsigned> > FieldAccessCounts;
#endif
sigjmp_buf SignalRecoverBuffer;
static bool InInstruction = false;
extern "C" {
static void SigHandler(int Signal) {
if (InInstruction)
siglongjmp(SignalRecoverBuffer, Signal);
}
}
static void initializeSignalHandlers() {
struct sigaction Action;
Action.sa_handler = SigHandler;
Action.sa_flags = SA_SIGINFO;
sigemptyset(&Action.sa_mask);
sigaction(SIGSEGV, &Action, 0);
sigaction(SIGBUS, &Action, 0);
sigaction(SIGINT, &Action, 0);
sigaction(SIGFPE, &Action, 0);
}
//===----------------------------------------------------------------------===//
// Value Manipulation code
//===----------------------------------------------------------------------===//
static unsigned getOperandSlot(Value *V) {
SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID);
assert(SN && "Operand does not have a slot number annotation!");
return SN->SlotNum;
}
#define GET_CONST_VAL(TY, CLASS) \
case Type::TY##TyID: Result.TY##Val = cast<CLASS>(C)->getValue(); break
// Operations used by constant expr implementations...
static GenericValue executeCastOperation(Value *Src, const Type *DestTy,
ExecutionContext &SF);
static GenericValue executeGEPOperation(Value *Src, User::op_iterator IdxBegin,
User::op_iterator IdxEnd,
ExecutionContext &SF);
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF);
static GenericValue getConstantValue(const Constant *C) {
GenericValue Result;
switch (C->getType()->getPrimitiveID()) {
GET_CONST_VAL(Bool , ConstantBool);
GET_CONST_VAL(UByte , ConstantUInt);
GET_CONST_VAL(SByte , ConstantSInt);
GET_CONST_VAL(UShort , ConstantUInt);
GET_CONST_VAL(Short , ConstantSInt);
GET_CONST_VAL(UInt , ConstantUInt);
GET_CONST_VAL(Int , ConstantSInt);
GET_CONST_VAL(ULong , ConstantUInt);
GET_CONST_VAL(Long , ConstantSInt);
GET_CONST_VAL(Float , ConstantFP);
GET_CONST_VAL(Double , ConstantFP);
case Type::PointerTyID:
if (isa<ConstantPointerNull>(C)) {
Result.PointerVal = 0;
} else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)){
GlobalAddress *Address =
(GlobalAddress*)CPR->getValue()->getOrCreateAnnotation(GlobalAddressAID);
Result.PointerVal = (PointerTy)Address->Ptr;
} else {
assert(0 && "Unknown constant pointer type!");
}
break;
default:
cout << "ERROR: Constant unimp for type: " << C->getType() << "\n";
}
return Result;
}
static GenericValue getOperandValue(Value *V, ExecutionContext &SF) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
switch (CE->getOpcode()) {
case Instruction::Cast:
return executeCastOperation(CE->getOperand(0), CE->getType(), SF);
case Instruction::GetElementPtr:
return executeGEPOperation(CE->getOperand(0), CE->op_begin()+1,
CE->op_end(), SF);
case Instruction::Add:
return executeAddInst(getOperandValue(CE->getOperand(0), SF),
getOperandValue(CE->getOperand(1), SF),
CE->getType(), SF);
default:
cerr << "Unhandled ConstantExpr: " << CE << "\n";
abort();
{ GenericValue V; return V; }
}
} else if (Constant *CPV = dyn_cast<Constant>(V)) {
return getConstantValue(CPV);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
GlobalAddress *Address =
(GlobalAddress*)GV->getOrCreateAnnotation(GlobalAddressAID);
GenericValue Result;
Result.PointerVal = (PointerTy)(GenericValue*)Address->Ptr;
return Result;
} else {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
unsigned OpSlot = getOperandSlot(V);
assert(TyP < SF.Values.size() &&
OpSlot < SF.Values[TyP].size() && "Value out of range!");
return SF.Values[TyP][getOperandSlot(V)];
}
}
static void printOperandInfo(Value *V, ExecutionContext &SF) {
if (isa<Constant>(V)) {
cout << "Constant Pool Value\n";
} else if (isa<GlobalValue>(V)) {
cout << "Global Value\n";
} else {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
unsigned Slot = getOperandSlot(V);
cout << "Value=" << (void*)V << " TypeID=" << TyP << " Slot=" << Slot
<< " Addr=" << &SF.Values[TyP][Slot] << " SF=" << &SF
<< " Contents=0x";
const unsigned char *Buf = (const unsigned char*)&SF.Values[TyP][Slot];
for (unsigned i = 0; i < sizeof(GenericValue); ++i) {
unsigned char Cur = Buf[i];
cout << ( Cur >= 160? char((Cur>>4)+'A'-10) : char((Cur>>4) + '0'))
<< ((Cur&15) >= 10? char((Cur&15)+'A'-10) : char((Cur&15) + '0'));
}
cout << "\n";
}
}
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
//cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)] << "\n";
SF.Values[TyP][getOperandSlot(V)] = Val;
}
//===----------------------------------------------------------------------===//
// Annotation Wrangling code
//===----------------------------------------------------------------------===//
void Interpreter::initializeExecutionEngine() {
AnnotationManager::registerAnnotationFactory(MethodInfoAID,
&MethodInfo::Create);
AnnotationManager::registerAnnotationFactory(GlobalAddressAID,
&GlobalAddress::Create);
initializeSignalHandlers();
}
static void StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
const Type *Ty);
// InitializeMemory - Recursive function to apply a Constant value into the
// specified memory location...
//
static void InitializeMemory(const Constant *Init, char *Addr) {
if (Init->getType()->isFirstClassType()) {
GenericValue Val = getConstantValue(Init);
StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
return;
}
switch (Init->getType()->getPrimitiveID()) {
case Type::ArrayTyID: {
const ConstantArray *CPA = cast<ConstantArray>(Init);
const vector<Use> &Val = CPA->getValues();
unsigned ElementSize =
TD.getTypeSize(cast<ArrayType>(CPA->getType())->getElementType());
for (unsigned i = 0; i < Val.size(); ++i)
InitializeMemory(cast<Constant>(Val[i].get()), Addr+i*ElementSize);
return;
}
case Type::StructTyID: {
const ConstantStruct *CPS = cast<ConstantStruct>(Init);
const StructLayout *SL=TD.getStructLayout(cast<StructType>(CPS->getType()));
const vector<Use> &Val = CPS->getValues();
for (unsigned i = 0; i < Val.size(); ++i)
InitializeMemory(cast<Constant>(Val[i].get()),
Addr+SL->MemberOffsets[i]);
return;
}
default:
CW << "Bad Type: " << Init->getType() << "\n";
assert(0 && "Unknown constant type to initialize memory with!");
}
}
Annotation *GlobalAddress::Create(AnnotationID AID, const Annotable *O, void *){
assert(AID == GlobalAddressAID);
// This annotation will only be created on GlobalValue objects...
GlobalValue *GVal = cast<GlobalValue>((Value*)O);
if (isa<Function>(GVal)) {
// The GlobalAddress object for a function is just a pointer to function
// itself. Don't delete it when the annotation is gone though!
return new GlobalAddress(GVal, false);
}
// Handle the case of a global variable...
assert(isa<GlobalVariable>(GVal) &&
"Global value found that isn't a function or global variable!");
GlobalVariable *GV = cast<GlobalVariable>(GVal);
// First off, we must allocate space for the global variable to point at...
const Type *Ty = GV->getType()->getElementType(); // Type to be allocated
// Allocate enough memory to hold the type...
void *Addr = calloc(1, TD.getTypeSize(Ty));
assert(Addr != 0 && "Null pointer returned by malloc!");
// Initialize the memory if there is an initializer...
if (GV->hasInitializer())
InitializeMemory(GV->getInitializer(), (char*)Addr);
return new GlobalAddress(Addr, true); // Simply invoke the ctor
}
//===----------------------------------------------------------------------===//
// Binary Instruction Implementations
//===----------------------------------------------------------------------===//
#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(+, UByte);
IMPLEMENT_BINARY_OPERATOR(+, SByte);
IMPLEMENT_BINARY_OPERATOR(+, UShort);
IMPLEMENT_BINARY_OPERATOR(+, Short);
IMPLEMENT_BINARY_OPERATOR(+, UInt);
IMPLEMENT_BINARY_OPERATOR(+, Int);
IMPLEMENT_BINARY_OPERATOR(+, ULong);
IMPLEMENT_BINARY_OPERATOR(+, Long);
IMPLEMENT_BINARY_OPERATOR(+, Float);
IMPLEMENT_BINARY_OPERATOR(+, Double);
IMPLEMENT_BINARY_OPERATOR(+, Pointer);
default:
cout << "Unhandled type for Add instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(-, UByte);
IMPLEMENT_BINARY_OPERATOR(-, SByte);
IMPLEMENT_BINARY_OPERATOR(-, UShort);
IMPLEMENT_BINARY_OPERATOR(-, Short);
IMPLEMENT_BINARY_OPERATOR(-, UInt);
IMPLEMENT_BINARY_OPERATOR(-, Int);
IMPLEMENT_BINARY_OPERATOR(-, ULong);
IMPLEMENT_BINARY_OPERATOR(-, Long);
IMPLEMENT_BINARY_OPERATOR(-, Float);
IMPLEMENT_BINARY_OPERATOR(-, Double);
IMPLEMENT_BINARY_OPERATOR(-, Pointer);
default:
cout << "Unhandled type for Sub instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(*, UByte);
IMPLEMENT_BINARY_OPERATOR(*, SByte);
IMPLEMENT_BINARY_OPERATOR(*, UShort);
IMPLEMENT_BINARY_OPERATOR(*, Short);
IMPLEMENT_BINARY_OPERATOR(*, UInt);
IMPLEMENT_BINARY_OPERATOR(*, Int);
IMPLEMENT_BINARY_OPERATOR(*, ULong);
IMPLEMENT_BINARY_OPERATOR(*, Long);
IMPLEMENT_BINARY_OPERATOR(*, Float);
IMPLEMENT_BINARY_OPERATOR(*, Double);
IMPLEMENT_BINARY_OPERATOR(*, Pointer);
default:
cout << "Unhandled type for Mul instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(/, UByte);
IMPLEMENT_BINARY_OPERATOR(/, SByte);
IMPLEMENT_BINARY_OPERATOR(/, UShort);
IMPLEMENT_BINARY_OPERATOR(/, Short);
IMPLEMENT_BINARY_OPERATOR(/, UInt);
IMPLEMENT_BINARY_OPERATOR(/, Int);
IMPLEMENT_BINARY_OPERATOR(/, ULong);
IMPLEMENT_BINARY_OPERATOR(/, Long);
IMPLEMENT_BINARY_OPERATOR(/, Float);
IMPLEMENT_BINARY_OPERATOR(/, Double);
IMPLEMENT_BINARY_OPERATOR(/, Pointer);
default:
cout << "Unhandled type for Div instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(%, UByte);
IMPLEMENT_BINARY_OPERATOR(%, SByte);
IMPLEMENT_BINARY_OPERATOR(%, UShort);
IMPLEMENT_BINARY_OPERATOR(%, Short);
IMPLEMENT_BINARY_OPERATOR(%, UInt);
IMPLEMENT_BINARY_OPERATOR(%, Int);
IMPLEMENT_BINARY_OPERATOR(%, ULong);
IMPLEMENT_BINARY_OPERATOR(%, Long);
IMPLEMENT_BINARY_OPERATOR(%, Pointer);
case Type::FloatTyID:
Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
break;
case Type::DoubleTyID:
Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
break;
default:
cout << "Unhandled type for Rem instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2,
2001-10-31 04:54:36 +08:00
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(&, UByte);
IMPLEMENT_BINARY_OPERATOR(&, SByte);
IMPLEMENT_BINARY_OPERATOR(&, UShort);
IMPLEMENT_BINARY_OPERATOR(&, Short);
IMPLEMENT_BINARY_OPERATOR(&, UInt);
IMPLEMENT_BINARY_OPERATOR(&, Int);
IMPLEMENT_BINARY_OPERATOR(&, ULong);
IMPLEMENT_BINARY_OPERATOR(&, Long);
IMPLEMENT_BINARY_OPERATOR(&, Pointer);
default:
cout << "Unhandled type for And instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(|, UByte);
IMPLEMENT_BINARY_OPERATOR(|, SByte);
IMPLEMENT_BINARY_OPERATOR(|, UShort);
IMPLEMENT_BINARY_OPERATOR(|, Short);
IMPLEMENT_BINARY_OPERATOR(|, UInt);
IMPLEMENT_BINARY_OPERATOR(|, Int);
IMPLEMENT_BINARY_OPERATOR(|, ULong);
IMPLEMENT_BINARY_OPERATOR(|, Long);
IMPLEMENT_BINARY_OPERATOR(|, Pointer);
default:
cout << "Unhandled type for Or instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
2001-10-31 04:54:36 +08:00
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(^, UByte);
IMPLEMENT_BINARY_OPERATOR(^, SByte);
IMPLEMENT_BINARY_OPERATOR(^, UShort);
IMPLEMENT_BINARY_OPERATOR(^, Short);
IMPLEMENT_BINARY_OPERATOR(^, UInt);
IMPLEMENT_BINARY_OPERATOR(^, Int);
IMPLEMENT_BINARY_OPERATOR(^, ULong);
IMPLEMENT_BINARY_OPERATOR(^, Long);
IMPLEMENT_BINARY_OPERATOR(^, Pointer);
default:
cout << "Unhandled type for Xor instruction: " << Ty << "\n";
2001-10-31 04:54:36 +08:00
}
return Dest;
}
#define IMPLEMENT_SETCC(OP, TY) \
case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break
static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(==, UByte);
IMPLEMENT_SETCC(==, SByte);
IMPLEMENT_SETCC(==, UShort);
IMPLEMENT_SETCC(==, Short);
IMPLEMENT_SETCC(==, UInt);
IMPLEMENT_SETCC(==, Int);
IMPLEMENT_SETCC(==, ULong);
IMPLEMENT_SETCC(==, Long);
IMPLEMENT_SETCC(==, Float);
IMPLEMENT_SETCC(==, Double);
IMPLEMENT_SETCC(==, Pointer);
default:
cout << "Unhandled type for SetEQ instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(!=, UByte);
IMPLEMENT_SETCC(!=, SByte);
IMPLEMENT_SETCC(!=, UShort);
IMPLEMENT_SETCC(!=, Short);
IMPLEMENT_SETCC(!=, UInt);
IMPLEMENT_SETCC(!=, Int);
IMPLEMENT_SETCC(!=, ULong);
IMPLEMENT_SETCC(!=, Long);
IMPLEMENT_SETCC(!=, Float);
IMPLEMENT_SETCC(!=, Double);
IMPLEMENT_SETCC(!=, Pointer);
default:
cout << "Unhandled type for SetNE instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(<=, UByte);
IMPLEMENT_SETCC(<=, SByte);
IMPLEMENT_SETCC(<=, UShort);
IMPLEMENT_SETCC(<=, Short);
IMPLEMENT_SETCC(<=, UInt);
IMPLEMENT_SETCC(<=, Int);
IMPLEMENT_SETCC(<=, ULong);
IMPLEMENT_SETCC(<=, Long);
IMPLEMENT_SETCC(<=, Float);
IMPLEMENT_SETCC(<=, Double);
IMPLEMENT_SETCC(<=, Pointer);
default:
cout << "Unhandled type for SetLE instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(>=, UByte);
IMPLEMENT_SETCC(>=, SByte);
IMPLEMENT_SETCC(>=, UShort);
IMPLEMENT_SETCC(>=, Short);
IMPLEMENT_SETCC(>=, UInt);
IMPLEMENT_SETCC(>=, Int);
IMPLEMENT_SETCC(>=, ULong);
IMPLEMENT_SETCC(>=, Long);
IMPLEMENT_SETCC(>=, Float);
IMPLEMENT_SETCC(>=, Double);
IMPLEMENT_SETCC(>=, Pointer);
default:
cout << "Unhandled type for SetGE instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(<, UByte);
IMPLEMENT_SETCC(<, SByte);
IMPLEMENT_SETCC(<, UShort);
IMPLEMENT_SETCC(<, Short);
IMPLEMENT_SETCC(<, UInt);
IMPLEMENT_SETCC(<, Int);
IMPLEMENT_SETCC(<, ULong);
IMPLEMENT_SETCC(<, Long);
IMPLEMENT_SETCC(<, Float);
IMPLEMENT_SETCC(<, Double);
IMPLEMENT_SETCC(<, Pointer);
default:
cout << "Unhandled type for SetLT instruction: " << Ty << "\n";
}
return Dest;
}
static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(>, UByte);
IMPLEMENT_SETCC(>, SByte);
IMPLEMENT_SETCC(>, UShort);
IMPLEMENT_SETCC(>, Short);
IMPLEMENT_SETCC(>, UInt);
IMPLEMENT_SETCC(>, Int);
IMPLEMENT_SETCC(>, ULong);
IMPLEMENT_SETCC(>, Long);
IMPLEMENT_SETCC(>, Float);
IMPLEMENT_SETCC(>, Double);
IMPLEMENT_SETCC(>, Pointer);
default:
cout << "Unhandled type for SetGT instruction: " << Ty << "\n";
}
return Dest;
}
static void executeBinaryInst(BinaryOperator &I, ExecutionContext &SF) {
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
switch (I.getOpcode()) {
case Instruction::Add: R = executeAddInst (Src1, Src2, Ty, SF); break;
case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty, SF); break;
case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty, SF); break;
case Instruction::Div: R = executeDivInst (Src1, Src2, Ty, SF); break;
case Instruction::Rem: R = executeRemInst (Src1, Src2, Ty, SF); break;
case Instruction::And: R = executeAndInst (Src1, Src2, Ty, SF); break;
case Instruction::Or: R = executeOrInst (Src1, Src2, Ty, SF); break;
2001-10-31 04:54:36 +08:00
case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty, SF); break;
case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty, SF); break;
case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty, SF); break;
case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty, SF); break;
case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty, SF); break;
case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty, SF); break;
case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty, SF); break;
default:
cout << "Don't know how to handle this binary operator!\n-->" << I;
2001-10-31 04:54:36 +08:00
R = Src1;
}
SetValue(&I, R, SF);
}
//===----------------------------------------------------------------------===//
// Terminator Instruction Implementations
//===----------------------------------------------------------------------===//
static void PerformExitStuff() {
#ifdef PROFILE_STRUCTURE_FIELDS
// Print out structure field accounting information...
if (!FieldAccessCounts.empty()) {
CW << "Profile Field Access Counts:\n";
std::map<const StructType *, vector<unsigned> >::iterator
I = FieldAccessCounts.begin(), E = FieldAccessCounts.end();
for (; I != E; ++I) {
vector<unsigned> &OfC = I->second;
CW << " '" << (Value*)I->first << "'\t- Sum=";
unsigned Sum = 0;
for (unsigned i = 0; i < OfC.size(); ++i)
Sum += OfC[i];
CW << Sum << " - ";
for (unsigned i = 0; i < OfC.size(); ++i) {
if (i) CW << ", ";
CW << OfC[i];
}
CW << "\n";
}
CW << "\n";
CW << "Profile Field Access Percentages:\n";
cout.precision(3);
for (I = FieldAccessCounts.begin(); I != E; ++I) {
vector<unsigned> &OfC = I->second;
unsigned Sum = 0;
for (unsigned i = 0; i < OfC.size(); ++i)
Sum += OfC[i];
CW << " '" << (Value*)I->first << "'\t- ";
for (unsigned i = 0; i < OfC.size(); ++i) {
if (i) CW << ", ";
CW << double(OfC[i])/Sum;
}
CW << "\n";
}
CW << "\n";
FieldAccessCounts.clear();
}
#endif
}
void Interpreter::exitCalled(GenericValue GV) {
if (!QuietMode) {
cout << "Program returned ";
print(Type::IntTy, GV);
cout << " via 'void exit(int)'\n";
}
ExitCode = GV.SByteVal;
ECStack.clear();
PerformExitStuff();
}
void Interpreter::executeRetInst(ReturnInst &I, ExecutionContext &SF) {
const Type *RetTy = 0;
GenericValue Result;
// Save away the return value... (if we are not 'ret void')
if (I.getNumOperands()) {
RetTy = I.getReturnValue()->getType();
Result = getOperandValue(I.getReturnValue(), SF);
}
// Save previously executing meth
const Function *M = ECStack.back().CurMethod;
// Pop the current stack frame... this invalidates SF
ECStack.pop_back();
if (ECStack.empty()) { // Finished main. Put result into exit code...
if (RetTy) { // Nonvoid return type?
if (!QuietMode) {
CW << "Function " << M->getType() << " \"" << M->getName()
<< "\" returned ";
print(RetTy, Result);
cout << "\n";
}
if (RetTy->isIntegral())
ExitCode = Result.IntVal; // Capture the exit code of the program
} else {
ExitCode = 0;
}
PerformExitStuff();
return;
}
// If we have a previous stack frame, and we have a previous call, fill in
// the return value...
//
ExecutionContext &NewSF = ECStack.back();
if (NewSF.Caller) {
if (NewSF.Caller->getType() != Type::VoidTy) // Save result...
SetValue(NewSF.Caller, Result, NewSF);
NewSF.Caller = 0; // We returned from the call...
} else if (!QuietMode) {
// This must be a function that is executing because of a user 'call'
// instruction.
CW << "Function " << M->getType() << " \"" << M->getName()
<< "\" returned ";
print(RetTy, Result);
cout << "\n";
}
}
void Interpreter::executeBrInst(BranchInst &I, ExecutionContext &SF) {
SF.PrevBB = SF.CurBB; // Update PrevBB so that PHI nodes work...
BasicBlock *Dest;
Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
if (!I.isUnconditional()) {
Value *Cond = I.getCondition();
GenericValue CondVal = getOperandValue(Cond, SF);
if (CondVal.BoolVal == 0) // If false cond...
Dest = I.getSuccessor(1);
}
SF.CurBB = Dest; // Update CurBB to branch destination
SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
}
//===----------------------------------------------------------------------===//
// Memory Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::executeAllocInst(AllocationInst &I, ExecutionContext &SF) {
const Type *Ty = I.getType()->getElementType(); // Type to be allocated
// Get the number of elements being allocated by the array...
unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal;
// Allocate enough memory to hold the type...
// FIXME: Don't use CALLOC, use a tainted malloc.
void *Memory = calloc(NumElements, TD.getTypeSize(Ty));
GenericValue Result;
Result.PointerVal = (PointerTy)Memory;
assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
SetValue(&I, Result, SF);
if (I.getOpcode() == Instruction::Alloca)
ECStack.back().Allocas.add(Memory);
}
static void executeFreeInst(FreeInst &I, ExecutionContext &SF) {
assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
GenericValue Value = getOperandValue(I.getOperand(0), SF);
// TODO: Check to make sure memory is allocated
free((void*)Value.PointerVal); // Free memory
}
// getElementOffset - The workhorse for getelementptr.
//
static GenericValue executeGEPOperation(Value *Ptr, User::op_iterator I,
User::op_iterator E,
ExecutionContext &SF) {
assert(isa<PointerType>(Ptr->getType()) &&
"Cannot getElementOffset of a nonpointer type!");
PointerTy Total = 0;
const Type *Ty = Ptr->getType();
for (; I != E; ++I) {
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
const StructLayout *SLO = TD.getStructLayout(STy);
// Indicies must be ubyte constants...
const ConstantUInt *CPU = cast<ConstantUInt>(*I);
assert(CPU->getType() == Type::UByteTy);
unsigned Index = CPU->getValue();
#ifdef PROFILE_STRUCTURE_FIELDS
if (ProfileStructureFields) {
// Do accounting for this field...
vector<unsigned> &OfC = FieldAccessCounts[STy];
if (OfC.size() == 0) OfC.resize(STy->getElementTypes().size());
OfC[Index]++;
}
#endif
Total += SLO->MemberOffsets[Index];
Ty = STy->getElementTypes()[Index];
} else if (const SequentialType *ST = cast<SequentialType>(Ty)) {
// Get the index number for the array... which must be uint type...
assert((*I)->getType() == Type::LongTy);
unsigned Idx = getOperandValue(*I, SF).LongVal;
if (const ArrayType *AT = dyn_cast<ArrayType>(ST))
if (Idx >= AT->getNumElements() && ArrayChecksEnabled) {
cerr << "Out of range memory access to element #" << Idx
<< " of a " << AT->getNumElements() << " element array."
<< " Subscript #" << *I << "\n";
// Get outta here!!!
siglongjmp(SignalRecoverBuffer, SIGTRAP);
}
Ty = ST->getElementType();
unsigned Size = TD.getTypeSize(Ty);
Total += Size*Idx;
}
}
GenericValue Result;
Result.PointerVal = getOperandValue(Ptr, SF).PointerVal + Total;
return Result;
}
static void executeGEPInst(GetElementPtrInst &I, ExecutionContext &SF) {
SetValue(&I, executeGEPOperation(I.getPointerOperand(),
I.idx_begin(), I.idx_end(), SF), SF);
}
static void executeLoadInst(LoadInst &I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
GenericValue *Ptr = (GenericValue*)SRC.PointerVal;
GenericValue Result;
if (TD.isLittleEndian()) {
switch (I.getType()->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break;
case Type::UShortTyID:
case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] |
((unsigned)Ptr->Untyped[1] << 8);
break;
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] |
((unsigned)Ptr->Untyped[1] << 8) |
((unsigned)Ptr->Untyped[2] << 16) |
((unsigned)Ptr->Untyped[3] << 24);
break;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID:
case Type::PointerTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] |
((uint64_t)Ptr->Untyped[1] << 8) |
((uint64_t)Ptr->Untyped[2] << 16) |
((uint64_t)Ptr->Untyped[3] << 24) |
((uint64_t)Ptr->Untyped[4] << 32) |
((uint64_t)Ptr->Untyped[5] << 40) |
((uint64_t)Ptr->Untyped[6] << 48) |
((uint64_t)Ptr->Untyped[7] << 56);
break;
default:
cout << "Cannot load value of type " << I.getType() << "!\n";
}
} else {
switch (I.getType()->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break;
case Type::UShortTyID:
case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] |
((unsigned)Ptr->Untyped[0] << 8);
break;
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] |
((unsigned)Ptr->Untyped[2] << 8) |
((unsigned)Ptr->Untyped[1] << 16) |
((unsigned)Ptr->Untyped[0] << 24);
break;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID:
case Type::PointerTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] |
((uint64_t)Ptr->Untyped[6] << 8) |
((uint64_t)Ptr->Untyped[5] << 16) |
((uint64_t)Ptr->Untyped[4] << 24) |
((uint64_t)Ptr->Untyped[3] << 32) |
((uint64_t)Ptr->Untyped[2] << 40) |
((uint64_t)Ptr->Untyped[1] << 48) |
((uint64_t)Ptr->Untyped[0] << 56);
break;
default:
cout << "Cannot load value of type " << I.getType() << "!\n";
}
}
SetValue(&I, Result, SF);
}
static void StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
const Type *Ty) {
if (TD.isLittleEndian()) {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255;
Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255;
break;
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255;
Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255;
Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255;
Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255;
break;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID:
case Type::PointerTyID: Ptr->Untyped[0] = Val.ULongVal & 255;
Ptr->Untyped[1] = (Val.ULongVal >> 8) & 255;
Ptr->Untyped[2] = (Val.ULongVal >> 16) & 255;
Ptr->Untyped[3] = (Val.ULongVal >> 24) & 255;
Ptr->Untyped[4] = (Val.ULongVal >> 32) & 255;
Ptr->Untyped[5] = (Val.ULongVal >> 40) & 255;
Ptr->Untyped[6] = (Val.ULongVal >> 48) & 255;
Ptr->Untyped[7] = (Val.ULongVal >> 56) & 255;
break;
default:
2002-10-26 09:57:15 +08:00
cout << "Cannot store value of type " << Ty << "!\n";
}
} else {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255;
Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255;
break;
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255;
Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255;
Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255;
Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255;
break;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID:
case Type::PointerTyID: Ptr->Untyped[7] = Val.ULongVal & 255;
Ptr->Untyped[6] = (Val.ULongVal >> 8) & 255;
Ptr->Untyped[5] = (Val.ULongVal >> 16) & 255;
Ptr->Untyped[4] = (Val.ULongVal >> 24) & 255;
Ptr->Untyped[3] = (Val.ULongVal >> 32) & 255;
Ptr->Untyped[2] = (Val.ULongVal >> 40) & 255;
Ptr->Untyped[1] = (Val.ULongVal >> 48) & 255;
Ptr->Untyped[0] = (Val.ULongVal >> 56) & 255;
break;
default:
2002-10-26 09:57:15 +08:00
cout << "Cannot store value of type " << Ty << "!\n";
}
}
}
static void executeStoreInst(StoreInst &I, ExecutionContext &SF) {
GenericValue Val = getOperandValue(I.getOperand(0), SF);
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
2002-10-26 09:57:15 +08:00
StoreValueToMemory(Val, (GenericValue *)SRC.PointerVal,
I.getOperand(0)->getType());
}
GenericValue Interpreter::CreateArgv(const std::vector<std::string> &InputArgv){
// Pointers are 64 bits...
PointerTy *Result = new PointerTy[InputArgv.size()+1]; // 64 bit assumption
for (unsigned i = 0; i < InputArgv.size(); ++i) {
unsigned Size = InputArgv[i].size()+1;
char *Dest = new char[Size];
copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
Dest[Size-1] = 0;
GenericValue GV; GV.PointerVal = (PointerTy)Dest;
// Endian safe: Result[i] = (PointerTy)Dest;
StoreValueToMemory(GV, (GenericValue*)(Result+i),
Type::LongTy); // 64 bit assumption
}
Result[InputArgv.size()] = 0;
GenericValue GV; GV.PointerVal = (PointerTy)Result;
return GV;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::executeCallInst(CallInst &I, ExecutionContext &SF) {
ECStack.back().Caller = &I;
vector<GenericValue> ArgVals;
ArgVals.reserve(I.getNumOperands()-1);
for (unsigned i = 1; i < I.getNumOperands(); ++i)
ArgVals.push_back(getOperandValue(I.getOperand(i), SF));
// To handle indirect calls, we must get the pointer value from the argument
// and treat it as a function pointer.
GenericValue SRC = getOperandValue(I.getCalledValue(), SF);
callMethod((Function*)SRC.PointerVal, ArgVals);
}
static void executePHINode(PHINode &I, ExecutionContext &SF) {
BasicBlock *PrevBB = SF.PrevBB;
Value *IncomingValue = 0;
// Search for the value corresponding to this previous bb...
for (unsigned i = I.getNumIncomingValues(); i > 0;) {
if (I.getIncomingBlock(--i) == PrevBB) {
IncomingValue = I.getIncomingValue(i);
break;
}
}
assert(IncomingValue && "No PHI node predecessor for current PrevBB!");
// Found the value, set as the result...
SetValue(&I, getOperandValue(IncomingValue, SF), SF);
}
#define IMPLEMENT_SHIFT(OP, TY) \
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break
static void executeShlInst(ShiftInst &I, ExecutionContext &SF) {
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SHIFT(<<, UByte);
IMPLEMENT_SHIFT(<<, SByte);
IMPLEMENT_SHIFT(<<, UShort);
IMPLEMENT_SHIFT(<<, Short);
IMPLEMENT_SHIFT(<<, UInt);
IMPLEMENT_SHIFT(<<, Int);
IMPLEMENT_SHIFT(<<, ULong);
IMPLEMENT_SHIFT(<<, Long);
IMPLEMENT_SHIFT(<<, Pointer);
default:
cout << "Unhandled type for Shl instruction: " << Ty << "\n";
}
SetValue(&I, Dest, SF);
}
static void executeShrInst(ShiftInst &I, ExecutionContext &SF) {
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SHIFT(>>, UByte);
IMPLEMENT_SHIFT(>>, SByte);
IMPLEMENT_SHIFT(>>, UShort);
IMPLEMENT_SHIFT(>>, Short);
IMPLEMENT_SHIFT(>>, UInt);
IMPLEMENT_SHIFT(>>, Int);
IMPLEMENT_SHIFT(>>, ULong);
IMPLEMENT_SHIFT(>>, Long);
IMPLEMENT_SHIFT(>>, Pointer);
default:
cout << "Unhandled type for Shr instruction: " << Ty << "\n";
}
SetValue(&I, Dest, SF);
}
#define IMPLEMENT_CAST(DTY, DCTY, STY) \
case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break;
#define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \
case Type::DESTTY##TyID: \
switch (SrcTy->getPrimitiveID()) { \
IMPLEMENT_CAST(DESTTY, DESTCTY, Bool); \
IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \
IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \
IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \
IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Int); \
IMPLEMENT_CAST(DESTTY, DESTCTY, ULong); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Long); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer);
#define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \
IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Double)
#define IMPLEMENT_CAST_CASE_END() \
default: cout << "Unhandled cast: " << SrcTy << " to " << Ty << "\n"; \
break; \
} \
break
#define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \
IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \
IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \
IMPLEMENT_CAST_CASE_END()
static GenericValue executeCastOperation(Value *SrcVal, const Type *Ty,
ExecutionContext &SF) {
const Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
switch (Ty->getPrimitiveID()) {
IMPLEMENT_CAST_CASE(UByte , (unsigned char));
IMPLEMENT_CAST_CASE(SByte , ( signed char));
IMPLEMENT_CAST_CASE(UShort , (unsigned short));
2002-08-03 06:06:04 +08:00
IMPLEMENT_CAST_CASE(Short , ( signed short));
IMPLEMENT_CAST_CASE(UInt , (unsigned int ));
IMPLEMENT_CAST_CASE(Int , ( signed int ));
IMPLEMENT_CAST_CASE(ULong , (uint64_t));
IMPLEMENT_CAST_CASE(Long , ( int64_t));
IMPLEMENT_CAST_CASE(Pointer, (PointerTy));
IMPLEMENT_CAST_CASE(Float , (float));
IMPLEMENT_CAST_CASE(Double , (double));
default:
cout << "Unhandled dest type for cast instruction: " << Ty << "\n";
}
return Dest;
}
static void executeCastInst(CastInst &I, ExecutionContext &SF) {
SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF);
}
//===----------------------------------------------------------------------===//
// Dispatch and Execution Code
//===----------------------------------------------------------------------===//
MethodInfo::MethodInfo(Function *F) : Annotation(MethodInfoAID) {
// Assign slot numbers to the function arguments...
for (Function::const_aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI)
AI->addAnnotation(new SlotNumber(getValueSlot(AI)));
// Iterate over all of the instructions...
unsigned InstNum = 0;
for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB)
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II)
// For each instruction... Add Annote
II->addAnnotation(new InstNumber(++InstNum, getValueSlot(II)));
}
unsigned MethodInfo::getValueSlot(const Value *V) {
unsigned Plane = V->getType()->getUniqueID();
if (Plane >= NumPlaneElements.size())
NumPlaneElements.resize(Plane+1, 0);
return NumPlaneElements[Plane]++;
}
//===----------------------------------------------------------------------===//
// callMethod - Execute the specified function...
//
void Interpreter::callMethod(Function *M, const vector<GenericValue> &ArgVals) {
assert((ECStack.empty() || ECStack.back().Caller == 0 ||
ECStack.back().Caller->getNumOperands()-1 == ArgVals.size()) &&
"Incorrect number of arguments passed into function call!");
if (M->isExternal()) {
GenericValue Result = callExternalMethod(M, ArgVals);
const Type *RetTy = M->getReturnType();
// Copy the result back into the result variable if we are not returning
// void.
if (RetTy != Type::VoidTy) {
if (!ECStack.empty() && ECStack.back().Caller) {
ExecutionContext &SF = ECStack.back();
SetValue(SF.Caller, Result, SF);
SF.Caller = 0; // We returned from the call...
} else if (!QuietMode) {
// print it.
CW << "Function " << M->getType() << " \"" << M->getName()
<< "\" returned ";
print(RetTy, Result);
cout << "\n";
if (RetTy->isIntegral())
ExitCode = Result.IntVal; // Capture the exit code of the program
}
}
return;
}
// Process the function, assigning instruction numbers to the instructions in
// the function. Also calculate the number of values for each type slot
// active.
//
MethodInfo *MethInfo = (MethodInfo*)M->getOrCreateAnnotation(MethodInfoAID);
ECStack.push_back(ExecutionContext()); // Make a new stack frame...
ExecutionContext &StackFrame = ECStack.back(); // Fill it in...
StackFrame.CurMethod = M;
StackFrame.CurBB = M->begin();
StackFrame.CurInst = StackFrame.CurBB->begin();
StackFrame.MethInfo = MethInfo;
// Initialize the values to nothing...
StackFrame.Values.resize(MethInfo->NumPlaneElements.size());
for (unsigned i = 0; i < MethInfo->NumPlaneElements.size(); ++i) {
StackFrame.Values[i].resize(MethInfo->NumPlaneElements[i]);
// Taint the initial values of stuff
memset(&StackFrame.Values[i][0], 42,
MethInfo->NumPlaneElements[i]*sizeof(GenericValue));
}
StackFrame.PrevBB = 0; // No previous BB for PHI nodes...
// Run through the function arguments and initialize their values...
assert(ArgVals.size() == M->asize() &&
"Invalid number of values passed to function invocation!");
unsigned i = 0;
for (Function::aiterator AI = M->abegin(), E = M->aend(); AI != E; ++AI, ++i)
SetValue(AI, ArgVals[i], StackFrame);
}
// executeInstruction - Interpret a single instruction, increment the "PC", and
// return true if the next instruction is a breakpoint...
//
bool Interpreter::executeInstruction() {
assert(!ECStack.empty() && "No program running, cannot execute inst!");
ExecutionContext &SF = ECStack.back(); // Current stack frame
Instruction &I = *SF.CurInst++; // Increment before execute
if (Trace)
CW << "Run:" << I;
// Set a sigsetjmp buffer so that we can recover if an error happens during
// instruction execution...
//
if (int SigNo = sigsetjmp(SignalRecoverBuffer, 1)) {
--SF.CurInst; // Back up to erroring instruction
if (SigNo != SIGINT) {
cout << "EXCEPTION OCCURRED [" << strsignal(SigNo) << "]:\n";
printStackTrace();
// If -abort-on-exception was specified, terminate LLI instead of trying
// to debug it.
//
if (AbortOnExceptions) exit(1);
} else if (SigNo == SIGINT) {
cout << "CTRL-C Detected, execution halted.\n";
}
InInstruction = false;
return true;
}
InInstruction = true;
if (I.isBinaryOp()) {
executeBinaryInst(cast<BinaryOperator>(I), SF);
} else {
switch (I.getOpcode()) {
// Terminators
case Instruction::Ret: executeRetInst (cast<ReturnInst>(I), SF); break;
case Instruction::Br: executeBrInst (cast<BranchInst>(I), SF); break;
// Memory Instructions
case Instruction::Alloca:
case Instruction::Malloc: executeAllocInst((AllocationInst&)I, SF); break;
case Instruction::Free: executeFreeInst (cast<FreeInst> (I), SF); break;
case Instruction::Load: executeLoadInst (cast<LoadInst> (I), SF); break;
case Instruction::Store: executeStoreInst(cast<StoreInst>(I), SF); break;
case Instruction::GetElementPtr:
executeGEPInst(cast<GetElementPtrInst>(I), SF); break;
// Miscellaneous Instructions
case Instruction::Call: executeCallInst (cast<CallInst> (I), SF); break;
case Instruction::PHINode: executePHINode (cast<PHINode> (I), SF); break;
case Instruction::Shl: executeShlInst (cast<ShiftInst>(I), SF); break;
case Instruction::Shr: executeShrInst (cast<ShiftInst>(I), SF); break;
case Instruction::Cast: executeCastInst (cast<CastInst> (I), SF); break;
default:
cout << "Don't know how to execute this instruction!\n-->" << I;
}
}
InInstruction = false;
// Reset the current frame location to the top of stack
CurFrame = ECStack.size()-1;
if (CurFrame == -1) return false; // No breakpoint if no code
// Return true if there is a breakpoint annotation on the instruction...
return ECStack[CurFrame].CurInst->getAnnotation(BreakpointAID) != 0;
}
void Interpreter::stepInstruction() { // Do the 'step' command
if (ECStack.empty()) {
cout << "Error: no program running, cannot step!\n";
return;
}
// Run an instruction...
executeInstruction();
// Print the next instruction to execute...
printCurrentInstruction();
}
// --- UI Stuff...
void Interpreter::nextInstruction() { // Do the 'next' command
if (ECStack.empty()) {
cout << "Error: no program running, cannot 'next'!\n";
return;
}
// If this is a call instruction, step over the call instruction...
// TODO: ICALL, CALL WITH, ...
if (ECStack.back().CurInst->getOpcode() == Instruction::Call) {
unsigned StackSize = ECStack.size();
// Step into the function...
if (executeInstruction()) {
// Hit a breakpoint, print current instruction, then return to user...
cout << "Breakpoint hit!\n";
printCurrentInstruction();
return;
}
// If we we able to step into the function, finish it now. We might not be
// able the step into a function, if it's external for example.
if (ECStack.size() != StackSize)
finish(); // Finish executing the function...
else
printCurrentInstruction();
} else {
// Normal instruction, just step...
stepInstruction();
}
}
void Interpreter::run() {
if (ECStack.empty()) {
cout << "Error: no program running, cannot run!\n";
return;
}
bool HitBreakpoint = false;
while (!ECStack.empty() && !HitBreakpoint) {
// Run an instruction...
HitBreakpoint = executeInstruction();
}
if (HitBreakpoint) {
cout << "Breakpoint hit!\n";
}
// Print the next instruction to execute...
printCurrentInstruction();
}
void Interpreter::finish() {
if (ECStack.empty()) {
cout << "Error: no program running, cannot run!\n";
return;
}
unsigned StackSize = ECStack.size();
bool HitBreakpoint = false;
while (ECStack.size() >= StackSize && !HitBreakpoint) {
// Run an instruction...
HitBreakpoint = executeInstruction();
}
if (HitBreakpoint) {
cout << "Breakpoint hit!\n";
}
// Print the next instruction to execute...
printCurrentInstruction();
}
// printCurrentInstruction - Print out the instruction that the virtual PC is
// at, or fail silently if no program is running.
//
void Interpreter::printCurrentInstruction() {
if (!ECStack.empty()) {
if (ECStack.back().CurBB->begin() == ECStack.back().CurInst) // print label
WriteAsOperand(cout, ECStack.back().CurBB) << ":\n";
Instruction &I = *ECStack.back().CurInst;
InstNumber *IN = (InstNumber*)I.getAnnotation(SlotNumberAID);
assert(IN && "Instruction has no numbering annotation!");
cout << "#" << IN->InstNum << I;
}
}
void Interpreter::printValue(const Type *Ty, GenericValue V) {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: cout << (V.BoolVal?"true":"false"); break;
case Type::SByteTyID:
cout << (int)V.SByteVal << " '" << V.SByteVal << "'"; break;
case Type::UByteTyID:
cout << (unsigned)V.UByteVal << " '" << V.UByteVal << "'"; break;
case Type::ShortTyID: cout << V.ShortVal; break;
case Type::UShortTyID: cout << V.UShortVal; break;
case Type::IntTyID: cout << V.IntVal; break;
case Type::UIntTyID: cout << V.UIntVal; break;
case Type::LongTyID: cout << (long)V.LongVal; break;
case Type::ULongTyID: cout << (unsigned long)V.ULongVal; break;
case Type::FloatTyID: cout << V.FloatVal; break;
case Type::DoubleTyID: cout << V.DoubleVal; break;
case Type::PointerTyID:cout << (void*)V.PointerVal; break;
default:
cout << "- Don't know how to print value of this type!";
break;
}
}
void Interpreter::print(const Type *Ty, GenericValue V) {
CW << Ty << " ";
printValue(Ty, V);
}
void Interpreter::print(const std::string &Name) {
Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name));
if (!PickedVal) return;
if (const Function *F = dyn_cast<const Function>(PickedVal)) {
CW << F; // Print the function
} else if (const Type *Ty = dyn_cast<const Type>(PickedVal)) {
CW << "type %" << Name << " = " << Ty->getDescription() << "\n";
} else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(PickedVal)) {
CW << BB; // Print the basic block
} else { // Otherwise there should be an annotation for the slot#
print(PickedVal->getType(),
getOperandValue(PickedVal, ECStack[CurFrame]));
cout << "\n";
}
}
void Interpreter::infoValue(const std::string &Name) {
Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name));
if (!PickedVal) return;
cout << "Value: ";
print(PickedVal->getType(),
getOperandValue(PickedVal, ECStack[CurFrame]));
cout << "\n";
printOperandInfo(PickedVal, ECStack[CurFrame]);
}
// printStackFrame - Print information about the specified stack frame, or -1
// for the default one.
//
2002-07-26 01:37:05 +08:00
void Interpreter::printStackFrame(int FrameNo) {
if (FrameNo == -1) FrameNo = CurFrame;
Function *F = ECStack[FrameNo].CurMethod;
const Type *RetTy = F->getReturnType();
CW << ((FrameNo == CurFrame) ? '>' : '-') << "#" << FrameNo << ". "
<< (Value*)RetTy << " \"" << F->getName() << "\"(";
unsigned i = 0;
for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I, ++i) {
if (i != 0) cout << ", ";
CW << *I << "=";
printValue(I->getType(), getOperandValue(I, ECStack[FrameNo]));
}
cout << ")\n";
if (FrameNo != int(ECStack.size()-1)) {
BasicBlock::iterator I = ECStack[FrameNo].CurInst;
CW << --I;
} else {
CW << *ECStack[FrameNo].CurInst;
}
}