llvm-project/lldb/source/Expression/ClangUserExpression.cpp

258 lines
7.4 KiB
C++
Raw Normal View History

This is a major refactoring of the expression parser. The goal is to separate the parser's data from the data belonging to the parser's clients. This allows clients to use the parser to obtain (for example) a JIT compiled function or some DWARF code, and then discard the parser state. Previously, parser state was held in ClangExpression and used liberally by ClangFunction, which inherited from ClangExpression. The main effects of this refactoring are: - reducing ClangExpression to an abstract class that declares methods that any client must expose to the expression parser, - moving the code specific to implementing the "expr" command from ClangExpression and CommandObjectExpression into ClangUserExpression, a new class, - moving the common parser interaction code from ClangExpression into ClangExpressionParser, a new class, and - making ClangFunction rely only on ClangExpressionParser and not depend on the internal implementation of ClangExpression. Side effects include: - the compiler interaction code has been factored out of ClangFunction and is now in an AST pass (ASTStructExtractor), - the header file for ClangFunction is now fully documented, - several bugs that only popped up when Clang was deallocated (which never happened, since the lifetime of the compiler was essentially infinite) are now fixed, and - the developer-only "call" command has been disabled. I have tested the expr command and the Objective-C step-into code, which use ClangUserExpression and ClangFunction, respectively, and verified that they work. Please let me know if you encounter bugs or poor documentation. llvm-svn: 112249
2010-08-27 09:01:44 +08:00
//===-- ClangUserExpression.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
#include <stdio.h>
#if HAVE_SYS_TYPES_H
# include <sys/types.h>
#endif
// C++ Includes
#include <cstdlib>
#include <string>
#include <map>
#include "lldb/Core/ConstString.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Expression/ClangExpressionDeclMap.h"
#include "lldb/Expression/ClangExpressionParser.h"
#include "lldb/Expression/ClangFunction.h"
#include "lldb/Expression/ASTResultSynthesizer.h"
#include "lldb/Expression/ClangUserExpression.h"
#include "lldb/Host/Host.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Target.h"
using namespace lldb_private;
ClangUserExpression::ClangUserExpression (const char *expr) :
m_expr_text(expr),
m_jit_addr(LLDB_INVALID_ADDRESS)
{
StreamString m_transformed_stream;
m_transformed_stream.Printf("extern \"C\" void %s(void *___clang_arg) { %s; }\n",
FunctionName(),
m_expr_text.c_str());
m_transformed_text = m_transformed_stream.GetData();
}
clang::ASTConsumer *
ClangUserExpression::ASTTransformer (clang::ASTConsumer *passthrough)
{
return new ASTResultSynthesizer(passthrough);
}
bool
ClangUserExpression::Parse (Stream &error_stream, ExecutionContext &exe_ctx)
{
Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
////////////////////////////////////
// Set up the target and compiler
//
Target *target = exe_ctx.target;
if (!target)
{
error_stream.PutCString ("error: invalid target\n");
return false;
}
ConstString target_triple;
target->GetTargetTriple (target_triple);
if (!target_triple)
target_triple = Host::GetTargetTriple ();
if (!target_triple)
{
error_stream.PutCString ("error: invalid target triple\n");
return false;
}
//////////////////////////
// Parse the expression
//
m_expr_decl_map.reset(new ClangExpressionDeclMap(&exe_ctx));
ClangExpressionParser parser(target_triple.GetCString(), *this);
unsigned num_errors = parser.Parse (error_stream);
if (num_errors)
{
error_stream.Printf ("error: %d errors parsing expression\n", num_errors);
return false;
}
///////////////////////////////////////////////
// Convert the output of the parser to DWARF
//
m_dwarf_opcodes.reset(new StreamString);
m_dwarf_opcodes->SetByteOrder (lldb::eByteOrderHost);
m_dwarf_opcodes->GetFlags ().Set (Stream::eBinary);
m_local_variables.reset(new ClangExpressionVariableStore());
Error dwarf_error = parser.MakeDWARF ();
if (dwarf_error.Success())
{
if (log)
log->Printf("Code can be interpreted.");
return true;
}
//////////////////////////////////
// JIT the output of the parser
//
m_dwarf_opcodes.reset();
Error jit_error = parser.MakeJIT (m_jit_addr, exe_ctx);
if (jit_error.Success())
{
if (log)
{
log->Printf("Code can be run in the target.");
StreamString disassembly_stream;
Error err = parser.DisassembleFunction(disassembly_stream, exe_ctx);
if (!err.Success())
{
log->Printf("Couldn't disassemble function : %s", err.AsCString("unknown error"));
}
else
{
log->Printf("Function disassembly:\n%s", disassembly_stream.GetData());
}
}
return true;
}
else
{
error_stream.Printf ("error: expression can't be interpreted or run\n", num_errors);
return false;
}
}
bool
ClangUserExpression::Execute (Stream &error_stream,
ExecutionContext &exe_ctx,
ClangExpressionVariable *&result)
{
Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
if (m_dwarf_opcodes.get())
{
// TODO execute the JITted opcodes
error_stream.Printf("We don't currently support executing DWARF expressions");
return false;
}
else if (m_jit_addr != LLDB_INVALID_ADDRESS)
{
lldb::addr_t struct_address;
Error materialize_error;
if (!m_expr_decl_map->Materialize(&exe_ctx, struct_address, materialize_error))
{
error_stream.Printf("Couldn't materialize struct: %s\n", materialize_error.AsCString("unknown error"));
return false;
}
if (log)
{
log->Printf("Function address : 0x%llx", (uint64_t)m_jit_addr);
log->Printf("Structure address : 0x%llx", (uint64_t)struct_address);
StreamString args;
Error dump_error;
if (!m_expr_decl_map->DumpMaterializedStruct(&exe_ctx, args, dump_error))
{
log->Printf("Couldn't extract variable values : %s", dump_error.AsCString("unknown error"));
}
else
{
log->Printf("Structure contents:\n%s", args.GetData());
}
}
ClangFunction::ExecutionResults execution_result =
ClangFunction::ExecuteFunction (exe_ctx, m_jit_addr, struct_address, true, true, 10000, error_stream);
if (execution_result != ClangFunction::eExecutionCompleted)
{
const char *result_name;
switch (execution_result)
{
case ClangFunction::eExecutionCompleted:
result_name = "eExecutionCompleted";
break;
case ClangFunction::eExecutionDiscarded:
result_name = "eExecutionDiscarded";
break;
case ClangFunction::eExecutionInterrupted:
result_name = "eExecutionInterrupted";
break;
case ClangFunction::eExecutionSetupError:
result_name = "eExecutionSetupError";
break;
case ClangFunction::eExecutionTimedOut:
result_name = "eExecutionTimedOut";
break;
}
error_stream.Printf ("Couldn't execute function; result was %s\n", result_name);
return false;
}
Error expr_error;
if (!m_expr_decl_map->Dematerialize(&exe_ctx, result, expr_error))
{
error_stream.Printf ("Couldn't dematerialize struct : %s\n", expr_error.AsCString("unknown error"));
return false;
}
return true;
}
else
{
error_stream.Printf("Expression can't be run; neither DWARF nor a JIT compiled function are present");
return false;
}
}
StreamString &
ClangUserExpression::DwarfOpcodeStream ()
{
if (!m_dwarf_opcodes.get())
m_dwarf_opcodes.reset(new StreamString());
return *m_dwarf_opcodes.get();
}