llvm-project/llvm/test/CodeGen/ARM/arm-position-independence-j...

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

107 lines
4.0 KiB
LLVM
Raw Normal View History

; Test for generation of jump table for ropi/rwpi
; RUN: llc -relocation-model=static -mtriple=armv7a--none-eabi -disable-block-placement < %s | FileCheck %s --check-prefix=CHECK --check-prefix=ARM --check-prefix=ARM_ABS
; RUN: llc -relocation-model=ropi -mtriple=armv7a--none-eabi -disable-block-placement < %s | FileCheck %s --check-prefix=CHECK --check-prefix=ARM --check-prefix=ARM_PC
; RUN: llc -relocation-model=ropi-rwpi -mtriple=armv7a--none-eabi -disable-block-placement < %s | FileCheck %s --check-prefix=CHECK --check-prefix=ARM --check-prefix=ARM_PC
; RUN: llc -relocation-model=static -mtriple=thumbv7m--none-eabi -disable-block-placement < %s | FileCheck %s --check-prefix=CHECK --check-prefix=THUMB2
; RUN: llc -relocation-model=ropi -mtriple=thumbv7m--none-eabi -disable-block-placement < %s | FileCheck %s --check-prefix=CHECK --check-prefix=THUMB2
; RUN: llc -relocation-model=ropi-rwpi -mtriple=thumbv7m--none-eabi -disable-block-placement < %s | FileCheck %s --check-prefix=CHECK --check-prefix=THUMB2
[Thumb-1] Synthesize TBB/TBH instructions to make use of compressed jump tables [Reapplying r284580 and r285917 with fix and testing to ensure emitted jump tables for Thumb-1 have 4-byte alignment] The TBB and TBH instructions in Thumb-2 allow jump tables to be compressed into sequences of bytes or shorts respectively. These instructions do not exist in Thumb-1, however it is possible to synthesize them out of a sequence of other instructions. It turns out this sequence is so short that it's almost never a lose for performance and is ALWAYS a significant win for code size. TBB example: Before: lsls r0, r0, #2 After: add r0, pc adr r1, .LJTI0_0 ldrb r0, [r0, #6] ldr r0, [r0, r1] lsls r0, r0, #1 mov pc, r0 add pc, r0 => No change in prologue code size or dynamic instruction count. Jump table shrunk by a factor of 4. The only case that can increase dynamic instruction count is the TBH case: Before: lsls r0, r4, #2 After: lsls r4, r4, #1 adr r1, .LJTI0_0 add r4, pc ldr r0, [r0, r1] ldrh r4, [r4, #6] mov pc, r0 lsls r4, r4, #1 add pc, r4 => 1 more instruction in prologue. Jump table shrunk by a factor of 2. So there is an argument that this should be disabled when optimizing for performance (and a TBH needs to be generated). I'm not so sure about that in practice, because on small cores with Thumb-1 performance is often tied to code size. But I'm willing to turn it off when optimizing for performance if people want (also note that TBHs are fairly rare in practice!) llvm-svn: 285690
2016-11-01 21:37:41 +08:00
; RUN: llc -relocation-model=static -mtriple=thumbv6m--none-eabi -disable-block-placement < %s | FileCheck %s --check-prefix=CHECK --check-prefix=THUMB1
; RUN: llc -relocation-model=ropi -mtriple=thumbv6m--none-eabi -disable-block-placement < %s | FileCheck %s --check-prefix=CHECK --check-prefix=THUMB1
; RUN: llc -relocation-model=ropi-rwpi -mtriple=thumbv6m--none-eabi -disable-block-placement < %s | FileCheck %s --check-prefix=CHECK --check-prefix=THUMB1
declare void @exit0()
declare void @exit1()
declare void @exit2()
declare void @exit3()
declare void @exit4()
define void @jump_table(i32 %val) {
entry:
switch i32 %val, label %default [ i32 1, label %lab1
i32 2, label %lab2
i32 3, label %lab3
i32 4, label %lab4 ]
default:
tail call void @exit0()
ret void
lab1:
tail call void @exit1()
ret void
lab2:
tail call void @exit2()
ret void
lab3:
tail call void @exit3()
ret void
lab4:
tail call void @exit4()
ret void
; CHECK-LABEL: jump_table:
; ARM: adr r[[R_TAB_BASE:[0-9]+]], [[LJTI:\.LJTI[0-9]+_[0-9]+]]
; ARM_ABS: ldr pc, [r[[R_TAB_BASE]], r{{[0-9]+}}, lsl #2]
; ARM_PC: ldr r[[R_OFFSET:[0-9]+]], [r[[R_TAB_BASE]], r{{[0-9]+}}, lsl #2]
; ARM_PC: add pc, r[[R_TAB_BASE]], r[[R_OFFSET]]
; ARM: [[LJTI]]
; ARM_ABS: .long [[LBB1:\.LBB[0-9]+_[0-9]+]]
; ARM_ABS: .long [[LBB2:\.LBB[0-9]+_[0-9]+]]
; ARM_ABS: .long [[LBB3:\.LBB[0-9]+_[0-9]+]]
; ARM_ABS: .long [[LBB4:\.LBB[0-9]+_[0-9]+]]
; ARM_PC: .long [[LBB1:\.LBB[0-9]+_[0-9]+]]-[[LJTI]]
; ARM_PC: .long [[LBB2:\.LBB[0-9]+_[0-9]+]]-[[LJTI]]
; ARM_PC: .long [[LBB3:\.LBB[0-9]+_[0-9]+]]-[[LJTI]]
; ARM_PC: .long [[LBB4:\.LBB[0-9]+_[0-9]+]]-[[LJTI]]
; ARM: [[LBB1]]
; ARM-NEXT: b exit1
; ARM: [[LBB2]]
; ARM-NEXT: b exit2
; ARM: [[LBB3]]
; ARM-NEXT: b exit3
; ARM: [[LBB4]]
; ARM-NEXT: b exit4
; THUMB2: [[LCPI:\.LCPI[0-9]+_[0-9]+]]:
; THUMB2: tbb [pc, r{{[0-9]+}}]
; THUMB2: .byte ([[LBB1:\.LBB[0-9]+_[0-9]+]]-([[LCPI]]+4))/2
; THUMB2: .byte ([[LBB2:\.LBB[0-9]+_[0-9]+]]-([[LCPI]]+4))/2
; THUMB2: .byte ([[LBB3:\.LBB[0-9]+_[0-9]+]]-([[LCPI]]+4))/2
; THUMB2: .byte ([[LBB4:\.LBB[0-9]+_[0-9]+]]-([[LCPI]]+4))/2
; THUMB2: [[LBB1]]
; THUMB2-NEXT: b exit1
; THUMB2: [[LBB2]]
; THUMB2-NEXT: b exit2
; THUMB2: [[LBB3]]
; THUMB2-NEXT: b exit3
; THUMB2: [[LBB4]]
; THUMB2-NEXT: b exit4
; THUMB1: .p2align 2
[Thumb-1] Synthesize TBB/TBH instructions to make use of compressed jump tables [Reapplying r284580 and r285917 with fix and testing to ensure emitted jump tables for Thumb-1 have 4-byte alignment] The TBB and TBH instructions in Thumb-2 allow jump tables to be compressed into sequences of bytes or shorts respectively. These instructions do not exist in Thumb-1, however it is possible to synthesize them out of a sequence of other instructions. It turns out this sequence is so short that it's almost never a lose for performance and is ALWAYS a significant win for code size. TBB example: Before: lsls r0, r0, #2 After: add r0, pc adr r1, .LJTI0_0 ldrb r0, [r0, #6] ldr r0, [r0, r1] lsls r0, r0, #1 mov pc, r0 add pc, r0 => No change in prologue code size or dynamic instruction count. Jump table shrunk by a factor of 4. The only case that can increase dynamic instruction count is the TBH case: Before: lsls r0, r4, #2 After: lsls r4, r4, #1 adr r1, .LJTI0_0 add r4, pc ldr r0, [r0, r1] ldrh r4, [r4, #6] mov pc, r0 lsls r4, r4, #1 add pc, r4 => 1 more instruction in prologue. Jump table shrunk by a factor of 2. So there is an argument that this should be disabled when optimizing for performance (and a TBH needs to be generated). I'm not so sure about that in practice, because on small cores with Thumb-1 performance is often tied to code size. But I'm willing to turn it off when optimizing for performance if people want (also note that TBHs are fairly rare in practice!) llvm-svn: 285690
2016-11-01 21:37:41 +08:00
; THUMB1: add r[[x:[0-9]+]], pc
; THUMB1: ldrb r[[x]], [r[[x]], #4]
; THUMB1: lsls r[[x]], r[[x]], #1
; THUMB1: [[LCPI:\.LCPI[0-9]+_[0-9]+]]:
; THUMB1: add pc, r[[x]]
; THUMB1: .p2align 2
; THUMB1: .byte ([[LBB1:\.LBB[0-9]+_[0-9]+]]-([[LCPI]]+4))/2
; THUMB1: .byte ([[LBB2:\.LBB[0-9]+_[0-9]+]]-([[LCPI]]+4))/2
; THUMB1: .byte ([[LBB3:\.LBB[0-9]+_[0-9]+]]-([[LCPI]]+4))/2
; THUMB1: .byte ([[LBB4:\.LBB[0-9]+_[0-9]+]]-([[LCPI]]+4))/2
; THUMB1: [[LBB1]]
; THUMB1-NEXT: bl exit1
; THUMB1: [[LBB2]]
; THUMB1-NEXT: bl exit2
; THUMB1: [[LBB3]]
; THUMB1-NEXT: bl exit3
; THUMB1: [[LBB4]]
; THUMB1-NEXT: bl exit4
}