llvm-project/llvm/lib/IR/SafepointIRVerifier.cpp

517 lines
20 KiB
C++
Raw Normal View History

//===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Run a sanity check on the IR to ensure that Safepoints - if they've been
// inserted - were inserted correctly. In particular, look for use of
// non-relocated values after a safepoint. It's primary use is to check the
// correctness of safepoint insertion immediately after insertion, but it can
// also be used to verify that later transforms have not found a way to break
// safepoint semenatics.
//
// In its current form, this verify checks a property which is sufficient, but
// not neccessary for correctness. There are some cases where an unrelocated
// pointer can be used after the safepoint. Consider this example:
//
// a = ...
// b = ...
// (a',b') = safepoint(a,b)
// c = cmp eq a b
// br c, ..., ....
//
// Because it is valid to reorder 'c' above the safepoint, this is legal. In
// practice, this is a somewhat uncommon transform, but CodeGenPrep does create
// idioms like this. The verifier knows about these cases and avoids reporting
// false positives.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/SafepointIRVerifier.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "safepoint-ir-verifier"
using namespace llvm;
/// This option is used for writing test cases. Instead of crashing the program
/// when verification fails, report a message to the console (for FileCheck
/// usage) and continue execution as if nothing happened.
static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
cl::init(false));
static void Verify(const Function &F, const DominatorTree &DT);
namespace {
struct SafepointIRVerifier : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
DominatorTree DT;
SafepointIRVerifier() : FunctionPass(ID) {
initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
DT.recalculate(F);
Verify(F, DT);
return false; // no modifications
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
StringRef getPassName() const override { return "safepoint verifier"; }
};
} // namespace
void llvm::verifySafepointIR(Function &F) {
SafepointIRVerifier pass;
pass.runOnFunction(F);
}
char SafepointIRVerifier::ID = 0;
FunctionPass *llvm::createSafepointIRVerifierPass() {
return new SafepointIRVerifier();
}
INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
"Safepoint IR Verifier", false, true)
INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
"Safepoint IR Verifier", false, true)
static bool isGCPointerType(Type *T) {
if (auto *PT = dyn_cast<PointerType>(T))
// For the sake of this example GC, we arbitrarily pick addrspace(1) as our
// GC managed heap. We know that a pointer into this heap needs to be
// updated and that no other pointer does.
return (1 == PT->getAddressSpace());
return false;
}
static bool containsGCPtrType(Type *Ty) {
if (isGCPointerType(Ty))
return true;
if (VectorType *VT = dyn_cast<VectorType>(Ty))
return isGCPointerType(VT->getScalarType());
if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
return containsGCPtrType(AT->getElementType());
if (StructType *ST = dyn_cast<StructType>(Ty))
return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
containsGCPtrType);
return false;
}
// Debugging aid -- prints a [Begin, End) range of values.
template<typename IteratorTy>
static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
OS << "[ ";
while (Begin != End) {
OS << **Begin << " ";
++Begin;
}
OS << "]";
}
/// The verifier algorithm is phrased in terms of availability. The set of
/// values "available" at a given point in the control flow graph is the set of
/// correctly relocated value at that point, and is a subset of the set of
/// definitions dominating that point.
/// State we compute and track per basic block.
struct BasicBlockState {
// Set of values available coming in, before the phi nodes
DenseSet<const Value *> AvailableIn;
// Set of values available going out
DenseSet<const Value *> AvailableOut;
// AvailableOut minus AvailableIn.
// All elements are Instructions
DenseSet<const Value *> Contribution;
// True if this block contains a safepoint and thus AvailableIn does not
// contribute to AvailableOut.
bool Cleared = false;
};
/// Gather all the definitions dominating the start of BB into Result. This is
/// simply the Defs introduced by every dominating basic block and the function
/// arguments.
static void GatherDominatingDefs(const BasicBlock *BB,
DenseSet<const Value *> &Result,
const DominatorTree &DT,
DenseMap<const BasicBlock *, BasicBlockState *> &BlockMap) {
DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
while (DTN->getIDom()) {
DTN = DTN->getIDom();
const auto &Defs = BlockMap[DTN->getBlock()]->Contribution;
Result.insert(Defs.begin(), Defs.end());
// If this block is 'Cleared', then nothing LiveIn to this block can be
// available after this block completes. Note: This turns out to be
// really important for reducing memory consuption of the initial available
// sets and thus peak memory usage by this verifier.
if (BlockMap[DTN->getBlock()]->Cleared)
return;
}
for (const Argument &A : BB->getParent()->args())
if (containsGCPtrType(A.getType()))
Result.insert(&A);
}
/// Model the effect of an instruction on the set of available values.
static void TransferInstruction(const Instruction &I, bool &Cleared,
DenseSet<const Value *> &Available) {
if (isStatepoint(I)) {
Cleared = true;
Available.clear();
} else if (containsGCPtrType(I.getType()))
Available.insert(&I);
}
/// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
/// which is the BasicBlockState for BB.
/// ContributionChanged is set when the verifier runs for the first time
/// (in this case Contribution was changed from 'empty' to its initial state) or
/// when Contribution of this BB was changed since last computation.
static void TransferBlock(const BasicBlock *BB, BasicBlockState &BBS,
bool ContributionChanged) {
const DenseSet<const Value *> &AvailableIn = BBS.AvailableIn;
DenseSet<const Value *> &AvailableOut = BBS.AvailableOut;
if (BBS.Cleared) {
// AvailableOut will change only when Contribution changed.
if (ContributionChanged)
AvailableOut = BBS.Contribution;
} else {
// Otherwise, we need to reduce the AvailableOut set by things which are no
// longer in our AvailableIn
DenseSet<const Value *> Temp = BBS.Contribution;
set_union(Temp, AvailableIn);
AvailableOut = std::move(Temp);
}
DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
dbgs() << " to ";
PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
dbgs() << "\n";);
}
/// A given derived pointer can have multiple base pointers through phi/selects.
/// This type indicates when the base pointer is exclusively constant
/// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
/// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
/// NonConstant.
enum BaseType {
NonConstant = 1, // Base pointers is not exclusively constant.
ExclusivelyNull,
ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
// set of constants, but they are not exclusively
// null.
};
/// Return the baseType for Val which states whether Val is exclusively
/// derived from constant/null, or not exclusively derived from constant.
/// Val is exclusively derived off a constant base when all operands of phi and
/// selects are derived off a constant base.
static enum BaseType getBaseType(const Value *Val) {
SmallVector<const Value *, 32> Worklist;
DenseSet<const Value *> Visited;
bool isExclusivelyDerivedFromNull = true;
Worklist.push_back(Val);
// Strip through all the bitcasts and geps to get base pointer. Also check for
// the exclusive value when there can be multiple base pointers (through phis
// or selects).
while(!Worklist.empty()) {
const Value *V = Worklist.pop_back_val();
if (!Visited.insert(V).second)
continue;
if (const auto *CI = dyn_cast<CastInst>(V)) {
Worklist.push_back(CI->stripPointerCasts());
continue;
}
if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
Worklist.push_back(GEP->getPointerOperand());
continue;
}
// Push all the incoming values of phi node into the worklist for
// processing.
if (const auto *PN = dyn_cast<PHINode>(V)) {
for (Value *InV: PN->incoming_values())
Worklist.push_back(InV);
continue;
}
if (const auto *SI = dyn_cast<SelectInst>(V)) {
// Push in the true and false values
Worklist.push_back(SI->getTrueValue());
Worklist.push_back(SI->getFalseValue());
continue;
}
if (isa<Constant>(V)) {
// We found at least one base pointer which is non-null, so this derived
// pointer is not exclusively derived from null.
if (V != Constant::getNullValue(V->getType()))
isExclusivelyDerivedFromNull = false;
// Continue processing the remaining values to make sure it's exclusively
// constant.
continue;
}
// At this point, we know that the base pointer is not exclusively
// constant.
return BaseType::NonConstant;
}
// Now, we know that the base pointer is exclusively constant, but we need to
// differentiate between exclusive null constant and non-null constant.
return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
: BaseType::ExclusivelySomeConstant;
}
static bool isNotExclusivelyConstantDerived(const Value *V) {
return getBaseType(V) == BaseType::NonConstant;
}
using BlockStateMap = DenseMap<const BasicBlock *, BasicBlockState *>;
/// This function iterates over all BBs from BlockMap and recalculates
/// AvailableIn/Out for each of them until it converges.
/// It calls Visitor for each visited BB after updating it's AvailableIn.
/// BBContributionUpdater may change BB's Contribution and should return true in
/// this case.
///
/// BBContributionUpdater is expected to have following signature:
/// (const BasicBlock *BB, const BasicBlockState *BBS,
/// DenseSet<const Value *> &Contribution) -> bool
/// FIXME: type of BBContributionUpdater is a template parameter because it
/// might be a lambda with arbitrary non-empty capture list. It's a bit ugly and
/// unclear, but other options causes us to spread the logic of
/// RecalculateBBStates across the rest of the algorithm. The solution is to
/// move this function, TransferBlock, TransferInstruction and others to a
/// separate class which will hold all the logic related to BlockStateMap.
template <typename VisitorTy>
static void RecalculateBBsStates(BlockStateMap &BlockMap,
VisitorTy &&BBContributionUpdater) {
SetVector<const BasicBlock *> Worklist;
// TODO: This order is suboptimal, it's better to replace it with priority
// queue where priority is RPO number of BB.
for (auto &BBI : BlockMap)
Worklist.insert(BBI.first);
// This loop iterates the AvailableIn/Out sets until it converges.
// The AvailableIn and AvailableOut sets decrease as we iterate.
while (!Worklist.empty()) {
const BasicBlock *BB = Worklist.pop_back_val();
BasicBlockState *BBS = BlockMap[BB];
size_t OldInCount = BBS->AvailableIn.size();
for (const BasicBlock *PBB : predecessors(BB))
set_intersect(BBS->AvailableIn, BlockMap[PBB]->AvailableOut);
assert(OldInCount >= BBS->AvailableIn.size() && "invariant!");
bool InputsChanged = OldInCount != BBS->AvailableIn.size();
bool ContributionChanged =
BBContributionUpdater(BB, BBS, BBS->Contribution);
if (!InputsChanged && !ContributionChanged)
continue;
size_t OldOutCount = BBS->AvailableOut.size();
TransferBlock(BB, *BBS, ContributionChanged);
if (OldOutCount != BBS->AvailableOut.size()) {
assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
Worklist.insert(succ_begin(BB), succ_end(BB));
}
}
}
static void Verify(const Function &F, const DominatorTree &DT) {
SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
BlockStateMap BlockMap;
DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n");
if (PrintOnly)
dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
for (const BasicBlock &BB : F) {
BasicBlockState *BBS = new(BSAllocator.Allocate()) BasicBlockState;
for (const auto &I : BB)
TransferInstruction(I, BBS->Cleared, BBS->Contribution);
BlockMap[&BB] = BBS;
}
for (auto &BBI : BlockMap) {
GatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT, BlockMap);
TransferBlock(BBI.first, *BBI.second, true);
}
RecalculateBBsStates(BlockMap, [] (const BasicBlock *,
const BasicBlockState *,
DenseSet<const Value *> &) {
return false;
});
// We now have all the information we need to decide if the use of a heap
// reference is legal or not, given our safepoint semantics.
bool AnyInvalidUses = false;
auto ReportInvalidUse = [&AnyInvalidUses](const Value &V,
const Instruction &I) {
errs() << "Illegal use of unrelocated value found!\n";
errs() << "Def: " << V << "\n";
errs() << "Use: " << I << "\n";
if (!PrintOnly)
abort();
AnyInvalidUses = true;
};
// This set contains defs that can be safely ignored during verification.
DenseSet<const Instruction *> ValidUnrelocatedDefs;
// Now we can remove all valid unrelocated gc pointer defs from all BBS sets.
RecalculateBBsStates(BlockMap, [&ValidUnrelocatedDefs](
const BasicBlock *BB,
const BasicBlockState *BBS,
DenseSet<const Value *> &Contribution) {
DenseSet<const Value *> AvailableSet = BBS->AvailableIn;
bool ContributionChanged = false;
for (const Instruction &I : *BB) {
bool ProducesUnrelocatedPointer = false;
if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) &&
containsGCPtrType(I.getType())) {
// GEP/bitcast of unrelocated pointer is legal by itself but this
// def shouldn't appear in any AvailableSet.
for (const Value *V : I.operands())
if (containsGCPtrType(V->getType()) &&
isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) {
ProducesUnrelocatedPointer = true;
break;
}
}
if (!ProducesUnrelocatedPointer) {
bool Cleared = false;
TransferInstruction(I, Cleared, AvailableSet);
(void)Cleared;
} else {
// Remove def of unrelocated pointer from Contribution of this BB
// and trigger update of all its successors.
Contribution.erase(&I);
ValidUnrelocatedDefs.insert(&I);
DEBUG(dbgs() << "Removing " << I << " from Contribution of "
<< BB->getName() << "\n");
ContributionChanged = true;
}
}
return ContributionChanged;
});
// We need RPO here to a) report always the first error b) report errors in
// same order from run to run.
ReversePostOrderTraversal<const Function *> RPOT(&F);
for (const BasicBlock *BB : RPOT) {
BasicBlockState *BBS = BlockMap[BB];
// We destructively modify AvailableIn as we traverse the block instruction
// by instruction.
DenseSet<const Value *> &AvailableSet = BBS->AvailableIn;
for (const Instruction &I : *BB) {
if (ValidUnrelocatedDefs.count(&I)) {
continue; // This instruction shouldn't be added to AvailableSet.
} else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
if (containsGCPtrType(PN->getType()))
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
const BasicBlock *InBB = PN->getIncomingBlock(i);
const Value *InValue = PN->getIncomingValue(i);
if (isNotExclusivelyConstantDerived(InValue) &&
!BlockMap[InBB]->AvailableOut.count(InValue))
ReportInvalidUse(*InValue, *PN);
}
} else if (isa<CmpInst>(I) &&
containsGCPtrType(I.getOperand(0)->getType())) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
enum BaseType baseTyLHS = getBaseType(LHS),
baseTyRHS = getBaseType(RHS);
// Returns true if LHS and RHS are unrelocated pointers and they are
// valid unrelocated uses.
auto hasValidUnrelocatedUse = [&AvailableSet, baseTyLHS, baseTyRHS, &LHS, &RHS] () {
// A cmp instruction has valid unrelocated pointer operands only if
// both operands are unrelocated pointers.
// In the comparison between two pointers, if one is an unrelocated
// use, the other *should be* an unrelocated use, for this
// instruction to contain valid unrelocated uses. This unrelocated
// use can be a null constant as well, or another unrelocated
// pointer.
if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
return false;
// Constant pointers (that are not exclusively null) may have
// meaning in different VMs, so we cannot reorder the compare
// against constant pointers before the safepoint. In other words,
// comparison of an unrelocated use against a non-null constant
// maybe invalid.
if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
baseTyRHS == BaseType::NonConstant) ||
(baseTyLHS == BaseType::NonConstant &&
baseTyRHS == BaseType::ExclusivelySomeConstant))
return false;
// All other cases are valid cases enumerated below:
// 1. Comparison between an exlusively derived null pointer and a
// constant base pointer.
// 2. Comparison between an exlusively derived null pointer and a
// non-constant unrelocated base pointer.
// 3. Comparison between 2 unrelocated pointers.
return true;
};
if (!hasValidUnrelocatedUse()) {
// Print out all non-constant derived pointers that are unrelocated
// uses, which are invalid.
if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
ReportInvalidUse(*LHS, I);
if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
ReportInvalidUse(*RHS, I);
}
} else {
for (const Value *V : I.operands())
if (containsGCPtrType(V->getType()) &&
isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
ReportInvalidUse(*V, I);
}
bool Cleared = false;
TransferInstruction(I, Cleared, AvailableSet);
(void)Cleared;
}
}
if (PrintOnly && !AnyInvalidUses) {
dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
<< "\n";
}
}