llvm-project/clang/lib/Basic/Targets.cpp

2787 lines
92 KiB
C++
Raw Normal View History

//===--- Targets.cpp - Implement -arch option and targets -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
2009-05-03 21:42:53 +08:00
// This file implements construction of a TargetInfo object from a
// target triple.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/MacroBuilder.h"
#include "clang/Basic/TargetBuiltins.h"
#include "clang/Basic/TargetOptions.h"
2008-05-20 22:27:34 +08:00
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Type.h"
#include <algorithm>
Implemented initial support for "-triple" option to the clang driver. This replaces the functionality previously provided by just "-arch" (which is still supported but has different semantics). The new behavior is as follows: (1) If the user does not specify -triple: (a) If no -arch options are specified, the target triple used is the host triple (in llvm/Config/config.h). (b) If one or more -arch's are specified (and no -triple), then there is one triple for each -arch, where the specified arch is substituted for the arch in the host triple. Example: host triple = i686-apple-darwin9 command: clang -arch ppc -arch ppc64 ... triples used: ppc-apple-darwin9 ppc64-apple-darwin9 (2) The user does specify a -triple (only one allowed): (a) If no -arch options are specified, the triple specified by -triple is used. E.g clang -triple i686-apple-darwin9 (b) If one or more -arch options are specified, then the triple specified by -triple is used as the primary target, and the arch's specified by -arch are used to create secondary targets. For example: clang -triple i686-apple-darwin9 -arch ppc -arch ppc64 has the following targets: i686-apple-darwin9 (primary target) ppc-apple-darwin9 ppc64-apple-darwin9 Other changes related to the changes to the driver: - TargetInfoImpl now includes the triple string. - TargetInfo::getTargetTriple returns the triple for its primary target. - test case test/Parser/portability.c has been updated because "-arch linux" is no longer valid ("linux" is an OS, not an arch); instead we use a bogus architecture "bogusW16W16" where WCharWidth=16 and WCharAlign=16. llvm-svn: 44551
2007-12-04 06:06:55 +08:00
using namespace clang;
//===----------------------------------------------------------------------===//
// Common code shared among targets.
//===----------------------------------------------------------------------===//
/// DefineStd - Define a macro name and standard variants. For example if
/// MacroName is "unix", then this will define "__unix", "__unix__", and "unix"
/// when in GNU mode.
static void DefineStd(MacroBuilder &Builder, llvm::StringRef MacroName,
const LangOptions &Opts) {
assert(MacroName[0] != '_' && "Identifier should be in the user's namespace");
2009-05-03 21:42:53 +08:00
// If in GNU mode (e.g. -std=gnu99 but not -std=c99) define the raw identifier
// in the user's namespace.
if (Opts.GNUMode)
Builder.defineMacro(MacroName);
2009-05-03 21:42:53 +08:00
// Define __unix.
Builder.defineMacro("__" + MacroName);
2009-05-03 21:42:53 +08:00
// Define __unix__.
Builder.defineMacro("__" + MacroName + "__");
}
2008-10-06 05:50:58 +08:00
//===----------------------------------------------------------------------===//
// Defines specific to certain operating systems.
//===----------------------------------------------------------------------===//
namespace {
template<typename TgtInfo>
class OSTargetInfo : public TgtInfo {
protected:
virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
MacroBuilder &Builder) const=0;
public:
OSTargetInfo(const std::string& triple) : TgtInfo(triple) {}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
TgtInfo::getTargetDefines(Opts, Builder);
getOSDefines(Opts, TgtInfo::getTriple(), Builder);
}
};
} // end anonymous namespace
2009-05-03 21:42:53 +08:00
static void getDarwinDefines(MacroBuilder &Builder, const LangOptions &Opts,
Implement a new 'availability' attribute, that allows one to specify which versions of an OS provide a certain facility. For example, void foo() __attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6))); says that the function "foo" was introduced in 10.2, deprecated in 10.4, and completely obsoleted in 10.6. This attribute ties in with the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that we want to deploy back to Mac OS X 10.1). There are several concrete behaviors that this attribute enables, as illustrated with the function foo() above: - If we choose a deployment target >= Mac OS X 10.4, uses of "foo" will result in a deprecation warning, as if we had placed attribute((deprecated)) on it (but with a better diagnostic) - If we choose a deployment target >= Mac OS X 10.6, uses of "foo" will result in an "unavailable" warning (in C)/error (in C++), as if we had placed attribute((unavailable)) on it - If we choose a deployment target prior to 10.2, foo() is weak-imported (if it is a kind of entity that can be weak imported), as if we had placed the weak_import attribute on it. Naturally, there can be multiple availability attributes on a declaration, for different platforms; only the current platform matters when checking availability attributes. The only platforms this attribute currently works for are "ios" and "macosx", since we already have -mxxxx-version-min flags for them and we have experience there with macro tricks translating down to the deprecated/unavailable/weak_import attributes. The end goal is to open this up to other platforms, and even extension to other "platforms" that are really libraries (say, through a #pragma clang define_system), but that hasn't yet been designed and we may want to shake out more issues with this narrower problem first. Addresses <rdar://problem/6690412>. As a drive-by bug-fix, if an entity is both deprecated and unavailable, we only emit the "unavailable" diagnostic. llvm-svn: 128127
2011-03-23 08:50:03 +08:00
const llvm::Triple &Triple,
llvm::StringRef &PlatformName,
VersionTuple &PlatformMinVersion) {
Builder.defineMacro("__APPLE_CC__", "5621");
Builder.defineMacro("__APPLE__");
Builder.defineMacro("__MACH__");
Builder.defineMacro("OBJC_NEW_PROPERTIES");
2009-05-03 21:42:53 +08:00
// __weak is always defined, for use in blocks and with objc pointers.
Builder.defineMacro("__weak", "__attribute__((objc_gc(weak)))");
2009-05-03 21:42:53 +08:00
// Darwin defines __strong even in C mode (just to nothing).
if (!Opts.ObjC1 || Opts.getGCMode() == LangOptions::NonGC)
Builder.defineMacro("__strong", "");
else
Builder.defineMacro("__strong", "__attribute__((objc_gc(strong)))");
if (Opts.Static)
Builder.defineMacro("__STATIC__");
else
Builder.defineMacro("__DYNAMIC__");
if (Opts.POSIXThreads)
Builder.defineMacro("_REENTRANT");
// Get the OS version number from the triple.
unsigned Maj, Min, Rev;
// If no version was given, default to to 10.4.0, for simplifying tests.
if (Triple.getOSName() == "darwin") {
Min = Rev = 0;
Maj = 8;
} else
Triple.getDarwinNumber(Maj, Min, Rev);
// Set the appropriate OS version define.
if (Triple.getEnvironmentName() == "iphoneos") {
assert(Maj < 10 && Min < 99 && Rev < 99 && "Invalid version!");
char Str[6];
Str[0] = '0' + Maj;
Str[1] = '0' + (Min / 10);
Str[2] = '0' + (Min % 10);
Str[3] = '0' + (Rev / 10);
Str[4] = '0' + (Rev % 10);
Str[5] = '\0';
Builder.defineMacro("__ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__", Str);
Implement a new 'availability' attribute, that allows one to specify which versions of an OS provide a certain facility. For example, void foo() __attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6))); says that the function "foo" was introduced in 10.2, deprecated in 10.4, and completely obsoleted in 10.6. This attribute ties in with the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that we want to deploy back to Mac OS X 10.1). There are several concrete behaviors that this attribute enables, as illustrated with the function foo() above: - If we choose a deployment target >= Mac OS X 10.4, uses of "foo" will result in a deprecation warning, as if we had placed attribute((deprecated)) on it (but with a better diagnostic) - If we choose a deployment target >= Mac OS X 10.6, uses of "foo" will result in an "unavailable" warning (in C)/error (in C++), as if we had placed attribute((unavailable)) on it - If we choose a deployment target prior to 10.2, foo() is weak-imported (if it is a kind of entity that can be weak imported), as if we had placed the weak_import attribute on it. Naturally, there can be multiple availability attributes on a declaration, for different platforms; only the current platform matters when checking availability attributes. The only platforms this attribute currently works for are "ios" and "macosx", since we already have -mxxxx-version-min flags for them and we have experience there with macro tricks translating down to the deprecated/unavailable/weak_import attributes. The end goal is to open this up to other platforms, and even extension to other "platforms" that are really libraries (say, through a #pragma clang define_system), but that hasn't yet been designed and we may want to shake out more issues with this narrower problem first. Addresses <rdar://problem/6690412>. As a drive-by bug-fix, if an entity is both deprecated and unavailable, we only emit the "unavailable" diagnostic. llvm-svn: 128127
2011-03-23 08:50:03 +08:00
PlatformName = "ios";
PlatformMinVersion = VersionTuple(Maj, Min, Rev);
} else {
// For historical reasons that make little sense, the version passed here is
// the "darwin" version, which drops the 10 and offsets by 4.
Rev = Min;
Min = Maj - 4;
Maj = 10;
assert(Triple.getEnvironmentName().empty() && "Invalid environment!");
assert(Maj < 99 && Min < 10 && Rev < 10 && "Invalid version!");
char Str[5];
Str[0] = '0' + (Maj / 10);
Str[1] = '0' + (Maj % 10);
Str[2] = '0' + Min;
Str[3] = '0' + Rev;
Str[4] = '\0';
Builder.defineMacro("__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__", Str);
Implement a new 'availability' attribute, that allows one to specify which versions of an OS provide a certain facility. For example, void foo() __attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6))); says that the function "foo" was introduced in 10.2, deprecated in 10.4, and completely obsoleted in 10.6. This attribute ties in with the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that we want to deploy back to Mac OS X 10.1). There are several concrete behaviors that this attribute enables, as illustrated with the function foo() above: - If we choose a deployment target >= Mac OS X 10.4, uses of "foo" will result in a deprecation warning, as if we had placed attribute((deprecated)) on it (but with a better diagnostic) - If we choose a deployment target >= Mac OS X 10.6, uses of "foo" will result in an "unavailable" warning (in C)/error (in C++), as if we had placed attribute((unavailable)) on it - If we choose a deployment target prior to 10.2, foo() is weak-imported (if it is a kind of entity that can be weak imported), as if we had placed the weak_import attribute on it. Naturally, there can be multiple availability attributes on a declaration, for different platforms; only the current platform matters when checking availability attributes. The only platforms this attribute currently works for are "ios" and "macosx", since we already have -mxxxx-version-min flags for them and we have experience there with macro tricks translating down to the deprecated/unavailable/weak_import attributes. The end goal is to open this up to other platforms, and even extension to other "platforms" that are really libraries (say, through a #pragma clang define_system), but that hasn't yet been designed and we may want to shake out more issues with this narrower problem first. Addresses <rdar://problem/6690412>. As a drive-by bug-fix, if an entity is both deprecated and unavailable, we only emit the "unavailable" diagnostic. llvm-svn: 128127
2011-03-23 08:50:03 +08:00
PlatformName = "macosx";
PlatformMinVersion = VersionTuple(Maj, Min, Rev);
}
}
namespace {
template<typename Target>
class DarwinTargetInfo : public OSTargetInfo<Target> {
protected:
virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
MacroBuilder &Builder) const {
Implement a new 'availability' attribute, that allows one to specify which versions of an OS provide a certain facility. For example, void foo() __attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6))); says that the function "foo" was introduced in 10.2, deprecated in 10.4, and completely obsoleted in 10.6. This attribute ties in with the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that we want to deploy back to Mac OS X 10.1). There are several concrete behaviors that this attribute enables, as illustrated with the function foo() above: - If we choose a deployment target >= Mac OS X 10.4, uses of "foo" will result in a deprecation warning, as if we had placed attribute((deprecated)) on it (but with a better diagnostic) - If we choose a deployment target >= Mac OS X 10.6, uses of "foo" will result in an "unavailable" warning (in C)/error (in C++), as if we had placed attribute((unavailable)) on it - If we choose a deployment target prior to 10.2, foo() is weak-imported (if it is a kind of entity that can be weak imported), as if we had placed the weak_import attribute on it. Naturally, there can be multiple availability attributes on a declaration, for different platforms; only the current platform matters when checking availability attributes. The only platforms this attribute currently works for are "ios" and "macosx", since we already have -mxxxx-version-min flags for them and we have experience there with macro tricks translating down to the deprecated/unavailable/weak_import attributes. The end goal is to open this up to other platforms, and even extension to other "platforms" that are really libraries (say, through a #pragma clang define_system), but that hasn't yet been designed and we may want to shake out more issues with this narrower problem first. Addresses <rdar://problem/6690412>. As a drive-by bug-fix, if an entity is both deprecated and unavailable, we only emit the "unavailable" diagnostic. llvm-svn: 128127
2011-03-23 08:50:03 +08:00
getDarwinDefines(Builder, Opts, Triple, this->PlatformName,
this->PlatformMinVersion);
}
public:
DarwinTargetInfo(const std::string& triple) :
OSTargetInfo<Target>(triple) {
this->TLSSupported = llvm::Triple(triple).getDarwinMajorNumber() > 10;
this->MCountName = "\01mcount";
}
virtual std::string isValidSectionSpecifier(llvm::StringRef SR) const {
// Let MCSectionMachO validate this.
llvm::StringRef Segment, Section;
unsigned TAA, StubSize;
2011-03-19 10:06:21 +08:00
bool HasTAA;
return llvm::MCSectionMachO::ParseSectionSpecifier(SR, Segment, Section,
2011-03-19 10:06:21 +08:00
TAA, HasTAA, StubSize);
}
2010-10-21 11:16:25 +08:00
virtual const char *getStaticInitSectionSpecifier() const {
// FIXME: We should return 0 when building kexts.
return "__TEXT,__StaticInit,regular,pure_instructions";
}
2010-10-21 11:16:25 +08:00
};
// DragonFlyBSD Target
template<typename Target>
class DragonFlyBSDTargetInfo : public OSTargetInfo<Target> {
protected:
virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
MacroBuilder &Builder) const {
// DragonFly defines; list based off of gcc output
Builder.defineMacro("__DragonFly__");
Builder.defineMacro("__DragonFly_cc_version", "100001");
Builder.defineMacro("__ELF__");
Builder.defineMacro("__KPRINTF_ATTRIBUTE__");
Builder.defineMacro("__tune_i386__");
DefineStd(Builder, "unix", Opts);
}
public:
DragonFlyBSDTargetInfo(const std::string &triple)
: OSTargetInfo<Target>(triple) {}
};
// FreeBSD Target
template<typename Target>
class FreeBSDTargetInfo : public OSTargetInfo<Target> {
protected:
virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
MacroBuilder &Builder) const {
// FreeBSD defines; list based off of gcc output
// FIXME: Move version number handling to llvm::Triple.
llvm::StringRef Release = Triple.getOSName().substr(strlen("freebsd"), 1);
Builder.defineMacro("__FreeBSD__", Release);
Builder.defineMacro("__FreeBSD_cc_version", Release + "00001");
Builder.defineMacro("__KPRINTF_ATTRIBUTE__");
DefineStd(Builder, "unix", Opts);
Builder.defineMacro("__ELF__");
}
public:
FreeBSDTargetInfo(const std::string &triple)
: OSTargetInfo<Target>(triple) {
this->UserLabelPrefix = "";
llvm::Triple Triple(triple);
switch (Triple.getArch()) {
default:
case llvm::Triple::x86:
case llvm::Triple::x86_64:
this->MCountName = ".mcount";
break;
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
this->MCountName = "_mcount";
break;
case llvm::Triple::arm:
this->MCountName = "__mcount";
break;
}
}
};
// Minix Target
template<typename Target>
class MinixTargetInfo : public OSTargetInfo<Target> {
protected:
virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
MacroBuilder &Builder) const {
// Minix defines
Builder.defineMacro("__minix", "3");
Builder.defineMacro("_EM_WSIZE", "4");
Builder.defineMacro("_EM_PSIZE", "4");
Builder.defineMacro("_EM_SSIZE", "2");
Builder.defineMacro("_EM_LSIZE", "4");
Builder.defineMacro("_EM_FSIZE", "4");
Builder.defineMacro("_EM_DSIZE", "8");
DefineStd(Builder, "unix", Opts);
}
public:
MinixTargetInfo(const std::string &triple)
: OSTargetInfo<Target>(triple) {
this->UserLabelPrefix = "";
}
};
// Linux target
template<typename Target>
class LinuxTargetInfo : public OSTargetInfo<Target> {
protected:
virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
MacroBuilder &Builder) const {
// Linux defines; list based off of gcc output
DefineStd(Builder, "unix", Opts);
DefineStd(Builder, "linux", Opts);
Builder.defineMacro("__gnu_linux__");
Builder.defineMacro("__ELF__");
if (Opts.POSIXThreads)
Builder.defineMacro("_REENTRANT");
if (Opts.CPlusPlus)
Builder.defineMacro("_GNU_SOURCE");
}
public:
LinuxTargetInfo(const std::string& triple)
: OSTargetInfo<Target>(triple) {
this->UserLabelPrefix = "";
this->WIntType = TargetInfo::UnsignedInt;
}
};
// NetBSD Target
template<typename Target>
class NetBSDTargetInfo : public OSTargetInfo<Target> {
protected:
virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
MacroBuilder &Builder) const {
// NetBSD defines; list based off of gcc output
Builder.defineMacro("__NetBSD__");
Builder.defineMacro("__unix__");
Builder.defineMacro("__ELF__");
if (Opts.POSIXThreads)
Builder.defineMacro("_POSIX_THREADS");
}
public:
NetBSDTargetInfo(const std::string &triple)
: OSTargetInfo<Target>(triple) {
this->UserLabelPrefix = "";
}
};
// OpenBSD Target
template<typename Target>
class OpenBSDTargetInfo : public OSTargetInfo<Target> {
protected:
virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
MacroBuilder &Builder) const {
// OpenBSD defines; list based off of gcc output
Builder.defineMacro("__OpenBSD__");
DefineStd(Builder, "unix", Opts);
Builder.defineMacro("__ELF__");
if (Opts.POSIXThreads)
Builder.defineMacro("_POSIX_THREADS");
}
public:
OpenBSDTargetInfo(const std::string &triple)
: OSTargetInfo<Target>(triple) {}
};
// PSP Target
template<typename Target>
class PSPTargetInfo : public OSTargetInfo<Target> {
protected:
virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
MacroBuilder &Builder) const {
// PSP defines; list based on the output of the pspdev gcc toolchain.
Builder.defineMacro("PSP");
Builder.defineMacro("_PSP");
Builder.defineMacro("__psp__");
Builder.defineMacro("__ELF__");
}
public:
PSPTargetInfo(const std::string& triple)
: OSTargetInfo<Target>(triple) {
this->UserLabelPrefix = "";
}
};
// PS3 PPU Target
template<typename Target>
class PS3PPUTargetInfo : public OSTargetInfo<Target> {
protected:
virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
MacroBuilder &Builder) const {
// PS3 PPU defines.
Builder.defineMacro("__PPC__");
Builder.defineMacro("__PPU__");
Builder.defineMacro("__CELLOS_LV2__");
Builder.defineMacro("__ELF__");
Builder.defineMacro("__LP32__");
Builder.defineMacro("_ARCH_PPC64");
Builder.defineMacro("__powerpc64__");
}
public:
PS3PPUTargetInfo(const std::string& triple)
: OSTargetInfo<Target>(triple) {
this->UserLabelPrefix = "";
2009-12-18 22:21:08 +08:00
this->LongWidth = this->LongAlign = this->PointerWidth = this->PointerAlign = 32;
this->IntMaxType = TargetInfo::SignedLongLong;
this->UIntMaxType = TargetInfo::UnsignedLongLong;
this->Int64Type = TargetInfo::SignedLongLong;
2009-12-18 22:21:08 +08:00
this->SizeType = TargetInfo::UnsignedInt;
this->DescriptionString = "E-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-"
"i64:64:64-f32:32:32-f64:64:64-v128:128:128-n32";
}
};
// FIXME: Need a real SPU target.
// PS3 SPU Target
template<typename Target>
class PS3SPUTargetInfo : public OSTargetInfo<Target> {
protected:
virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
MacroBuilder &Builder) const {
// PS3 PPU defines.
Builder.defineMacro("__SPU__");
Builder.defineMacro("__ELF__");
}
public:
PS3SPUTargetInfo(const std::string& triple)
: OSTargetInfo<Target>(triple) {
this->UserLabelPrefix = "";
}
};
// AuroraUX target
template<typename Target>
class AuroraUXTargetInfo : public OSTargetInfo<Target> {
protected:
virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
MacroBuilder &Builder) const {
DefineStd(Builder, "sun", Opts);
DefineStd(Builder, "unix", Opts);
Builder.defineMacro("__ELF__");
Builder.defineMacro("__svr4__");
Builder.defineMacro("__SVR4");
}
public:
AuroraUXTargetInfo(const std::string& triple)
: OSTargetInfo<Target>(triple) {
this->UserLabelPrefix = "";
this->WCharType = this->SignedLong;
// FIXME: WIntType should be SignedLong
}
};
// Solaris target
template<typename Target>
class SolarisTargetInfo : public OSTargetInfo<Target> {
protected:
virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
MacroBuilder &Builder) const {
DefineStd(Builder, "sun", Opts);
DefineStd(Builder, "unix", Opts);
Builder.defineMacro("__ELF__");
Builder.defineMacro("__svr4__");
Builder.defineMacro("__SVR4");
}
public:
SolarisTargetInfo(const std::string& triple)
: OSTargetInfo<Target>(triple) {
this->UserLabelPrefix = "";
this->WCharType = this->SignedLong;
// FIXME: WIntType should be SignedLong
}
};
// Windows target
template<typename Target>
class WindowsTargetInfo : public OSTargetInfo<Target> {
protected:
virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
MacroBuilder &Builder) const {
Builder.defineMacro("_WIN32");
}
void getVisualStudioDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
if (Opts.CPlusPlus) {
if (Opts.RTTI)
Builder.defineMacro("_CPPRTTI");
if (Opts.Exceptions)
Builder.defineMacro("_CPPUNWIND");
}
if (!Opts.CharIsSigned)
Builder.defineMacro("_CHAR_UNSIGNED");
// FIXME: POSIXThreads isn't exactly the option this should be defined for,
// but it works for now.
if (Opts.POSIXThreads)
Builder.defineMacro("_MT");
if (Opts.MSCVersion != 0)
Builder.defineMacro("_MSC_VER", llvm::Twine(Opts.MSCVersion));
if (Opts.Microsoft) {
Builder.defineMacro("_MSC_EXTENSIONS");
if (Opts.CPlusPlus0x) {
Builder.defineMacro("_RVALUE_REFERENCES_V2_SUPPORTED");
Builder.defineMacro("_RVALUE_REFERENCES_SUPPORTED");
Builder.defineMacro("_NATIVE_NULLPTR_SUPPORTED");
}
}
Builder.defineMacro("_INTEGRAL_MAX_BITS", "64");
}
public:
WindowsTargetInfo(const std::string &triple)
: OSTargetInfo<Target>(triple) {}
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// Specific target implementations.
//===----------------------------------------------------------------------===//
namespace {
// PPC abstract base class
class PPCTargetInfo : public TargetInfo {
static const Builtin::Info BuiltinInfo[];
static const char * const GCCRegNames[];
static const TargetInfo::GCCRegAlias GCCRegAliases[];
public:
PPCTargetInfo(const std::string& triple) : TargetInfo(triple) {}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {
Records = BuiltinInfo;
NumRecords = clang::PPC::LastTSBuiltin-Builtin::FirstTSBuiltin;
}
2009-05-03 21:42:53 +08:00
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const;
2009-05-03 21:42:53 +08:00
virtual void getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const;
2009-05-03 21:42:53 +08:00
virtual void getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const;
virtual bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &Info) const {
switch (*Name) {
default: return false;
case 'O': // Zero
break;
case 'b': // Base register
case 'f': // Floating point register
Info.setAllowsRegister();
break;
// FIXME: The following are added to allow parsing.
// I just took a guess at what the actions should be.
// Also, is more specific checking needed? I.e. specific registers?
2010-10-21 11:16:25 +08:00
case 'd': // Floating point register (containing 64-bit value)
case 'v': // Altivec vector register
Info.setAllowsRegister();
break;
case 'w':
switch (Name[1]) {
2010-10-21 11:16:25 +08:00
case 'd':// VSX vector register to hold vector double data
case 'f':// VSX vector register to hold vector float data
case 's':// VSX vector register to hold scalar float data
case 'a':// Any VSX register
break;
default:
return false;
}
Info.setAllowsRegister();
Name++; // Skip over 'w'.
break;
2010-10-21 11:16:25 +08:00
case 'h': // `MQ', `CTR', or `LINK' register
case 'q': // `MQ' register
case 'c': // `CTR' register
case 'l': // `LINK' register
case 'x': // `CR' register (condition register) number 0
case 'y': // `CR' register (condition register)
case 'z': // `XER[CA]' carry bit (part of the XER register)
Info.setAllowsRegister();
break;
2010-10-21 11:16:25 +08:00
case 'I': // Signed 16-bit constant
case 'J': // Unsigned 16-bit constant shifted left 16 bits
2010-10-21 11:16:25 +08:00
// (use `L' instead for SImode constants)
case 'K': // Unsigned 16-bit constant
case 'L': // Signed 16-bit constant shifted left 16 bits
case 'M': // Constant larger than 31
case 'N': // Exact power of 2
case 'P': // Constant whose negation is a signed 16-bit constant
case 'G': // Floating point constant that can be loaded into a
2010-10-21 11:16:25 +08:00
// register with one instruction per word
case 'H': // Integer/Floating point constant that can be loaded
2010-10-21 11:16:25 +08:00
// into a register using three instructions
break;
case 'm': // Memory operand. Note that on PowerPC targets, m can
// include addresses that update the base register. It
// is therefore only safe to use `m' in an asm statement
// if that asm statement accesses the operand exactly once.
// The asm statement must also use `%U<opno>' as a
// placeholder for the "update" flag in the corresponding
2010-10-21 11:16:25 +08:00
// load or store instruction. For example:
// asm ("st%U0 %1,%0" : "=m" (mem) : "r" (val));
2010-10-21 11:16:25 +08:00
// is correct but:
// asm ("st %1,%0" : "=m" (mem) : "r" (val));
// is not. Use es rather than m if you don't want the base
2010-10-21 11:16:25 +08:00
// register to be updated.
case 'e':
if (Name[1] != 's')
return false;
// es: A "stable" memory operand; that is, one which does not
// include any automodification of the base register. Unlike
// `m', this constraint can be used in asm statements that
// might access the operand several times, or that might not
// access it at all.
Info.setAllowsMemory();
Name++; // Skip over 'e'.
break;
case 'Q': // Memory operand that is an offset from a register (it is
2010-10-21 11:16:25 +08:00
// usually better to use `m' or `es' in asm statements)
case 'Z': // Memory operand that is an indexed or indirect from a
// register (it is usually better to use `m' or `es' in
2010-10-21 11:16:25 +08:00
// asm statements)
Info.setAllowsMemory();
Info.setAllowsRegister();
break;
2010-10-21 11:16:25 +08:00
case 'R': // AIX TOC entry
case 'a': // Address operand that is an indexed or indirect from a
2010-10-21 11:16:25 +08:00
// register (`p' is preferable for asm statements)
case 'S': // Constant suitable as a 64-bit mask operand
case 'T': // Constant suitable as a 32-bit mask operand
case 'U': // System V Release 4 small data area reference
case 't': // AND masks that can be performed by two rldic{l, r}
2010-10-21 11:16:25 +08:00
// instructions
case 'W': // Vector constant that does not require memory
case 'j': // Vector constant that is all zeros.
break;
// End FIXME.
}
return true;
}
virtual const char *getClobbers() const {
return "";
}
};
const Builtin::Info PPCTargetInfo::BuiltinInfo[] = {
#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES, false },
#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) { #ID, TYPE, ATTRS, HEADER,\
ALL_LANGUAGES, false },
#include "clang/Basic/BuiltinsPPC.def"
};
2009-05-03 21:42:53 +08:00
/// PPCTargetInfo::getTargetDefines - Return a set of the PowerPC-specific
/// #defines that are not tied to a specific subtarget.
void PPCTargetInfo::getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
// Target identification.
Builder.defineMacro("__ppc__");
Builder.defineMacro("_ARCH_PPC");
Builder.defineMacro("__powerpc__");
Builder.defineMacro("__POWERPC__");
if (PointerWidth == 64) {
Builder.defineMacro("_ARCH_PPC64");
Builder.defineMacro("_LP64");
Builder.defineMacro("__LP64__");
Builder.defineMacro("__powerpc64__");
Builder.defineMacro("__ppc64__");
} else {
Builder.defineMacro("__ppc__");
}
2009-05-03 21:42:53 +08:00
// Target properties.
Builder.defineMacro("_BIG_ENDIAN");
Builder.defineMacro("__BIG_ENDIAN__");
2009-05-03 21:42:53 +08:00
// Subtarget options.
Builder.defineMacro("__NATURAL_ALIGNMENT__");
Builder.defineMacro("__REGISTER_PREFIX__", "");
2009-05-03 21:42:53 +08:00
// FIXME: Should be controlled by command line option.
Builder.defineMacro("__LONG_DOUBLE_128__");
2010-10-21 11:16:25 +08:00
if (Opts.AltiVec) {
Builder.defineMacro("__VEC__", "10206");
Builder.defineMacro("__ALTIVEC__");
}
}
2008-04-22 02:56:49 +08:00
const char * const PPCTargetInfo::GCCRegNames[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
"mq", "lr", "ctr", "ap",
"cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
"xer",
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",
"vrsave", "vscr",
"spe_acc", "spefscr",
"sfp"
};
2009-05-03 21:42:53 +08:00
void PPCTargetInfo::getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const {
Names = GCCRegNames;
NumNames = llvm::array_lengthof(GCCRegNames);
}
const TargetInfo::GCCRegAlias PPCTargetInfo::GCCRegAliases[] = {
// While some of these aliases do map to different registers
// they still share the same register name.
{ { "0" }, "r0" },
{ { "1"}, "r1" },
{ { "2" }, "r2" },
{ { "3" }, "r3" },
{ { "4" }, "r4" },
{ { "5" }, "r5" },
{ { "6" }, "r6" },
{ { "7" }, "r7" },
{ { "8" }, "r8" },
{ { "9" }, "r9" },
{ { "10" }, "r10" },
{ { "11" }, "r11" },
{ { "12" }, "r12" },
{ { "13" }, "r13" },
{ { "14" }, "r14" },
{ { "15" }, "r15" },
{ { "16" }, "r16" },
{ { "17" }, "r17" },
{ { "18" }, "r18" },
{ { "19" }, "r19" },
{ { "20" }, "r20" },
{ { "21" }, "r21" },
{ { "22" }, "r22" },
{ { "23" }, "r23" },
{ { "24" }, "r24" },
{ { "25" }, "r25" },
{ { "26" }, "r26" },
{ { "27" }, "r27" },
{ { "28" }, "r28" },
{ { "29" }, "r29" },
{ { "30" }, "r30" },
{ { "31" }, "r31" },
{ { "fr0" }, "f0" },
{ { "fr1" }, "f1" },
{ { "fr2" }, "f2" },
{ { "fr3" }, "f3" },
{ { "fr4" }, "f4" },
{ { "fr5" }, "f5" },
{ { "fr6" }, "f6" },
{ { "fr7" }, "f7" },
{ { "fr8" }, "f8" },
{ { "fr9" }, "f9" },
2009-09-18 05:15:00 +08:00
{ { "fr10" }, "f10" },
{ { "fr11" }, "f11" },
{ { "fr12" }, "f12" },
{ { "fr13" }, "f13" },
{ { "fr14" }, "f14" },
{ { "fr15" }, "f15" },
{ { "fr16" }, "f16" },
{ { "fr17" }, "f17" },
{ { "fr18" }, "f18" },
{ { "fr19" }, "f19" },
{ { "fr20" }, "f20" },
{ { "fr21" }, "f21" },
{ { "fr22" }, "f22" },
{ { "fr23" }, "f23" },
{ { "fr24" }, "f24" },
{ { "fr25" }, "f25" },
{ { "fr26" }, "f26" },
{ { "fr27" }, "f27" },
{ { "fr28" }, "f28" },
{ { "fr29" }, "f29" },
{ { "fr30" }, "f30" },
{ { "fr31" }, "f31" },
{ { "cc" }, "cr0" },
};
2009-05-03 21:42:53 +08:00
void PPCTargetInfo::getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const {
Aliases = GCCRegAliases;
NumAliases = llvm::array_lengthof(GCCRegAliases);
}
} // end anonymous namespace.
namespace {
class PPC32TargetInfo : public PPCTargetInfo {
public:
PPC32TargetInfo(const std::string &triple) : PPCTargetInfo(triple) {
DescriptionString = "E-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-"
"i64:64:64-f32:32:32-f64:64:64-v128:128:128-n32";
if (getTriple().getOS() == llvm::Triple::FreeBSD)
SizeType = UnsignedInt;
}
virtual const char *getVAListDeclaration() const {
// This is the ELF definition, and is overridden by the Darwin sub-target
return "typedef struct __va_list_tag {"
" unsigned char gpr;"
" unsigned char fpr;"
" unsigned short reserved;"
" void* overflow_arg_area;"
" void* reg_save_area;"
"} __builtin_va_list[1];";
}
};
} // end anonymous namespace.
namespace {
class PPC64TargetInfo : public PPCTargetInfo {
public:
PPC64TargetInfo(const std::string& triple) : PPCTargetInfo(triple) {
LongWidth = LongAlign = PointerWidth = PointerAlign = 64;
IntMaxType = SignedLong;
UIntMaxType = UnsignedLong;
Int64Type = SignedLong;
DescriptionString = "E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-"
"i64:64:64-f32:32:32-f64:64:64-v128:128:128-n32:64";
}
virtual const char *getVAListDeclaration() const {
return "typedef char* __builtin_va_list;";
}
};
} // end anonymous namespace.
namespace {
class DarwinPPC32TargetInfo :
public DarwinTargetInfo<PPC32TargetInfo> {
public:
DarwinPPC32TargetInfo(const std::string& triple)
: DarwinTargetInfo<PPC32TargetInfo>(triple) {
HasAlignMac68kSupport = true;
BoolWidth = BoolAlign = 32; //XXX support -mone-byte-bool?
}
virtual const char *getVAListDeclaration() const {
return "typedef char* __builtin_va_list;";
}
};
class DarwinPPC64TargetInfo :
public DarwinTargetInfo<PPC64TargetInfo> {
public:
DarwinPPC64TargetInfo(const std::string& triple)
: DarwinTargetInfo<PPC64TargetInfo>(triple) {
HasAlignMac68kSupport = true;
}
};
} // end anonymous namespace.
namespace {
// MBlaze abstract base class
class MBlazeTargetInfo : public TargetInfo {
static const char * const GCCRegNames[];
static const TargetInfo::GCCRegAlias GCCRegAliases[];
public:
MBlazeTargetInfo(const std::string& triple) : TargetInfo(triple) {
DescriptionString = "E-p:32:32:32-i8:8:8-i16:16:16";
}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {
// FIXME: Implement.
Records = 0;
NumRecords = 0;
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const;
virtual const char *getVAListDeclaration() const {
return "typedef char* __builtin_va_list;";
}
virtual const char *getTargetPrefix() const {
return "mblaze";
}
virtual void getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const;
virtual void getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const;
virtual bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &Info) const {
switch (*Name) {
default: return false;
case 'O': // Zero
return true;
case 'b': // Base register
case 'f': // Floating point register
Info.setAllowsRegister();
return true;
}
}
virtual const char *getClobbers() const {
return "";
}
};
/// MBlazeTargetInfo::getTargetDefines - Return a set of the MBlaze-specific
/// #defines that are not tied to a specific subtarget.
void MBlazeTargetInfo::getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
// Target identification.
Builder.defineMacro("__microblaze__");
Builder.defineMacro("_ARCH_MICROBLAZE");
Builder.defineMacro("__MICROBLAZE__");
// Target properties.
Builder.defineMacro("_BIG_ENDIAN");
Builder.defineMacro("__BIG_ENDIAN__");
// Subtarget options.
Builder.defineMacro("__REGISTER_PREFIX__", "");
}
const char * const MBlazeTargetInfo::GCCRegNames[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
"$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
"$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
"$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",
"hi", "lo", "accum","rmsr", "$fcc1","$fcc2","$fcc3","$fcc4",
"$fcc5","$fcc6","$fcc7","$ap", "$rap", "$frp"
};
void MBlazeTargetInfo::getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const {
Names = GCCRegNames;
NumNames = llvm::array_lengthof(GCCRegNames);
}
const TargetInfo::GCCRegAlias MBlazeTargetInfo::GCCRegAliases[] = {
{ {"f0"}, "r0" },
{ {"f1"}, "r1" },
{ {"f2"}, "r2" },
{ {"f3"}, "r3" },
{ {"f4"}, "r4" },
{ {"f5"}, "r5" },
{ {"f6"}, "r6" },
{ {"f7"}, "r7" },
{ {"f8"}, "r8" },
{ {"f9"}, "r9" },
{ {"f10"}, "r10" },
{ {"f11"}, "r11" },
{ {"f12"}, "r12" },
{ {"f13"}, "r13" },
{ {"f14"}, "r14" },
{ {"f15"}, "r15" },
{ {"f16"}, "r16" },
{ {"f17"}, "r17" },
{ {"f18"}, "r18" },
{ {"f19"}, "r19" },
{ {"f20"}, "r20" },
{ {"f21"}, "r21" },
{ {"f22"}, "r22" },
{ {"f23"}, "r23" },
{ {"f24"}, "r24" },
{ {"f25"}, "r25" },
{ {"f26"}, "r26" },
{ {"f27"}, "r27" },
{ {"f28"}, "r28" },
{ {"f29"}, "r29" },
{ {"f30"}, "r30" },
{ {"f31"}, "r31" },
};
void MBlazeTargetInfo::getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const {
Aliases = GCCRegAliases;
NumAliases = llvm::array_lengthof(GCCRegAliases);
}
} // end anonymous namespace.
namespace {
// Namespace for x86 abstract base class
const Builtin::Info BuiltinInfo[] = {
#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES, false },
#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) { #ID, TYPE, ATTRS, HEADER,\
ALL_LANGUAGES, false },
#include "clang/Basic/BuiltinsX86.def"
};
static const char* const GCCRegNames[] = {
"ax", "dx", "cx", "bx", "si", "di", "bp", "sp",
"st", "st(1)", "st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)",
"argp", "flags", "fspr", "dirflag", "frame",
"xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
"mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"
};
const TargetInfo::GCCRegAlias GCCRegAliases[] = {
{ { "al", "ah", "eax", "rax" }, "ax" },
{ { "bl", "bh", "ebx", "rbx" }, "bx" },
{ { "cl", "ch", "ecx", "rcx" }, "cx" },
{ { "dl", "dh", "edx", "rdx" }, "dx" },
{ { "esi", "rsi" }, "si" },
{ { "edi", "rdi" }, "di" },
{ { "esp", "rsp" }, "sp" },
{ { "ebp", "rbp" }, "bp" },
};
// X86 target abstract base class; x86-32 and x86-64 are very close, so
// most of the implementation can be shared.
class X86TargetInfo : public TargetInfo {
enum X86SSEEnum {
NoMMXSSE, MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42
} SSELevel;
enum AMD3DNowEnum {
NoAMD3DNow, AMD3DNow, AMD3DNowAthlon
} AMD3DNowLevel;
bool HasAES;
bool HasAVX;
public:
2009-05-03 21:42:53 +08:00
X86TargetInfo(const std::string& triple)
: TargetInfo(triple), SSELevel(NoMMXSSE), AMD3DNowLevel(NoAMD3DNow),
HasAES(false), HasAVX(false) {
LongDoubleFormat = &llvm::APFloat::x87DoubleExtended;
}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {
Records = BuiltinInfo;
NumRecords = clang::X86::LastTSBuiltin-Builtin::FirstTSBuiltin;
}
2009-05-03 21:42:53 +08:00
virtual void getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const {
Names = GCCRegNames;
NumNames = llvm::array_lengthof(GCCRegNames);
}
2009-05-03 21:42:53 +08:00
virtual void getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const {
Aliases = GCCRegAliases;
NumAliases = llvm::array_lengthof(GCCRegAliases);
}
virtual bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &info) const;
virtual std::string convertConstraint(const char Constraint) const;
virtual const char *getClobbers() const {
return "~{dirflag},~{fpsr},~{flags}";
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const;
virtual bool setFeatureEnabled(llvm::StringMap<bool> &Features,
const std::string &Name,
bool Enabled) const;
virtual void getDefaultFeatures(const std::string &CPU,
llvm::StringMap<bool> &Features) const;
virtual void HandleTargetFeatures(std::vector<std::string> &Features);
};
void X86TargetInfo::getDefaultFeatures(const std::string &CPU,
llvm::StringMap<bool> &Features) const {
// FIXME: This should not be here.
Features["3dnow"] = false;
Features["3dnowa"] = false;
Features["mmx"] = false;
Features["sse"] = false;
Features["sse2"] = false;
Features["sse3"] = false;
Features["ssse3"] = false;
Features["sse41"] = false;
Features["sse42"] = false;
Features["aes"] = false;
Features["avx"] = false;
// LLVM does not currently recognize this.
// Features["sse4a"] = false;
// FIXME: This *really* should not be here.
// X86_64 always has SSE2.
if (PointerWidth == 64)
Features["sse2"] = Features["sse"] = Features["mmx"] = true;
if (CPU == "generic" || CPU == "i386" || CPU == "i486" || CPU == "i586" ||
CPU == "pentium" || CPU == "i686" || CPU == "pentiumpro")
;
else if (CPU == "pentium-mmx" || CPU == "pentium2")
setFeatureEnabled(Features, "mmx", true);
else if (CPU == "pentium3")
setFeatureEnabled(Features, "sse", true);
else if (CPU == "pentium-m" || CPU == "pentium4" || CPU == "x86-64")
setFeatureEnabled(Features, "sse2", true);
else if (CPU == "yonah" || CPU == "prescott" || CPU == "nocona")
setFeatureEnabled(Features, "sse3", true);
else if (CPU == "core2")
setFeatureEnabled(Features, "ssse3", true);
else if (CPU == "penryn") {
setFeatureEnabled(Features, "sse4", true);
Features["sse42"] = false;
} else if (CPU == "atom")
setFeatureEnabled(Features, "sse3", true);
else if (CPU == "corei7") {
setFeatureEnabled(Features, "sse4", true);
setFeatureEnabled(Features, "aes", true);
}
else if (CPU == "k6" || CPU == "winchip-c6")
setFeatureEnabled(Features, "mmx", true);
else if (CPU == "k6-2" || CPU == "k6-3" || CPU == "athlon" ||
CPU == "athlon-tbird" || CPU == "winchip2" || CPU == "c3") {
setFeatureEnabled(Features, "mmx", true);
setFeatureEnabled(Features, "3dnow", true);
} else if (CPU == "athlon-4" || CPU == "athlon-xp" || CPU == "athlon-mp") {
setFeatureEnabled(Features, "sse", true);
setFeatureEnabled(Features, "3dnowa", true);
} else if (CPU == "k8" || CPU == "opteron" || CPU == "athlon64" ||
CPU == "athlon-fx") {
setFeatureEnabled(Features, "sse2", true);
setFeatureEnabled(Features, "3dnowa", true);
} else if (CPU == "k8-sse3") {
setFeatureEnabled(Features, "sse3", true);
setFeatureEnabled(Features, "3dnowa", true);
} else if (CPU == "c3-2")
setFeatureEnabled(Features, "sse", true);
}
bool X86TargetInfo::setFeatureEnabled(llvm::StringMap<bool> &Features,
const std::string &Name,
bool Enabled) const {
// FIXME: This *really* should not be here. We need some way of translating
// options into llvm subtarget features.
if (!Features.count(Name) &&
(Name != "sse4" && Name != "sse4.2" && Name != "sse4.1"))
return false;
if (Enabled) {
if (Name == "mmx")
Features["mmx"] = true;
else if (Name == "sse")
Features["mmx"] = Features["sse"] = true;
else if (Name == "sse2")
Features["mmx"] = Features["sse"] = Features["sse2"] = true;
else if (Name == "sse3")
Features["mmx"] = Features["sse"] = Features["sse2"] =
Features["sse3"] = true;
else if (Name == "ssse3")
Features["mmx"] = Features["sse"] = Features["sse2"] = Features["sse3"] =
Features["ssse3"] = true;
else if (Name == "sse4" || Name == "sse4.2")
Features["mmx"] = Features["sse"] = Features["sse2"] = Features["sse3"] =
Features["ssse3"] = Features["sse41"] = Features["sse42"] = true;
else if (Name == "sse4.1")
Features["mmx"] = Features["sse"] = Features["sse2"] = Features["sse3"] =
Features["ssse3"] = Features["sse41"] = true;
else if (Name == "3dnow")
Features["3dnowa"] = true;
else if (Name == "3dnowa")
Features["3dnow"] = Features["3dnowa"] = true;
else if (Name == "aes")
Features["aes"] = true;
else if (Name == "avx")
Features["avx"] = true;
} else {
if (Name == "mmx")
Features["mmx"] = Features["sse"] = Features["sse2"] = Features["sse3"] =
Features["ssse3"] = Features["sse41"] = Features["sse42"] = false;
else if (Name == "sse")
Features["sse"] = Features["sse2"] = Features["sse3"] =
Features["ssse3"] = Features["sse41"] = Features["sse42"] = false;
else if (Name == "sse2")
Features["sse2"] = Features["sse3"] = Features["ssse3"] =
Features["sse41"] = Features["sse42"] = false;
else if (Name == "sse3")
Features["sse3"] = Features["ssse3"] = Features["sse41"] =
Features["sse42"] = false;
else if (Name == "ssse3")
Features["ssse3"] = Features["sse41"] = Features["sse42"] = false;
else if (Name == "sse4")
Features["sse41"] = Features["sse42"] = false;
else if (Name == "sse4.2")
Features["sse42"] = false;
else if (Name == "sse4.1")
Features["sse41"] = Features["sse42"] = false;
else if (Name == "3dnow")
Features["3dnow"] = Features["3dnowa"] = false;
else if (Name == "3dnowa")
Features["3dnowa"] = false;
else if (Name == "aes")
Features["aes"] = false;
else if (Name == "avx")
Features["avx"] = false;
}
return true;
}
/// HandleTargetOptions - Perform initialization based on the user
/// configured set of features.
void X86TargetInfo::HandleTargetFeatures(std::vector<std::string> &Features) {
// Remember the maximum enabled sselevel.
for (unsigned i = 0, e = Features.size(); i !=e; ++i) {
// Ignore disabled features.
if (Features[i][0] == '-')
continue;
if (Features[i].substr(1) == "aes") {
HasAES = true;
continue;
}
// FIXME: Not sure yet how to treat AVX in regard to SSE levels.
// For now let it be enabled together with other SSE levels.
if (Features[i].substr(1) == "avx") {
HasAVX = true;
continue;
}
assert(Features[i][0] == '+' && "Invalid target feature!");
X86SSEEnum Level = llvm::StringSwitch<X86SSEEnum>(Features[i].substr(1))
.Case("sse42", SSE42)
.Case("sse41", SSE41)
.Case("ssse3", SSSE3)
.Case("sse3", SSE3)
.Case("sse2", SSE2)
.Case("sse", SSE1)
.Case("mmx", MMX)
.Default(NoMMXSSE);
SSELevel = std::max(SSELevel, Level);
2010-10-21 11:16:25 +08:00
AMD3DNowEnum ThreeDNowLevel =
llvm::StringSwitch<AMD3DNowEnum>(Features[i].substr(1))
.Case("3dnowa", AMD3DNowAthlon)
.Case("3dnow", AMD3DNow)
.Default(NoAMD3DNow);
2010-10-21 11:16:25 +08:00
AMD3DNowLevel = std::max(AMD3DNowLevel, ThreeDNowLevel);
}
}
/// X86TargetInfo::getTargetDefines - Return a set of the X86-specific #defines
/// that are not tied to a specific subtarget.
void X86TargetInfo::getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
// Target identification.
if (PointerWidth == 64) {
Builder.defineMacro("_LP64");
Builder.defineMacro("__LP64__");
Builder.defineMacro("__amd64__");
Builder.defineMacro("__amd64");
Builder.defineMacro("__x86_64");
Builder.defineMacro("__x86_64__");
} else {
DefineStd(Builder, "i386", Opts);
}
2009-05-03 21:42:53 +08:00
if (HasAES)
Builder.defineMacro("__AES__");
if (HasAVX)
Builder.defineMacro("__AVX__");
// Target properties.
Builder.defineMacro("__LITTLE_ENDIAN__");
2009-05-03 21:42:53 +08:00
// Subtarget options.
Builder.defineMacro("__nocona");
Builder.defineMacro("__nocona__");
Builder.defineMacro("__tune_nocona__");
Builder.defineMacro("__REGISTER_PREFIX__", "");
// Define __NO_MATH_INLINES on linux/x86 so that we don't get inline
// functions in glibc header files that use FP Stack inline asm which the
// backend can't deal with (PR879).
Builder.defineMacro("__NO_MATH_INLINES");
2009-05-03 21:42:53 +08:00
// Each case falls through to the previous one here.
switch (SSELevel) {
case SSE42:
Builder.defineMacro("__SSE4_2__");
case SSE41:
Builder.defineMacro("__SSE4_1__");
case SSSE3:
Builder.defineMacro("__SSSE3__");
case SSE3:
Builder.defineMacro("__SSE3__");
case SSE2:
Builder.defineMacro("__SSE2__");
Builder.defineMacro("__SSE2_MATH__"); // -mfp-math=sse always implied.
case SSE1:
Builder.defineMacro("__SSE__");
Builder.defineMacro("__SSE_MATH__"); // -mfp-math=sse always implied.
case MMX:
Builder.defineMacro("__MMX__");
case NoMMXSSE:
break;
}
2010-10-18 15:10:59 +08:00
if (Opts.Microsoft && PointerWidth == 32) {
switch (SSELevel) {
case SSE42:
case SSE41:
case SSSE3:
case SSE3:
case SSE2:
Builder.defineMacro("_M_IX86_FP", llvm::Twine(2));
break;
case SSE1:
Builder.defineMacro("_M_IX86_FP", llvm::Twine(1));
break;
default:
Builder.defineMacro("_M_IX86_FP", llvm::Twine(0));
}
}
// Each case falls through to the previous one here.
switch (AMD3DNowLevel) {
case AMD3DNowAthlon:
Builder.defineMacro("__3dNOW_A__");
case AMD3DNow:
Builder.defineMacro("__3dNOW__");
case NoAMD3DNow:
break;
}
}
2009-05-03 21:42:53 +08:00
bool
X86TargetInfo::validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &Info) const {
switch (*Name) {
default: return false;
case 'Y': // first letter of a pair:
switch (*(Name+1)) {
default: return false;
case '0': // First SSE register.
case 't': // Any SSE register, when SSE2 is enabled.
case 'i': // Any SSE register, when SSE2 and inter-unit moves enabled.
case 'm': // any MMX register, when inter-unit moves enabled.
break; // falls through to setAllowsRegister.
}
case 'a': // eax.
case 'b': // ebx.
case 'c': // ecx.
case 'd': // edx.
case 'S': // esi.
case 'D': // edi.
case 'A': // edx:eax.
case 'f': // any x87 floating point stack register.
case 't': // top of floating point stack.
case 'u': // second from top of floating point stack.
case 'q': // Any register accessible as [r]l: a, b, c, and d.
case 'y': // Any MMX register.
case 'x': // Any SSE register.
case 'Q': // Any register accessible as [r]h: a, b, c, and d.
case 'R': // "Legacy" registers: ax, bx, cx, dx, di, si, sp, bp.
case 'l': // "Index" registers: any general register that can be used as an
// index in a base+index memory access.
Info.setAllowsRegister();
return true;
case 'C': // SSE floating point constant.
case 'G': // x87 floating point constant.
2009-05-03 21:42:53 +08:00
case 'e': // 32-bit signed integer constant for use with zero-extending
// x86_64 instructions.
2009-05-03 21:42:53 +08:00
case 'Z': // 32-bit unsigned integer constant for use with zero-extending
// x86_64 instructions.
return true;
}
return false;
}
std::string
X86TargetInfo::convertConstraint(const char Constraint) const {
switch (Constraint) {
case 'a': return std::string("{ax}");
case 'b': return std::string("{bx}");
case 'c': return std::string("{cx}");
case 'd': return std::string("{dx}");
case 'S': return std::string("{si}");
case 'D': return std::string("{di}");
case 'p': // address
return std::string("im");
case 't': // top of floating point stack.
return std::string("{st}");
case 'u': // second from top of floating point stack.
return std::string("{st(1)}"); // second from top of floating point stack.
default:
return std::string(1, Constraint);
}
}
} // end anonymous namespace
namespace {
// X86-32 generic target
class X86_32TargetInfo : public X86TargetInfo {
public:
X86_32TargetInfo(const std::string& triple) : X86TargetInfo(triple) {
DoubleAlign = LongLongAlign = 32;
LongDoubleWidth = 96;
LongDoubleAlign = 32;
DescriptionString = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-"
"i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-"
"a0:0:64-f80:32:32-n8:16:32";
SizeType = UnsignedInt;
PtrDiffType = SignedInt;
IntPtrType = SignedInt;
RegParmMax = 3;
// Use fpret for all types.
RealTypeUsesObjCFPRet = ((1 << TargetInfo::Float) |
(1 << TargetInfo::Double) |
(1 << TargetInfo::LongDouble));
}
virtual const char *getVAListDeclaration() const {
return "typedef char* __builtin_va_list;";
}
2010-10-21 11:16:25 +08:00
int getEHDataRegisterNumber(unsigned RegNo) const {
if (RegNo == 0) return 0;
if (RegNo == 1) return 2;
return -1;
}
};
} // end anonymous namespace
namespace {
class OpenBSDI386TargetInfo : public OpenBSDTargetInfo<X86_32TargetInfo> {
public:
OpenBSDI386TargetInfo(const std::string& triple) :
OpenBSDTargetInfo<X86_32TargetInfo>(triple) {
SizeType = UnsignedLong;
IntPtrType = SignedLong;
PtrDiffType = SignedLong;
}
};
} // end anonymous namespace
namespace {
class DarwinI386TargetInfo : public DarwinTargetInfo<X86_32TargetInfo> {
public:
DarwinI386TargetInfo(const std::string& triple) :
DarwinTargetInfo<X86_32TargetInfo>(triple) {
LongDoubleWidth = 128;
LongDoubleAlign = 128;
SizeType = UnsignedLong;
IntPtrType = SignedLong;
DescriptionString = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-"
"i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-"
"a0:0:64-f80:128:128-n8:16:32";
HasAlignMac68kSupport = true;
}
};
} // end anonymous namespace
namespace {
// x86-32 Windows target
class WindowsX86_32TargetInfo : public WindowsTargetInfo<X86_32TargetInfo> {
public:
WindowsX86_32TargetInfo(const std::string& triple)
: WindowsTargetInfo<X86_32TargetInfo>(triple) {
TLSSupported = false;
WCharType = UnsignedShort;
DoubleAlign = LongLongAlign = 64;
DescriptionString = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-"
"i64:64:64-f32:32:32-f64:64:64-f80:128:128-v64:64:64-"
"v128:128:128-a0:0:64-f80:32:32-n8:16:32";
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
WindowsTargetInfo<X86_32TargetInfo>::getTargetDefines(Opts, Builder);
}
};
} // end anonymous namespace
namespace {
// x86-32 Windows Visual Studio target
class VisualStudioWindowsX86_32TargetInfo : public WindowsX86_32TargetInfo {
public:
VisualStudioWindowsX86_32TargetInfo(const std::string& triple)
: WindowsX86_32TargetInfo(triple) {
LongDoubleWidth = LongDoubleAlign = 64;
LongDoubleFormat = &llvm::APFloat::IEEEdouble;
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
WindowsX86_32TargetInfo::getTargetDefines(Opts, Builder);
WindowsX86_32TargetInfo::getVisualStudioDefines(Opts, Builder);
// The value of the following reflects processor type.
// 300=386, 400=486, 500=Pentium, 600=Blend (default)
// We lost the original triple, so we use the default.
Builder.defineMacro("_M_IX86", "600");
}
};
} // end anonymous namespace
namespace {
// x86-32 MinGW target
class MinGWX86_32TargetInfo : public WindowsX86_32TargetInfo {
public:
MinGWX86_32TargetInfo(const std::string& triple)
: WindowsX86_32TargetInfo(triple) {
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
WindowsX86_32TargetInfo::getTargetDefines(Opts, Builder);
DefineStd(Builder, "WIN32", Opts);
DefineStd(Builder, "WINNT", Opts);
Builder.defineMacro("_X86_");
Builder.defineMacro("__MSVCRT__");
Builder.defineMacro("__MINGW32__");
// mingw32-gcc provides __declspec(a) as alias of __attribute__((a)).
// In contrast, clang-cc1 provides __declspec(a) with -fms-extensions.
if (Opts.Microsoft)
// Provide "as-is" __declspec.
Builder.defineMacro("__declspec", "__declspec");
else
// Provide alias of __attribute__ like mingw32-gcc.
Builder.defineMacro("__declspec(a)", "__attribute__((a))");
}
};
} // end anonymous namespace
namespace {
// x86-32 Cygwin target
class CygwinX86_32TargetInfo : public X86_32TargetInfo {
public:
CygwinX86_32TargetInfo(const std::string& triple)
: X86_32TargetInfo(triple) {
TLSSupported = false;
WCharType = UnsignedShort;
DoubleAlign = LongLongAlign = 64;
DescriptionString = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-"
"i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-"
"a0:0:64-f80:32:32-n8:16:32";
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
X86_32TargetInfo::getTargetDefines(Opts, Builder);
Builder.defineMacro("__CYGWIN__");
Builder.defineMacro("__CYGWIN32__");
DefineStd(Builder, "unix", Opts);
if (Opts.CPlusPlus)
Builder.defineMacro("_GNU_SOURCE");
}
};
} // end anonymous namespace
namespace {
// x86-32 Haiku target
class HaikuX86_32TargetInfo : public X86_32TargetInfo {
public:
HaikuX86_32TargetInfo(const std::string& triple)
: X86_32TargetInfo(triple) {
SizeType = UnsignedLong;
IntPtrType = SignedLong;
PtrDiffType = SignedLong;
this->UserLabelPrefix = "";
2010-08-22 09:00:03 +08:00
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
X86_32TargetInfo::getTargetDefines(Opts, Builder);
Builder.defineMacro("__INTEL__");
Builder.defineMacro("__HAIKU__");
}
};
} // end anonymous namespace
namespace {
// x86-64 generic target
class X86_64TargetInfo : public X86TargetInfo {
public:
X86_64TargetInfo(const std::string &triple) : X86TargetInfo(triple) {
LongWidth = LongAlign = PointerWidth = PointerAlign = 64;
LongDoubleWidth = 128;
LongDoubleAlign = 128;
LargeArrayMinWidth = 128;
LargeArrayAlign = 128;
IntMaxType = SignedLong;
UIntMaxType = UnsignedLong;
Int64Type = SignedLong;
RegParmMax = 6;
DescriptionString = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-"
"i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-"
"a0:0:64-s0:64:64-f80:128:128-n8:16:32:64";
// Use fpret only for long double.
RealTypeUsesObjCFPRet = (1 << TargetInfo::LongDouble);
}
virtual const char *getVAListDeclaration() const {
return "typedef struct __va_list_tag {"
" unsigned gp_offset;"
" unsigned fp_offset;"
" void* overflow_arg_area;"
" void* reg_save_area;"
2010-05-29 02:25:28 +08:00
"} __va_list_tag;"
"typedef __va_list_tag __builtin_va_list[1];";
}
2010-10-18 15:10:59 +08:00
int getEHDataRegisterNumber(unsigned RegNo) const {
if (RegNo == 0) return 0;
if (RegNo == 1) return 1;
return -1;
}
};
} // end anonymous namespace
namespace {
// x86-64 Windows target
class WindowsX86_64TargetInfo : public WindowsTargetInfo<X86_64TargetInfo> {
public:
WindowsX86_64TargetInfo(const std::string& triple)
: WindowsTargetInfo<X86_64TargetInfo>(triple) {
TLSSupported = false;
WCharType = UnsignedShort;
LongWidth = LongAlign = 32;
2010-10-18 15:10:59 +08:00
DoubleAlign = LongLongAlign = 64;
IntMaxType = SignedLongLong;
UIntMaxType = UnsignedLongLong;
Int64Type = SignedLongLong;
SizeType = UnsignedLongLong;
PtrDiffType = SignedLongLong;
IntPtrType = SignedLongLong;
this->UserLabelPrefix = "";
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
WindowsTargetInfo<X86_64TargetInfo>::getTargetDefines(Opts, Builder);
Builder.defineMacro("_WIN64");
}
virtual const char *getVAListDeclaration() const {
return "typedef char* __builtin_va_list;";
}
};
} // end anonymous namespace
namespace {
// x86-64 Windows Visual Studio target
class VisualStudioWindowsX86_64TargetInfo : public WindowsX86_64TargetInfo {
public:
VisualStudioWindowsX86_64TargetInfo(const std::string& triple)
: WindowsX86_64TargetInfo(triple) {
LongDoubleWidth = LongDoubleAlign = 64;
LongDoubleFormat = &llvm::APFloat::IEEEdouble;
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
WindowsX86_64TargetInfo::getTargetDefines(Opts, Builder);
WindowsX86_64TargetInfo::getVisualStudioDefines(Opts, Builder);
Builder.defineMacro("_M_X64");
Builder.defineMacro("_M_AMD64");
}
};
} // end anonymous namespace
namespace {
// x86-64 MinGW target
class MinGWX86_64TargetInfo : public WindowsX86_64TargetInfo {
public:
MinGWX86_64TargetInfo(const std::string& triple)
: WindowsX86_64TargetInfo(triple) {
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
WindowsX86_64TargetInfo::getTargetDefines(Opts, Builder);
DefineStd(Builder, "WIN64", Opts);
Builder.defineMacro("__MSVCRT__");
Builder.defineMacro("__MINGW32__");
Builder.defineMacro("__MINGW64__");
// mingw32-gcc provides __declspec(a) as alias of __attribute__((a)).
// In contrast, clang-cc1 provides __declspec(a) with -fms-extensions.
if (Opts.Microsoft)
// Provide "as-is" __declspec.
Builder.defineMacro("__declspec", "__declspec");
else
// Provide alias of __attribute__ like mingw32-gcc.
Builder.defineMacro("__declspec(a)", "__attribute__((a))");
}
};
} // end anonymous namespace
namespace {
class DarwinX86_64TargetInfo : public DarwinTargetInfo<X86_64TargetInfo> {
public:
DarwinX86_64TargetInfo(const std::string& triple)
: DarwinTargetInfo<X86_64TargetInfo>(triple) {
Int64Type = SignedLongLong;
}
};
} // end anonymous namespace
namespace {
class OpenBSDX86_64TargetInfo : public OpenBSDTargetInfo<X86_64TargetInfo> {
public:
OpenBSDX86_64TargetInfo(const std::string& triple)
: OpenBSDTargetInfo<X86_64TargetInfo>(triple) {
IntMaxType = SignedLongLong;
UIntMaxType = UnsignedLongLong;
Int64Type = SignedLongLong;
}
};
} // end anonymous namespace
2008-04-22 02:56:49 +08:00
namespace {
class ARMTargetInfo : public TargetInfo {
// Possible FPU choices.
enum FPUMode {
NoFPU,
VFP2FPU,
VFP3FPU,
NeonFPU
};
static bool FPUModeIsVFP(FPUMode Mode) {
return Mode >= VFP2FPU && Mode <= NeonFPU;
}
static const TargetInfo::GCCRegAlias GCCRegAliases[];
static const char * const GCCRegNames[];
std::string ABI, CPU;
unsigned FPU : 3;
unsigned IsThumb : 1;
// Initialized via features.
unsigned SoftFloat : 1;
unsigned SoftFloatABI : 1;
static const Builtin::Info BuiltinInfo[];
2008-04-22 02:56:49 +08:00
public:
ARMTargetInfo(const std::string &TripleStr)
: TargetInfo(TripleStr), ABI("aapcs-linux"), CPU("arm1136j-s")
{
SizeType = UnsignedInt;
PtrDiffType = SignedInt;
// {} in inline assembly are neon specifiers, not assembly variant
// specifiers.
NoAsmVariants = true;
2010-10-21 11:16:25 +08:00
// FIXME: Should we just treat this as a feature?
IsThumb = getTriple().getArchName().startswith("thumb");
if (IsThumb) {
DescriptionString = ("e-p:32:32:32-i1:8:32-i8:8:32-i16:16:32-i32:32:32-"
"i64:64:64-f32:32:32-f64:64:64-"
"v64:64:64-v128:64:128-a0:0:32-n32");
} else {
DescriptionString = ("e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-"
"i64:64:64-f32:32:32-f64:64:64-"
"v64:64:64-v128:64:128-a0:0:64-n32");
}
// ARM targets default to using the ARM C++ ABI.
CXXABI = CXXABI_ARM;
}
virtual const char *getABI() const { return ABI.c_str(); }
virtual bool setABI(const std::string &Name) {
ABI = Name;
// The defaults (above) are for AAPCS, check if we need to change them.
//
// FIXME: We need support for -meabi... we could just mangle it into the
// name.
if (Name == "apcs-gnu") {
DoubleAlign = LongLongAlign = LongDoubleAlign = 32;
SizeType = UnsignedLong;
// Do not respect the alignment of bit-field types when laying out
// structures. This corresponds to PCC_BITFIELD_TYPE_MATTERS in gcc.
UseBitFieldTypeAlignment = false;
if (IsThumb) {
DescriptionString = ("e-p:32:32:32-i1:8:32-i8:8:32-i16:16:32-i32:32:32-"
"i64:32:32-f32:32:32-f64:32:32-"
"v64:32:64-v128:32:128-a0:0:32-n32");
} else {
DescriptionString = ("e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-"
"i64:32:64-f32:32:32-f64:32:64-"
"v64:32:64-v128:32:128-a0:0:32-n32");
}
// FIXME: Override "preferred align" for double and long long.
} else if (Name == "aapcs") {
// FIXME: Enumerated types are variable width in straight AAPCS.
} else if (Name == "aapcs-linux") {
;
} else
return false;
return true;
}
void getDefaultFeatures(const std::string &CPU,
llvm::StringMap<bool> &Features) const {
// FIXME: This should not be here.
Features["vfp2"] = false;
Features["vfp3"] = false;
Features["neon"] = false;
if (CPU == "arm1136jf-s" || CPU == "arm1176jzf-s" || CPU == "mpcore")
Features["vfp2"] = true;
else if (CPU == "cortex-a8" || CPU == "cortex-a9")
Features["neon"] = true;
}
2010-10-21 11:16:25 +08:00
virtual bool setFeatureEnabled(llvm::StringMap<bool> &Features,
const std::string &Name,
bool Enabled) const {
if (Name == "soft-float" || Name == "soft-float-abi") {
Features[Name] = Enabled;
} else if (Name == "vfp2" || Name == "vfp3" || Name == "neon") {
// These effectively are a single option, reset them when any is enabled.
if (Enabled)
Features["vfp2"] = Features["vfp3"] = Features["neon"] = false;
Features[Name] = Enabled;
} else
return false;
return true;
}
virtual void HandleTargetFeatures(std::vector<std::string> &Features) {
FPU = NoFPU;
SoftFloat = SoftFloatABI = false;
for (unsigned i = 0, e = Features.size(); i != e; ++i) {
if (Features[i] == "+soft-float")
SoftFloat = true;
else if (Features[i] == "+soft-float-abi")
SoftFloatABI = true;
else if (Features[i] == "+vfp2")
FPU = VFP2FPU;
else if (Features[i] == "+vfp3")
FPU = VFP3FPU;
else if (Features[i] == "+neon")
FPU = NeonFPU;
}
// Remove front-end specific options which the backend handles differently.
std::vector<std::string>::iterator it;
it = std::find(Features.begin(), Features.end(), "+soft-float");
if (it != Features.end())
Features.erase(it);
it = std::find(Features.begin(), Features.end(), "+soft-float-abi");
if (it != Features.end())
Features.erase(it);
}
static const char *getCPUDefineSuffix(llvm::StringRef Name) {
return llvm::StringSwitch<const char*>(Name)
.Cases("arm8", "arm810", "4")
.Cases("strongarm", "strongarm110", "strongarm1100", "strongarm1110", "4")
.Cases("arm7tdmi", "arm7tdmi-s", "arm710t", "arm720t", "arm9", "4T")
.Cases("arm9tdmi", "arm920", "arm920t", "arm922t", "arm940t", "4T")
.Case("ep9312", "4T")
.Cases("arm10tdmi", "arm1020t", "5T")
.Cases("arm9e", "arm946e-s", "arm966e-s", "arm968e-s", "5TE")
.Case("arm926ej-s", "5TEJ")
.Cases("arm10e", "arm1020e", "arm1022e", "5TE")
.Cases("xscale", "iwmmxt", "5TE")
.Case("arm1136j-s", "6J")
.Cases("arm1176jz-s", "arm1176jzf-s", "6ZK")
.Cases("arm1136jf-s", "mpcorenovfp", "mpcore", "6K")
.Cases("arm1156t2-s", "arm1156t2f-s", "6T2")
.Cases("cortex-a8", "cortex-a9", "7A")
.Case("cortex-m3", "7M")
.Case("cortex-m0", "6M")
.Default(0);
}
virtual bool setCPU(const std::string &Name) {
if (!getCPUDefineSuffix(Name))
return false;
CPU = Name;
return true;
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
// Target identification.
Builder.defineMacro("__arm");
Builder.defineMacro("__arm__");
2009-05-03 21:42:53 +08:00
// Target properties.
Builder.defineMacro("__ARMEL__");
Builder.defineMacro("__LITTLE_ENDIAN__");
Builder.defineMacro("__REGISTER_PREFIX__", "");
llvm::StringRef CPUArch = getCPUDefineSuffix(CPU);
Builder.defineMacro("__ARM_ARCH_" + CPUArch + "__");
2009-05-03 21:42:53 +08:00
// Subtarget options.
// FIXME: It's more complicated than this and we don't really support
// interworking.
if ('5' <= CPUArch[0] && CPUArch[0] <= '7')
Builder.defineMacro("__THUMB_INTERWORK__");
if (ABI == "aapcs" || ABI == "aapcs-linux")
Builder.defineMacro("__ARM_EABI__");
if (SoftFloat)
Builder.defineMacro("__SOFTFP__");
if (CPU == "xscale")
Builder.defineMacro("__XSCALE__");
bool IsThumb2 = IsThumb && (CPUArch == "6T2" || CPUArch.startswith("7"));
if (IsThumb) {
Builder.defineMacro("__THUMBEL__");
Builder.defineMacro("__thumb__");
if (IsThumb2)
Builder.defineMacro("__thumb2__");
}
// Note, this is always on in gcc, even though it doesn't make sense.
Builder.defineMacro("__APCS_32__");
if (FPUModeIsVFP((FPUMode) FPU))
Builder.defineMacro("__VFP_FP__");
// This only gets set when Neon instructions are actually available, unlike
// the VFP define, hence the soft float and arch check. This is subtly
// different from gcc, we follow the intent which was that it should be set
// when Neon instructions are actually available.
if (FPU == NeonFPU && !SoftFloat && IsThumb2)
Builder.defineMacro("__ARM_NEON__");
2008-04-22 02:56:49 +08:00
}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {
Records = BuiltinInfo;
NumRecords = clang::ARM::LastTSBuiltin-Builtin::FirstTSBuiltin;
2008-04-22 02:56:49 +08:00
}
virtual const char *getVAListDeclaration() const {
return "typedef char* __builtin_va_list;";
2008-04-22 02:56:49 +08:00
}
2009-05-03 21:42:53 +08:00
virtual void getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const;
2009-05-03 21:42:53 +08:00
virtual void getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const;
virtual bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &Info) const {
// FIXME: Check if this is complete
switch (*Name) {
default:
case 'l': // r0-r7
case 'h': // r8-r15
case 'w': // VFP Floating point register single precision
case 'P': // VFP Floating point register double precision
Info.setAllowsRegister();
return true;
}
2008-04-22 02:56:49 +08:00
return false;
}
virtual const char *getClobbers() const {
// FIXME: Is this really right?
2008-04-22 02:56:49 +08:00
return "";
}
};
const char * const ARMTargetInfo::GCCRegNames[] = {
// Integer registers
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "sp", "lr", "pc",
// Float registers
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
"s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
"s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
// Double registers
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
"d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
// Quad registers
"q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15"
};
void ARMTargetInfo::getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const {
Names = GCCRegNames;
NumNames = llvm::array_lengthof(GCCRegNames);
}
const TargetInfo::GCCRegAlias ARMTargetInfo::GCCRegAliases[] = {
{ { "a1" }, "r0" },
{ { "a2" }, "r1" },
{ { "a3" }, "r2" },
{ { "a4" }, "r3" },
{ { "v1" }, "r4" },
{ { "v2" }, "r5" },
{ { "v3" }, "r6" },
{ { "v4" }, "r7" },
{ { "v5" }, "r8" },
{ { "v6", "rfp" }, "r9" },
{ { "sl" }, "r10" },
{ { "fp" }, "r11" },
{ { "ip" }, "r12" },
{ { "r13" }, "sp" },
{ { "r14" }, "lr" },
{ { "r15" }, "pc" },
// The S, D and Q registers overlap, but aren't really aliases; we
// don't want to substitute one of these for a different-sized one.
};
void ARMTargetInfo::getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const {
Aliases = GCCRegAliases;
NumAliases = llvm::array_lengthof(GCCRegAliases);
}
const Builtin::Info ARMTargetInfo::BuiltinInfo[] = {
#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES, false },
#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) { #ID, TYPE, ATTRS, HEADER,\
ALL_LANGUAGES, false },
#include "clang/Basic/BuiltinsARM.def"
};
2008-04-22 02:56:49 +08:00
} // end anonymous namespace.
namespace {
class DarwinARMTargetInfo :
public DarwinTargetInfo<ARMTargetInfo> {
protected:
virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
MacroBuilder &Builder) const {
Implement a new 'availability' attribute, that allows one to specify which versions of an OS provide a certain facility. For example, void foo() __attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6))); says that the function "foo" was introduced in 10.2, deprecated in 10.4, and completely obsoleted in 10.6. This attribute ties in with the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that we want to deploy back to Mac OS X 10.1). There are several concrete behaviors that this attribute enables, as illustrated with the function foo() above: - If we choose a deployment target >= Mac OS X 10.4, uses of "foo" will result in a deprecation warning, as if we had placed attribute((deprecated)) on it (but with a better diagnostic) - If we choose a deployment target >= Mac OS X 10.6, uses of "foo" will result in an "unavailable" warning (in C)/error (in C++), as if we had placed attribute((unavailable)) on it - If we choose a deployment target prior to 10.2, foo() is weak-imported (if it is a kind of entity that can be weak imported), as if we had placed the weak_import attribute on it. Naturally, there can be multiple availability attributes on a declaration, for different platforms; only the current platform matters when checking availability attributes. The only platforms this attribute currently works for are "ios" and "macosx", since we already have -mxxxx-version-min flags for them and we have experience there with macro tricks translating down to the deprecated/unavailable/weak_import attributes. The end goal is to open this up to other platforms, and even extension to other "platforms" that are really libraries (say, through a #pragma clang define_system), but that hasn't yet been designed and we may want to shake out more issues with this narrower problem first. Addresses <rdar://problem/6690412>. As a drive-by bug-fix, if an entity is both deprecated and unavailable, we only emit the "unavailable" diagnostic. llvm-svn: 128127
2011-03-23 08:50:03 +08:00
getDarwinDefines(Builder, Opts, Triple, PlatformName, PlatformMinVersion);
}
public:
DarwinARMTargetInfo(const std::string& triple)
: DarwinTargetInfo<ARMTargetInfo>(triple) {
HasAlignMac68kSupport = true;
}
};
} // end anonymous namespace.
namespace {
class SparcV8TargetInfo : public TargetInfo {
static const TargetInfo::GCCRegAlias GCCRegAliases[];
static const char * const GCCRegNames[];
bool SoftFloat;
public:
SparcV8TargetInfo(const std::string& triple) : TargetInfo(triple) {
// FIXME: Support Sparc quad-precision long double?
DescriptionString = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-"
"i64:64:64-f32:32:32-f64:64:64-v64:64:64-n32";
}
virtual bool setFeatureEnabled(llvm::StringMap<bool> &Features,
const std::string &Name,
bool Enabled) const {
if (Name == "soft-float")
Features[Name] = Enabled;
else
return false;
return true;
}
virtual void HandleTargetFeatures(std::vector<std::string> &Features) {
SoftFloat = false;
for (unsigned i = 0, e = Features.size(); i != e; ++i)
if (Features[i] == "+soft-float")
SoftFloat = true;
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
DefineStd(Builder, "sparc", Opts);
Builder.defineMacro("__sparcv8");
Builder.defineMacro("__REGISTER_PREFIX__", "");
if (SoftFloat)
Builder.defineMacro("SOFT_FLOAT", "1");
}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {
// FIXME: Implement!
}
virtual const char *getVAListDeclaration() const {
return "typedef void* __builtin_va_list;";
}
2009-05-03 21:42:53 +08:00
virtual void getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const;
2009-05-03 21:42:53 +08:00
virtual void getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const;
virtual bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &info) const {
// FIXME: Implement!
return false;
}
virtual const char *getClobbers() const {
// FIXME: Implement!
return "";
}
};
const char * const SparcV8TargetInfo::GCCRegNames[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
};
2009-05-03 21:42:53 +08:00
void SparcV8TargetInfo::getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const {
Names = GCCRegNames;
NumNames = llvm::array_lengthof(GCCRegNames);
}
const TargetInfo::GCCRegAlias SparcV8TargetInfo::GCCRegAliases[] = {
2009-05-03 21:42:53 +08:00
{ { "g0" }, "r0" },
{ { "g1" }, "r1" },
{ { "g2" }, "r2" },
{ { "g3" }, "r3" },
{ { "g4" }, "r4" },
{ { "g5" }, "r5" },
{ { "g6" }, "r6" },
{ { "g7" }, "r7" },
{ { "o0" }, "r8" },
{ { "o1" }, "r9" },
{ { "o2" }, "r10" },
{ { "o3" }, "r11" },
{ { "o4" }, "r12" },
{ { "o5" }, "r13" },
{ { "o6", "sp" }, "r14" },
{ { "o7" }, "r15" },
{ { "l0" }, "r16" },
{ { "l1" }, "r17" },
{ { "l2" }, "r18" },
{ { "l3" }, "r19" },
{ { "l4" }, "r20" },
{ { "l5" }, "r21" },
{ { "l6" }, "r22" },
{ { "l7" }, "r23" },
{ { "i0" }, "r24" },
{ { "i1" }, "r25" },
{ { "i2" }, "r26" },
{ { "i3" }, "r27" },
{ { "i4" }, "r28" },
{ { "i5" }, "r29" },
{ { "i6", "fp" }, "r30" },
{ { "i7" }, "r31" },
};
2009-05-03 21:42:53 +08:00
void SparcV8TargetInfo::getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const {
Aliases = GCCRegAliases;
NumAliases = llvm::array_lengthof(GCCRegAliases);
}
} // end anonymous namespace.
namespace {
class AuroraUXSparcV8TargetInfo : public AuroraUXTargetInfo<SparcV8TargetInfo> {
public:
AuroraUXSparcV8TargetInfo(const std::string& triple) :
AuroraUXTargetInfo<SparcV8TargetInfo>(triple) {
SizeType = UnsignedInt;
PtrDiffType = SignedInt;
}
};
class SolarisSparcV8TargetInfo : public SolarisTargetInfo<SparcV8TargetInfo> {
public:
SolarisSparcV8TargetInfo(const std::string& triple) :
SolarisTargetInfo<SparcV8TargetInfo>(triple) {
SizeType = UnsignedInt;
PtrDiffType = SignedInt;
}
};
} // end anonymous namespace.
2009-05-03 21:43:08 +08:00
namespace {
class MSP430TargetInfo : public TargetInfo {
static const char * const GCCRegNames[];
public:
MSP430TargetInfo(const std::string& triple) : TargetInfo(triple) {
TLSSupported = false;
IntWidth = 16; IntAlign = 16;
LongWidth = 32; LongLongWidth = 64;
LongAlign = LongLongAlign = 16;
PointerWidth = 16; PointerAlign = 16;
2009-05-03 21:43:08 +08:00
SizeType = UnsignedInt;
IntMaxType = SignedLong;
UIntMaxType = UnsignedLong;
IntPtrType = SignedShort;
PtrDiffType = SignedInt;
SigAtomicType = SignedLong;
DescriptionString = "e-p:16:16:16-i8:8:8-i16:16:16-i32:16:32-n8:16";
2009-05-03 21:43:08 +08:00
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
Builder.defineMacro("MSP430");
Builder.defineMacro("__MSP430__");
2009-05-03 21:43:08 +08:00
// FIXME: defines for different 'flavours' of MCU
}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {
// FIXME: Implement.
Records = 0;
NumRecords = 0;
}
virtual void getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const;
virtual void getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const {
// No aliases.
Aliases = 0;
NumAliases = 0;
}
virtual bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &info) const {
// No target constraints for now.
return false;
2009-05-03 21:43:08 +08:00
}
virtual const char *getClobbers() const {
// FIXME: Is this really right?
return "";
}
virtual const char *getVAListDeclaration() const {
// FIXME: implement
return "typedef char* __builtin_va_list;";
2009-05-03 21:43:08 +08:00
}
};
const char * const MSP430TargetInfo::GCCRegNames[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
};
void MSP430TargetInfo::getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const {
Names = GCCRegNames;
NumNames = llvm::array_lengthof(GCCRegNames);
}
}
namespace {
class SystemZTargetInfo : public TargetInfo {
static const char * const GCCRegNames[];
public:
SystemZTargetInfo(const std::string& triple) : TargetInfo(triple) {
TLSSupported = false;
IntWidth = IntAlign = 32;
LongWidth = LongLongWidth = LongAlign = LongLongAlign = 64;
PointerWidth = PointerAlign = 64;
DescriptionString = "E-p:64:64:64-i8:8:16-i16:16:16-i32:32:32-"
"i64:64:64-f32:32:32-f64:64:64-f128:128:128-a0:16:16-n32:64";
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
Builder.defineMacro("__s390__");
Builder.defineMacro("__s390x__");
}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {
// FIXME: Implement.
Records = 0;
NumRecords = 0;
}
virtual void getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const;
virtual void getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const {
// No aliases.
Aliases = 0;
NumAliases = 0;
}
virtual bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &info) const {
// FIXME: implement
return true;
}
virtual const char *getClobbers() const {
// FIXME: Is this really right?
return "";
}
virtual const char *getVAListDeclaration() const {
// FIXME: implement
return "typedef char* __builtin_va_list;";
}
};
const char * const SystemZTargetInfo::GCCRegNames[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
};
void SystemZTargetInfo::getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const {
Names = GCCRegNames;
NumNames = llvm::array_lengthof(GCCRegNames);
}
}
namespace {
class BlackfinTargetInfo : public TargetInfo {
static const char * const GCCRegNames[];
public:
BlackfinTargetInfo(const std::string& triple) : TargetInfo(triple) {
TLSSupported = false;
DoubleAlign = 32;
LongLongAlign = 32;
LongDoubleAlign = 32;
DescriptionString = "e-p:32:32-i64:32-f64:32-n32";
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
DefineStd(Builder, "bfin", Opts);
DefineStd(Builder, "BFIN", Opts);
Builder.defineMacro("__ADSPBLACKFIN__");
// FIXME: This one is really dependent on -mcpu
Builder.defineMacro("__ADSPLPBLACKFIN__");
// FIXME: Add cpu-dependent defines and __SILICON_REVISION__
}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {
// FIXME: Implement.
Records = 0;
NumRecords = 0;
}
virtual void getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const;
virtual void getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const {
// No aliases.
Aliases = 0;
NumAliases = 0;
}
virtual bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &Info) const {
if (strchr("adzDWeABbvfcCtukxywZY", Name[0])) {
Info.setAllowsRegister();
return true;
}
return false;
}
virtual const char *getClobbers() const {
return "";
}
virtual const char *getVAListDeclaration() const {
return "typedef char* __builtin_va_list;";
}
};
const char * const BlackfinTargetInfo::GCCRegNames[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"p0", "p1", "p2", "p3", "p4", "p5", "sp", "fp",
"i0", "i1", "i2", "i3", "b0", "b1", "b2", "b3",
"l0", "l1", "l2", "l3", "m0", "m1", "m2", "m3",
"a0", "a1", "cc",
"rets", "reti", "retx", "retn", "rete", "astat", "seqstat", "usp",
"argp", "lt0", "lt1", "lc0", "lc1", "lb0", "lb1"
};
void BlackfinTargetInfo::getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const {
Names = GCCRegNames;
NumNames = llvm::array_lengthof(GCCRegNames);
}
}
namespace {
// LLVM and Clang cannot be used directly to output native binaries for
// target, but is used to compile C code to llvm bitcode with correct
// type and alignment information.
//
// TCE uses the llvm bitcode as input and uses it for generating customized
// target processor and program binary. TCE co-design environment is
// publicly available in http://tce.cs.tut.fi
class TCETargetInfo : public TargetInfo{
public:
TCETargetInfo(const std::string& triple) : TargetInfo(triple) {
TLSSupported = false;
IntWidth = 32;
LongWidth = LongLongWidth = 32;
PointerWidth = 32;
IntAlign = 32;
LongAlign = LongLongAlign = 32;
PointerAlign = 32;
SizeType = UnsignedInt;
IntMaxType = SignedLong;
UIntMaxType = UnsignedLong;
IntPtrType = SignedInt;
PtrDiffType = SignedInt;
FloatWidth = 32;
FloatAlign = 32;
DoubleWidth = 32;
DoubleAlign = 32;
LongDoubleWidth = 32;
LongDoubleAlign = 32;
FloatFormat = &llvm::APFloat::IEEEsingle;
DoubleFormat = &llvm::APFloat::IEEEsingle;
LongDoubleFormat = &llvm::APFloat::IEEEsingle;
DescriptionString = "E-p:32:32:32-i1:8:8-i8:8:32-"
"i16:16:32-i32:32:32-i64:32:32-"
"f32:32:32-f64:32:32-v64:32:32-"
"v128:32:32-a0:0:32-n32";
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
DefineStd(Builder, "tce", Opts);
Builder.defineMacro("__TCE__");
Builder.defineMacro("__TCE_V1__");
}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {}
virtual const char *getClobbers() const {
return "";
}
virtual const char *getVAListDeclaration() const {
return "typedef void* __builtin_va_list;";
}
virtual void getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const {}
virtual bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &info) const {
return true;
}
virtual void getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const {}
};
}
namespace {
class MipsTargetInfo : public TargetInfo {
std::string ABI, CPU;
static const TargetInfo::GCCRegAlias GCCRegAliases[];
static const char * const GCCRegNames[];
public:
MipsTargetInfo(const std::string& triple) : TargetInfo(triple), ABI("o32") {
DescriptionString = "E-p:32:32:32-i1:8:8-i8:8:32-i16:16:32-i32:32:32-"
"i64:32:64-f32:32:32-f64:64:64-v64:64:64-n32";
}
virtual const char *getABI() const { return ABI.c_str(); }
virtual bool setABI(const std::string &Name) {
if ((Name == "o32") || (Name == "eabi")) {
ABI = Name;
return true;
} else
return false;
}
virtual bool setCPU(const std::string &Name) {
CPU = Name;
return true;
}
void getDefaultFeatures(const std::string &CPU,
llvm::StringMap<bool> &Features) const {
Features[ABI] = true;
Features[CPU] = true;
}
virtual void getArchDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
if (ABI == "o32")
Builder.defineMacro("__mips_o32");
else if (ABI == "eabi")
Builder.defineMacro("__mips_eabi");
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
DefineStd(Builder, "mips", Opts);
Builder.defineMacro("_mips");
DefineStd(Builder, "MIPSEB", Opts);
Builder.defineMacro("_MIPSEB");
Builder.defineMacro("__REGISTER_PREFIX__", "");
getArchDefines(Opts, Builder);
}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {
// FIXME: Implement!
}
virtual const char *getVAListDeclaration() const {
return "typedef void* __builtin_va_list;";
}
virtual void getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const;
virtual void getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const;
virtual bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &Info) const {
switch (*Name) {
default:
case 'r': // CPU registers.
case 'd': // Equivalent to "r" unless generating MIPS16 code.
case 'y': // Equivalent to "r", backwards compatibility only.
case 'f': // floating-point registers.
Info.setAllowsRegister();
return true;
}
return false;
}
virtual const char *getClobbers() const {
// FIXME: Implement!
return "";
}
};
const char * const MipsTargetInfo::GCCRegNames[] = {
2010-10-21 11:16:25 +08:00
"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7",
"$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15",
"$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23",
"$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31",
"$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
"$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
"$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
"$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",
"hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",
"$fcc5","$fcc6","$fcc7"
};
void MipsTargetInfo::getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const {
Names = GCCRegNames;
NumNames = llvm::array_lengthof(GCCRegNames);
}
const TargetInfo::GCCRegAlias MipsTargetInfo::GCCRegAliases[] = {
{ { "at" }, "$1" },
{ { "v0" }, "$2" },
{ { "v1" }, "$3" },
{ { "a0" }, "$4" },
{ { "a1" }, "$5" },
{ { "a2" }, "$6" },
{ { "a3" }, "$7" },
{ { "t0" }, "$8" },
{ { "t1" }, "$9" },
{ { "t2" }, "$10" },
{ { "t3" }, "$11" },
{ { "t4" }, "$12" },
{ { "t5" }, "$13" },
{ { "t6" }, "$14" },
{ { "t7" }, "$15" },
{ { "s0" }, "$16" },
{ { "s1" }, "$17" },
{ { "s2" }, "$18" },
{ { "s3" }, "$19" },
{ { "s4" }, "$20" },
{ { "s5" }, "$21" },
{ { "s6" }, "$22" },
{ { "s7" }, "$23" },
{ { "t8" }, "$24" },
{ { "t9" }, "$25" },
{ { "k0" }, "$26" },
{ { "k1" }, "$27" },
{ { "gp" }, "$28" },
{ { "sp" }, "$29" },
{ { "fp" }, "$30" },
{ { "ra" }, "$31" }
};
void MipsTargetInfo::getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const {
Aliases = GCCRegAliases;
NumAliases = llvm::array_lengthof(GCCRegAliases);
}
} // end anonymous namespace.
namespace {
class MipselTargetInfo : public MipsTargetInfo {
public:
MipselTargetInfo(const std::string& triple) : MipsTargetInfo(triple) {
DescriptionString = "e-p:32:32:32-i1:8:8-i8:8:32-i16:16:32-i32:32:32-"
"i64:32:64-f32:32:32-f64:64:64-v64:64:64-n32";
}
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const;
};
void MipselTargetInfo::getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
DefineStd(Builder, "mips", Opts);
Builder.defineMacro("_mips");
DefineStd(Builder, "MIPSEL", Opts);
Builder.defineMacro("_MIPSEL");
Builder.defineMacro("__REGISTER_PREFIX__", "");
getArchDefines(Opts, Builder);
}
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// Driver code
//===----------------------------------------------------------------------===//
static TargetInfo *AllocateTarget(const std::string &T) {
llvm::Triple Triple(T);
llvm::Triple::OSType os = Triple.getOS();
switch (Triple.getArch()) {
default:
return NULL;
case llvm::Triple::arm:
case llvm::Triple::thumb:
switch (os) {
case llvm::Triple::Linux:
return new LinuxTargetInfo<ARMTargetInfo>(T);
case llvm::Triple::Darwin:
return new DarwinARMTargetInfo(T);
case llvm::Triple::FreeBSD:
return new FreeBSDTargetInfo<ARMTargetInfo>(T);
default:
return new ARMTargetInfo(T);
}
2008-04-22 02:56:49 +08:00
case llvm::Triple::bfin:
return new BlackfinTargetInfo(T);
case llvm::Triple::msp430:
return new MSP430TargetInfo(T);
case llvm::Triple::mips:
if (os == llvm::Triple::Psp)
return new PSPTargetInfo<MipsTargetInfo>(T);
if (os == llvm::Triple::Linux)
return new LinuxTargetInfo<MipsTargetInfo>(T);
return new MipsTargetInfo(T);
case llvm::Triple::mipsel:
if (os == llvm::Triple::Psp)
return new PSPTargetInfo<MipselTargetInfo>(T);
if (os == llvm::Triple::Linux)
return new LinuxTargetInfo<MipselTargetInfo>(T);
return new MipselTargetInfo(T);
case llvm::Triple::ppc:
if (os == llvm::Triple::Darwin)
return new DarwinPPC32TargetInfo(T);
else if (os == llvm::Triple::FreeBSD)
return new FreeBSDTargetInfo<PPC32TargetInfo>(T);
return new PPC32TargetInfo(T);
2009-05-03 21:43:08 +08:00
case llvm::Triple::ppc64:
if (os == llvm::Triple::Darwin)
return new DarwinPPC64TargetInfo(T);
else if (os == llvm::Triple::Lv2)
return new PS3PPUTargetInfo<PPC64TargetInfo>(T);
else if (os == llvm::Triple::FreeBSD)
return new FreeBSDTargetInfo<PPC64TargetInfo>(T);
return new PPC64TargetInfo(T);
case llvm::Triple::mblaze:
return new MBlazeTargetInfo(T);
case llvm::Triple::sparc:
if (os == llvm::Triple::AuroraUX)
return new AuroraUXSparcV8TargetInfo(T);
if (os == llvm::Triple::Solaris)
return new SolarisSparcV8TargetInfo(T);
return new SparcV8TargetInfo(T);
// FIXME: Need a real SPU target.
case llvm::Triple::cellspu:
return new PS3SPUTargetInfo<PPC64TargetInfo>(T);
case llvm::Triple::systemz:
return new SystemZTargetInfo(T);
case llvm::Triple::tce:
return new TCETargetInfo(T);
case llvm::Triple::x86:
switch (os) {
case llvm::Triple::AuroraUX:
return new AuroraUXTargetInfo<X86_32TargetInfo>(T);
case llvm::Triple::Darwin:
return new DarwinI386TargetInfo(T);
case llvm::Triple::Linux:
return new LinuxTargetInfo<X86_32TargetInfo>(T);
case llvm::Triple::DragonFly:
return new DragonFlyBSDTargetInfo<X86_32TargetInfo>(T);
case llvm::Triple::NetBSD:
return new NetBSDTargetInfo<X86_32TargetInfo>(T);
case llvm::Triple::OpenBSD:
return new OpenBSDI386TargetInfo(T);
case llvm::Triple::FreeBSD:
return new FreeBSDTargetInfo<X86_32TargetInfo>(T);
case llvm::Triple::Minix:
return new MinixTargetInfo<X86_32TargetInfo>(T);
case llvm::Triple::Solaris:
return new SolarisTargetInfo<X86_32TargetInfo>(T);
case llvm::Triple::Cygwin:
return new CygwinX86_32TargetInfo(T);
case llvm::Triple::MinGW32:
return new MinGWX86_32TargetInfo(T);
case llvm::Triple::Win32:
return new VisualStudioWindowsX86_32TargetInfo(T);
case llvm::Triple::Haiku:
return new HaikuX86_32TargetInfo(T);
default:
return new X86_32TargetInfo(T);
}
case llvm::Triple::x86_64:
switch (os) {
case llvm::Triple::AuroraUX:
return new AuroraUXTargetInfo<X86_64TargetInfo>(T);
case llvm::Triple::Darwin:
return new DarwinX86_64TargetInfo(T);
case llvm::Triple::Linux:
return new LinuxTargetInfo<X86_64TargetInfo>(T);
case llvm::Triple::DragonFly:
return new DragonFlyBSDTargetInfo<X86_64TargetInfo>(T);
case llvm::Triple::NetBSD:
return new NetBSDTargetInfo<X86_64TargetInfo>(T);
case llvm::Triple::OpenBSD:
return new OpenBSDX86_64TargetInfo(T);
case llvm::Triple::FreeBSD:
return new FreeBSDTargetInfo<X86_64TargetInfo>(T);
case llvm::Triple::Solaris:
return new SolarisTargetInfo<X86_64TargetInfo>(T);
case llvm::Triple::MinGW32:
return new MinGWX86_64TargetInfo(T);
case llvm::Triple::Win32: // This is what Triple.h supports now.
if (Triple.getEnvironment() == llvm::Triple::MachO)
return new DarwinX86_64TargetInfo(T);
else
return new VisualStudioWindowsX86_64TargetInfo(T);
default:
return new X86_64TargetInfo(T);
}
}
}
/// CreateTargetInfo - Return the target info object for the specified target
/// triple.
TargetInfo *TargetInfo::CreateTargetInfo(Diagnostic &Diags,
TargetOptions &Opts) {
llvm::Triple Triple(Opts.Triple);
// Construct the target
llvm::OwningPtr<TargetInfo> Target(AllocateTarget(Triple.str()));
if (!Target) {
Diags.Report(diag::err_target_unknown_triple) << Triple.str();
return 0;
}
// Set the target CPU if specified.
if (!Opts.CPU.empty() && !Target->setCPU(Opts.CPU)) {
Diags.Report(diag::err_target_unknown_cpu) << Opts.CPU;
return 0;
}
// Set the target ABI if specified.
if (!Opts.ABI.empty() && !Target->setABI(Opts.ABI)) {
Diags.Report(diag::err_target_unknown_abi) << Opts.ABI;
return 0;
}
// Set the target C++ ABI.
if (!Opts.CXXABI.empty() && !Target->setCXXABI(Opts.CXXABI)) {
Diags.Report(diag::err_target_unknown_cxxabi) << Opts.CXXABI;
return 0;
}
// Compute the default target features, we need the target to handle this
// because features may have dependencies on one another.
llvm::StringMap<bool> Features;
Target->getDefaultFeatures(Opts.CPU, Features);
// Apply the user specified deltas.
for (std::vector<std::string>::const_iterator it = Opts.Features.begin(),
ie = Opts.Features.end(); it != ie; ++it) {
const char *Name = it->c_str();
// Apply the feature via the target.
if ((Name[0] != '-' && Name[0] != '+') ||
!Target->setFeatureEnabled(Features, Name + 1, (Name[0] == '+'))) {
Diags.Report(diag::err_target_invalid_feature) << Name;
return 0;
}
}
// Add the features to the compile options.
//
// FIXME: If we are completely confident that we have the right set, we only
// need to pass the minuses.
Opts.Features.clear();
for (llvm::StringMap<bool>::const_iterator it = Features.begin(),
ie = Features.end(); it != ie; ++it)
Opts.Features.push_back(std::string(it->second ? "+" : "-") + it->first());
Target->HandleTargetFeatures(Opts.Features);
return Target.take();
}