2012-02-18 20:03:15 +08:00
|
|
|
//===-- PPCInstrInfo.td - The PowerPC Instruction Set ------*- tablegen -*-===//
|
|
|
|
//
|
2004-06-22 00:55:25 +08:00
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
2007-12-30 04:36:04 +08:00
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
2012-02-18 20:03:15 +08:00
|
|
|
//
|
2004-06-22 00:55:25 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
2004-08-10 01:24:04 +08:00
|
|
|
// This file describes the subset of the 32-bit PowerPC instruction set, as used
|
|
|
|
// by the PowerPC instruction selector.
|
2004-06-22 00:55:25 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2005-10-15 07:40:39 +08:00
|
|
|
include "PPCInstrFormats.td"
|
2004-06-22 00:55:25 +08:00
|
|
|
|
2006-03-01 13:50:56 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// PowerPC specific type constraints.
|
|
|
|
//
|
|
|
|
def SDT_PPCstfiwx : SDTypeProfile<0, 2, [ // stfiwx
|
|
|
|
SDTCisVT<0, f64>, SDTCisPtrTy<1>
|
|
|
|
]>;
|
2007-11-13 17:19:02 +08:00
|
|
|
def SDT_PPCCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
|
|
|
|
def SDT_PPCCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
|
|
|
|
SDTCisVT<1, i32> ]>;
|
2006-03-20 09:53:53 +08:00
|
|
|
def SDT_PPCvperm : SDTypeProfile<1, 3, [
|
|
|
|
SDTCisVT<3, v16i8>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>
|
|
|
|
]>;
|
|
|
|
|
2006-03-31 13:13:27 +08:00
|
|
|
def SDT_PPCvcmp : SDTypeProfile<1, 3, [
|
2006-03-26 18:06:40 +08:00
|
|
|
SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>
|
|
|
|
]>;
|
|
|
|
|
Implement an important entry from README_ALTIVEC:
If an altivec predicate compare is used immediately by a branch, don't
use a (serializing) MFCR instruction to read the CR6 register, which requires
a compare to get it back to CR's. Instead, just branch on CR6 directly. :)
For example, for:
void foo2(vector float *A, vector float *B) {
if (!vec_any_eq(*A, *B))
*B = (vector float){0,0,0,0};
}
We now generate:
_foo2:
mfspr r2, 256
oris r5, r2, 12288
mtspr 256, r5
lvx v2, 0, r4
lvx v3, 0, r3
vcmpeqfp. v2, v3, v2
bne cr6, LBB1_2 ; UnifiedReturnBlock
LBB1_1: ; cond_true
vxor v2, v2, v2
stvx v2, 0, r4
mtspr 256, r2
blr
LBB1_2: ; UnifiedReturnBlock
mtspr 256, r2
blr
instead of:
_foo2:
mfspr r2, 256
oris r5, r2, 12288
mtspr 256, r5
lvx v2, 0, r4
lvx v3, 0, r3
vcmpeqfp. v2, v3, v2
mfcr r3, 2
rlwinm r3, r3, 27, 31, 31
cmpwi cr0, r3, 0
beq cr0, LBB1_2 ; UnifiedReturnBlock
LBB1_1: ; cond_true
vxor v2, v2, v2
stvx v2, 0, r4
mtspr 256, r2
blr
LBB1_2: ; UnifiedReturnBlock
mtspr 256, r2
blr
This implements CodeGen/PowerPC/vec_br_cmp.ll.
llvm-svn: 27804
2006-04-19 01:59:36 +08:00
|
|
|
def SDT_PPCcondbr : SDTypeProfile<0, 3, [
|
2006-11-18 06:37:34 +08:00
|
|
|
SDTCisVT<0, i32>, SDTCisVT<2, OtherVT>
|
Implement an important entry from README_ALTIVEC:
If an altivec predicate compare is used immediately by a branch, don't
use a (serializing) MFCR instruction to read the CR6 register, which requires
a compare to get it back to CR's. Instead, just branch on CR6 directly. :)
For example, for:
void foo2(vector float *A, vector float *B) {
if (!vec_any_eq(*A, *B))
*B = (vector float){0,0,0,0};
}
We now generate:
_foo2:
mfspr r2, 256
oris r5, r2, 12288
mtspr 256, r5
lvx v2, 0, r4
lvx v3, 0, r3
vcmpeqfp. v2, v3, v2
bne cr6, LBB1_2 ; UnifiedReturnBlock
LBB1_1: ; cond_true
vxor v2, v2, v2
stvx v2, 0, r4
mtspr 256, r2
blr
LBB1_2: ; UnifiedReturnBlock
mtspr 256, r2
blr
instead of:
_foo2:
mfspr r2, 256
oris r5, r2, 12288
mtspr 256, r5
lvx v2, 0, r4
lvx v3, 0, r3
vcmpeqfp. v2, v3, v2
mfcr r3, 2
rlwinm r3, r3, 27, 31, 31
cmpwi cr0, r3, 0
beq cr0, LBB1_2 ; UnifiedReturnBlock
LBB1_1: ; cond_true
vxor v2, v2, v2
stvx v2, 0, r4
mtspr 256, r2
blr
LBB1_2: ; UnifiedReturnBlock
mtspr 256, r2
blr
This implements CodeGen/PowerPC/vec_br_cmp.ll.
llvm-svn: 27804
2006-04-19 01:59:36 +08:00
|
|
|
]>;
|
|
|
|
|
2009-09-26 04:36:54 +08:00
|
|
|
def SDT_PPClbrx : SDTypeProfile<1, 2, [
|
|
|
|
SDTCisVT<0, i32>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>
|
2006-07-11 04:56:58 +08:00
|
|
|
]>;
|
2009-09-26 04:36:54 +08:00
|
|
|
def SDT_PPCstbrx : SDTypeProfile<0, 3, [
|
|
|
|
SDTCisVT<0, i32>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>
|
2006-07-11 04:56:58 +08:00
|
|
|
]>;
|
|
|
|
|
2008-07-12 10:23:19 +08:00
|
|
|
def SDT_PPClarx : SDTypeProfile<1, 1, [
|
|
|
|
SDTCisInt<0>, SDTCisPtrTy<1>
|
2008-04-19 09:30:48 +08:00
|
|
|
]>;
|
2008-07-12 10:23:19 +08:00
|
|
|
def SDT_PPCstcx : SDTypeProfile<0, 2, [
|
|
|
|
SDTCisInt<0>, SDTCisPtrTy<1>
|
2008-04-19 09:30:48 +08:00
|
|
|
]>;
|
|
|
|
|
2008-04-30 17:16:33 +08:00
|
|
|
def SDT_PPCTC_ret : SDTypeProfile<0, 2, [
|
|
|
|
SDTCisPtrTy<0>, SDTCisVT<1, i32>
|
|
|
|
]>;
|
|
|
|
|
2009-08-15 19:54:46 +08:00
|
|
|
|
2005-10-26 04:41:46 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// PowerPC specific DAG Nodes.
|
|
|
|
//
|
|
|
|
|
|
|
|
def PPCfcfid : SDNode<"PPCISD::FCFID" , SDTFPUnaryOp, []>;
|
|
|
|
def PPCfctidz : SDNode<"PPCISD::FCTIDZ", SDTFPUnaryOp, []>;
|
|
|
|
def PPCfctiwz : SDNode<"PPCISD::FCTIWZ", SDTFPUnaryOp, []>;
|
2008-01-06 14:44:58 +08:00
|
|
|
def PPCstfiwx : SDNode<"PPCISD::STFIWX", SDT_PPCstfiwx,
|
|
|
|
[SDNPHasChain, SDNPMayStore]>;
|
2005-10-26 04:41:46 +08:00
|
|
|
|
2007-10-10 09:01:31 +08:00
|
|
|
// This sequence is used for long double->int conversions. It changes the
|
|
|
|
// bits in the FPSCR which is not modelled.
|
|
|
|
def PPCmffs : SDNode<"PPCISD::MFFS", SDTypeProfile<1, 0, [SDTCisVT<0, f64>]>,
|
2010-12-24 02:28:41 +08:00
|
|
|
[SDNPOutGlue]>;
|
2007-10-10 09:01:31 +08:00
|
|
|
def PPCmtfsb0 : SDNode<"PPCISD::MTFSB0", SDTypeProfile<0, 1, [SDTCisInt<0>]>,
|
2010-12-24 02:28:41 +08:00
|
|
|
[SDNPInGlue, SDNPOutGlue]>;
|
2007-10-10 09:01:31 +08:00
|
|
|
def PPCmtfsb1 : SDNode<"PPCISD::MTFSB1", SDTypeProfile<0, 1, [SDTCisInt<0>]>,
|
2010-12-24 02:28:41 +08:00
|
|
|
[SDNPInGlue, SDNPOutGlue]>;
|
2007-10-10 09:01:31 +08:00
|
|
|
def PPCfaddrtz: SDNode<"PPCISD::FADDRTZ", SDTFPBinOp,
|
2010-12-24 02:28:41 +08:00
|
|
|
[SDNPInGlue, SDNPOutGlue]>;
|
2007-10-10 09:01:31 +08:00
|
|
|
def PPCmtfsf : SDNode<"PPCISD::MTFSF", SDTypeProfile<1, 3,
|
|
|
|
[SDTCisVT<0, f64>, SDTCisInt<1>, SDTCisVT<2, f64>,
|
|
|
|
SDTCisVT<3, f64>]>,
|
2010-12-24 02:28:41 +08:00
|
|
|
[SDNPInGlue]>;
|
2007-10-10 09:01:31 +08:00
|
|
|
|
2005-10-26 04:55:47 +08:00
|
|
|
def PPCfsel : SDNode<"PPCISD::FSEL",
|
|
|
|
// Type constraint for fsel.
|
|
|
|
SDTypeProfile<1, 3, [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>,
|
|
|
|
SDTCisFP<0>, SDTCisVT<1, f64>]>, []>;
|
2005-09-09 03:50:41 +08:00
|
|
|
|
2005-12-14 06:55:22 +08:00
|
|
|
def PPChi : SDNode<"PPCISD::Hi", SDTIntBinOp, []>;
|
|
|
|
def PPClo : SDNode<"PPCISD::Lo", SDTIntBinOp, []>;
|
2009-08-15 19:54:46 +08:00
|
|
|
def PPCtoc_entry: SDNode<"PPCISD::TOC_ENTRY", SDTIntBinOp, [SDNPMayLoad]>;
|
2005-12-14 06:55:22 +08:00
|
|
|
def PPCvmaddfp : SDNode<"PPCISD::VMADDFP", SDTFPTernaryOp, []>;
|
|
|
|
def PPCvnmsubfp : SDNode<"PPCISD::VNMSUBFP", SDTFPTernaryOp, []>;
|
2005-11-17 15:30:41 +08:00
|
|
|
|
This patch improves the 64-bit PowerPC InitialExec TLS support by providing
for a wider range of GOT entries that can hold thread-relative offsets.
This matches the behavior of GCC, which was not documented in the PPC64 TLS
ABI. The ABI will be updated with the new code sequence.
Former sequence:
ld 9,x@got@tprel(2)
add 9,9,x@tls
New sequence:
addis 9,2,x@got@tprel@ha
ld 9,x@got@tprel@l(9)
add 9,9,x@tls
Note that a linker optimization exists to transform the new sequence into
the shorter sequence when appropriate, by replacing the addis with a nop
and modifying the base register and relocation type of the ld.
llvm-svn: 170209
2012-12-15 01:02:38 +08:00
|
|
|
def PPCaddisGotTprelHA : SDNode<"PPCISD::ADDIS_GOT_TPREL_HA", SDTIntBinOp>;
|
|
|
|
def PPCldGotTprelL : SDNode<"PPCISD::LD_GOT_TPREL_L", SDTIntBinOp,
|
|
|
|
[SDNPMayLoad]>;
|
2012-12-05 00:18:08 +08:00
|
|
|
def PPCaddTls : SDNode<"PPCISD::ADD_TLS", SDTIntBinOp, []>;
|
This patch implements the general dynamic TLS model for 64-bit PowerPC.
Given a thread-local symbol x with global-dynamic access, the generated
code to obtain x's address is:
Instruction Relocation Symbol
addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x
bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
R_PPC64_REL24 __tls_get_addr
nop
<use address in r3>
The implementation borrows from the medium code model work for introducing
special forms of ADDIS and ADDI into the DAG representation. This is made
slightly more complicated by having to introduce a call to the external
function __tls_get_addr. Using the full call machinery is overkill and,
more importantly, makes it difficult to add a special relocation. So I've
introduced another opcode GET_TLS_ADDR to represent the function call, and
surrounded it with register copies to set up the parameter and return value.
Most of the code is pretty straightforward. I ran into one peculiarity
when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like
BL8_NOP_ELF except that it takes another parameter to represent the symbol
("x" above) that requires a relocation on the call. Something in the
TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated
identically during the emit phase, so this second operand was never
visited to generate relocations. This is the reason for the slightly
messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding().
Two new tests are included to demonstrate correct external assembly and
correct generation of relocations using the integrated assembler.
Comments welcome!
Thanks,
Bill
llvm-svn: 169910
2012-12-12 04:30:11 +08:00
|
|
|
def PPCaddisTlsgdHA : SDNode<"PPCISD::ADDIS_TLSGD_HA", SDTIntBinOp>;
|
|
|
|
def PPCaddiTlsgdL : SDNode<"PPCISD::ADDI_TLSGD_L", SDTIntBinOp>;
|
|
|
|
def PPCgetTlsAddr : SDNode<"PPCISD::GET_TLS_ADDR", SDTIntBinOp>;
|
2012-12-13 03:29:35 +08:00
|
|
|
def PPCaddisTlsldHA : SDNode<"PPCISD::ADDIS_TLSLD_HA", SDTIntBinOp>;
|
|
|
|
def PPCaddiTlsldL : SDNode<"PPCISD::ADDI_TLSLD_L", SDTIntBinOp>;
|
|
|
|
def PPCgetTlsldAddr : SDNode<"PPCISD::GET_TLSLD_ADDR", SDTIntBinOp>;
|
|
|
|
def PPCaddisDtprelHA : SDNode<"PPCISD::ADDIS_DTPREL_HA", SDTIntBinOp,
|
|
|
|
[SDNPHasChain]>;
|
|
|
|
def PPCaddiDtprelL : SDNode<"PPCISD::ADDI_DTPREL_L", SDTIntBinOp>;
|
2012-12-05 00:18:08 +08:00
|
|
|
|
2006-03-20 09:53:53 +08:00
|
|
|
def PPCvperm : SDNode<"PPCISD::VPERM", SDT_PPCvperm, []>;
|
2006-03-19 14:55:52 +08:00
|
|
|
|
2005-12-06 10:10:38 +08:00
|
|
|
// These nodes represent the 32-bit PPC shifts that operate on 6-bit shift
|
|
|
|
// amounts. These nodes are generated by the multi-precision shift code.
|
2008-03-08 04:18:24 +08:00
|
|
|
def PPCsrl : SDNode<"PPCISD::SRL" , SDTIntShiftOp>;
|
|
|
|
def PPCsra : SDNode<"PPCISD::SRA" , SDTIntShiftOp>;
|
|
|
|
def PPCshl : SDNode<"PPCISD::SHL" , SDTIntShiftOp>;
|
2005-12-06 10:10:38 +08:00
|
|
|
|
When possible, custom lower 32-bit SINT_TO_FP to this:
_foo2:
extsw r2, r3
std r2, -8(r1)
lfd f0, -8(r1)
fcfid f0, f0
frsp f1, f0
blr
instead of this:
_foo2:
lis r2, ha16(LCPI2_0)
lis r4, 17200
xoris r3, r3, 32768
stw r3, -4(r1)
stw r4, -8(r1)
lfs f0, lo16(LCPI2_0)(r2)
lfd f1, -8(r1)
fsub f0, f1, f0
frsp f1, f0
blr
This speeds up Misc/pi from 2.44s->2.09s with LLC and from 3.01->2.18s
with llcbeta (16.7% and 38.1% respectively).
llvm-svn: 26943
2006-03-22 13:30:33 +08:00
|
|
|
def PPCextsw_32 : SDNode<"PPCISD::EXTSW_32" , SDTIntUnaryOp>;
|
2008-01-06 14:44:58 +08:00
|
|
|
def PPCstd_32 : SDNode<"PPCISD::STD_32" , SDTStore,
|
|
|
|
[SDNPHasChain, SDNPMayStore]>;
|
When possible, custom lower 32-bit SINT_TO_FP to this:
_foo2:
extsw r2, r3
std r2, -8(r1)
lfd f0, -8(r1)
fcfid f0, f0
frsp f1, f0
blr
instead of this:
_foo2:
lis r2, ha16(LCPI2_0)
lis r4, 17200
xoris r3, r3, 32768
stw r3, -4(r1)
stw r4, -8(r1)
lfs f0, lo16(LCPI2_0)(r2)
lfd f1, -8(r1)
fsub f0, f1, f0
frsp f1, f0
blr
This speeds up Misc/pi from 2.44s->2.09s with LLC and from 3.01->2.18s
with llcbeta (16.7% and 38.1% respectively).
llvm-svn: 26943
2006-03-22 13:30:33 +08:00
|
|
|
|
2005-12-05 03:01:59 +08:00
|
|
|
// These are target-independent nodes, but have target-specific formats.
|
2007-11-13 17:19:02 +08:00
|
|
|
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_PPCCallSeqStart,
|
2010-12-24 02:28:41 +08:00
|
|
|
[SDNPHasChain, SDNPOutGlue]>;
|
2007-11-13 17:19:02 +08:00
|
|
|
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_PPCCallSeqEnd,
|
2010-12-24 02:28:41 +08:00
|
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
|
2005-12-05 03:01:59 +08:00
|
|
|
|
2006-06-28 02:36:44 +08:00
|
|
|
def SDT_PPCCall : SDTypeProfile<0, -1, [SDTCisInt<0>]>;
|
2013-03-22 23:24:13 +08:00
|
|
|
def PPCcall : SDNode<"PPCISD::CALL", SDT_PPCCall,
|
|
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
|
|
|
|
SDNPVariadic]>;
|
|
|
|
def PPCcall_nop : SDNode<"PPCISD::CALL_NOP", SDT_PPCCall,
|
|
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
|
|
|
|
SDNPVariadic]>;
|
2009-12-18 21:00:15 +08:00
|
|
|
def PPCload : SDNode<"PPCISD::LOAD", SDTypeProfile<1, 1, []>,
|
2010-12-24 02:28:41 +08:00
|
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
|
2009-12-18 21:00:15 +08:00
|
|
|
def PPCload_toc : SDNode<"PPCISD::LOAD_TOC", SDTypeProfile<0, 1, []>,
|
2012-08-24 22:43:27 +08:00
|
|
|
[SDNPHasChain, SDNPSideEffect,
|
|
|
|
SDNPInGlue, SDNPOutGlue]>;
|
2009-12-18 21:00:15 +08:00
|
|
|
def PPCtoc_restore : SDNode<"PPCISD::TOC_RESTORE", SDTypeProfile<0, 0, []>,
|
2012-08-24 22:43:27 +08:00
|
|
|
[SDNPHasChain, SDNPSideEffect,
|
|
|
|
SDNPInGlue, SDNPOutGlue]>;
|
2006-05-18 03:00:46 +08:00
|
|
|
def PPCmtctr : SDNode<"PPCISD::MTCTR", SDT_PPCCall,
|
2010-12-24 02:28:41 +08:00
|
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
|
2013-03-22 23:24:13 +08:00
|
|
|
def PPCbctrl : SDNode<"PPCISD::BCTRL", SDTNone,
|
|
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
|
|
|
|
SDNPVariadic]>;
|
2006-05-17 14:01:33 +08:00
|
|
|
|
2008-01-16 06:02:54 +08:00
|
|
|
def retflag : SDNode<"PPCISD::RET_FLAG", SDTNone,
|
2010-12-24 02:28:41 +08:00
|
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
|
2005-12-20 08:26:01 +08:00
|
|
|
|
2008-04-30 17:16:33 +08:00
|
|
|
def PPCtc_return : SDNode<"PPCISD::TC_RETURN", SDT_PPCTC_ret,
|
2010-12-24 02:28:41 +08:00
|
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
|
2008-04-30 17:16:33 +08:00
|
|
|
|
2013-03-22 05:37:52 +08:00
|
|
|
def PPCeh_sjlj_setjmp : SDNode<"PPCISD::EH_SJLJ_SETJMP",
|
|
|
|
SDTypeProfile<1, 1, [SDTCisInt<0>,
|
|
|
|
SDTCisPtrTy<1>]>,
|
|
|
|
[SDNPHasChain, SDNPSideEffect]>;
|
|
|
|
def PPCeh_sjlj_longjmp : SDNode<"PPCISD::EH_SJLJ_LONGJMP",
|
|
|
|
SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>,
|
|
|
|
[SDNPHasChain, SDNPSideEffect]>;
|
|
|
|
|
2006-03-31 13:13:27 +08:00
|
|
|
def PPCvcmp : SDNode<"PPCISD::VCMP" , SDT_PPCvcmp, []>;
|
2010-12-24 02:28:41 +08:00
|
|
|
def PPCvcmp_o : SDNode<"PPCISD::VCMPo", SDT_PPCvcmp, [SDNPOutGlue]>;
|
2006-03-26 18:06:40 +08:00
|
|
|
|
Implement an important entry from README_ALTIVEC:
If an altivec predicate compare is used immediately by a branch, don't
use a (serializing) MFCR instruction to read the CR6 register, which requires
a compare to get it back to CR's. Instead, just branch on CR6 directly. :)
For example, for:
void foo2(vector float *A, vector float *B) {
if (!vec_any_eq(*A, *B))
*B = (vector float){0,0,0,0};
}
We now generate:
_foo2:
mfspr r2, 256
oris r5, r2, 12288
mtspr 256, r5
lvx v2, 0, r4
lvx v3, 0, r3
vcmpeqfp. v2, v3, v2
bne cr6, LBB1_2 ; UnifiedReturnBlock
LBB1_1: ; cond_true
vxor v2, v2, v2
stvx v2, 0, r4
mtspr 256, r2
blr
LBB1_2: ; UnifiedReturnBlock
mtspr 256, r2
blr
instead of:
_foo2:
mfspr r2, 256
oris r5, r2, 12288
mtspr 256, r5
lvx v2, 0, r4
lvx v3, 0, r3
vcmpeqfp. v2, v3, v2
mfcr r3, 2
rlwinm r3, r3, 27, 31, 31
cmpwi cr0, r3, 0
beq cr0, LBB1_2 ; UnifiedReturnBlock
LBB1_1: ; cond_true
vxor v2, v2, v2
stvx v2, 0, r4
mtspr 256, r2
blr
LBB1_2: ; UnifiedReturnBlock
mtspr 256, r2
blr
This implements CodeGen/PowerPC/vec_br_cmp.ll.
llvm-svn: 27804
2006-04-19 01:59:36 +08:00
|
|
|
def PPCcondbranch : SDNode<"PPCISD::COND_BRANCH", SDT_PPCcondbr,
|
2010-12-24 02:28:41 +08:00
|
|
|
[SDNPHasChain, SDNPOptInGlue]>;
|
Implement an important entry from README_ALTIVEC:
If an altivec predicate compare is used immediately by a branch, don't
use a (serializing) MFCR instruction to read the CR6 register, which requires
a compare to get it back to CR's. Instead, just branch on CR6 directly. :)
For example, for:
void foo2(vector float *A, vector float *B) {
if (!vec_any_eq(*A, *B))
*B = (vector float){0,0,0,0};
}
We now generate:
_foo2:
mfspr r2, 256
oris r5, r2, 12288
mtspr 256, r5
lvx v2, 0, r4
lvx v3, 0, r3
vcmpeqfp. v2, v3, v2
bne cr6, LBB1_2 ; UnifiedReturnBlock
LBB1_1: ; cond_true
vxor v2, v2, v2
stvx v2, 0, r4
mtspr 256, r2
blr
LBB1_2: ; UnifiedReturnBlock
mtspr 256, r2
blr
instead of:
_foo2:
mfspr r2, 256
oris r5, r2, 12288
mtspr 256, r5
lvx v2, 0, r4
lvx v3, 0, r3
vcmpeqfp. v2, v3, v2
mfcr r3, 2
rlwinm r3, r3, 27, 31, 31
cmpwi cr0, r3, 0
beq cr0, LBB1_2 ; UnifiedReturnBlock
LBB1_1: ; cond_true
vxor v2, v2, v2
stvx v2, 0, r4
mtspr 256, r2
blr
LBB1_2: ; UnifiedReturnBlock
mtspr 256, r2
blr
This implements CodeGen/PowerPC/vec_br_cmp.ll.
llvm-svn: 27804
2006-04-19 01:59:36 +08:00
|
|
|
|
2008-01-10 13:12:37 +08:00
|
|
|
def PPClbrx : SDNode<"PPCISD::LBRX", SDT_PPClbrx,
|
|
|
|
[SDNPHasChain, SDNPMayLoad]>;
|
2008-01-06 14:44:58 +08:00
|
|
|
def PPCstbrx : SDNode<"PPCISD::STBRX", SDT_PPCstbrx,
|
|
|
|
[SDNPHasChain, SDNPMayStore]>;
|
2006-07-11 04:56:58 +08:00
|
|
|
|
2012-08-28 10:10:27 +08:00
|
|
|
// Instructions to set/unset CR bit 6 for SVR4 vararg calls
|
|
|
|
def PPCcr6set : SDNode<"PPCISD::CR6SET", SDTNone,
|
|
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
|
|
|
|
def PPCcr6unset : SDNode<"PPCISD::CR6UNSET", SDTNone,
|
|
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
|
|
|
|
|
2008-07-12 10:23:19 +08:00
|
|
|
// Instructions to support atomic operations
|
2008-04-19 10:30:38 +08:00
|
|
|
def PPClarx : SDNode<"PPCISD::LARX", SDT_PPClarx,
|
|
|
|
[SDNPHasChain, SDNPMayLoad]>;
|
|
|
|
def PPCstcx : SDNode<"PPCISD::STCX", SDT_PPCstcx,
|
|
|
|
[SDNPHasChain, SDNPMayStore]>;
|
2008-04-19 09:30:48 +08:00
|
|
|
|
2013-02-22 01:12:27 +08:00
|
|
|
// Instructions to support medium and large code model
|
This patch implements medium code model support for 64-bit PowerPC.
The default for 64-bit PowerPC is small code model, in which TOC entries
must be addressable using a 16-bit offset from the TOC pointer. Additionally,
only TOC entries are addressed via the TOC pointer.
With medium code model, TOC entries and data sections can all be addressed
via the TOC pointer using a 32-bit offset. Cooperation with the linker
allows 16-bit offsets to be used when these are sufficient, reducing the
number of extra instructions that need to be executed. Medium code model
also does not generate explicit TOC entries in ".section toc" for variables
that are wholly internal to the compilation unit.
Consider a load of an external 4-byte integer. With small code model, the
compiler generates:
ld 3, .LC1@toc(2)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc ei[TC],ei
With medium model, it instead generates:
addis 3, 2, .LC1@toc@ha
ld 3, .LC1@toc@l(3)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc ei[TC],ei
Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the
32-bit offset of ei's TOC entry from the TOC base pointer. Similarly,
.LC1@toc@l is a relocation requesting the lower 16 bits. Note that if
the linker determines that ei's TOC entry is within a 16-bit offset of
the TOC base pointer, it will replace the "addis" with a "nop", and
replace the "ld" with the identical "ld" instruction from the small
code model example.
Consider next a load of a function-scope static integer. For small code
model, the compiler generates:
ld 3, .LC1@toc(2)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc test_fn_static.si[TC],test_fn_static.si
.type test_fn_static.si,@object
.local test_fn_static.si
.comm test_fn_static.si,4,4
For medium code model, the compiler generates:
addis 3, 2, test_fn_static.si@toc@ha
addi 3, 3, test_fn_static.si@toc@l
lwz 4, 0(3)
.type test_fn_static.si,@object
.local test_fn_static.si
.comm test_fn_static.si,4,4
Again, the linker may replace the "addis" with a "nop", calculating only
a 16-bit offset when this is sufficient.
Note that it would be more efficient for the compiler to generate:
addis 3, 2, test_fn_static.si@toc@ha
lwz 4, test_fn_static.si@toc@l(3)
The current patch does not perform this optimization yet. This will be
addressed as a peephole optimization in a later patch.
For the moment, the default code model for 64-bit PowerPC will remain the
small code model. We plan to eventually change the default to medium code
model, which matches current upstream GCC behavior. Note that the different
code models are ABI-compatible, so code compiled with different models will
be linked and execute correctly.
I've tested the regression suite and the application/benchmark test suite in
two ways: Once with the patch as submitted here, and once with additional
logic to force medium code model as the default. The tests all compile
cleanly, with one exception. The mandel-2 application test fails due to an
unrelated ABI compatibility with passing complex numbers. It just so happens
that small code model was incredibly lucky, in that temporary values in
floating-point registers held the expected values needed by the external
library routine that was called incorrectly. My current thought is to correct
the ABI problems with _Complex before making medium code model the default,
to avoid introducing this "regression."
Here are a few comments on how the patch works, since the selection code
can be difficult to follow:
The existing logic for small code model defines three pseudo-instructions:
LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for
constant pool addresses. These are expanded by SelectCodeCommon(). The
pseudo-instruction approach doesn't work for medium code model, because
we need to generate two instructions when we match the same pattern.
Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY
node for medium code model, and generates an ADDIStocHA followed by either
a LDtocL or an ADDItocL. These new node types correspond naturally to
the sequences described above.
The addis/ld sequence is generated for the following cases:
* Jump table addresses
* Function addresses
* External global variables
* Tentative definitions of global variables (common linkage)
The addis/addi sequence is generated for the following cases:
* Constant pool entries
* File-scope static global variables
* Function-scope static variables
Expanding to the two-instruction sequences at select time exposes the
instructions to subsequent optimization, particularly scheduling.
The rest of the processing occurs at assembly time, in
PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to
a "real" PowerPC instruction. When a TOC entry needs to be created, this
is done here in the same manner as for the existing LDtoc, LDtocJTI, and
LDtocCPT pseudo-instructions (I factored out a new routine to handle this).
I had originally thought that if a TOC entry was needed for LDtocL or
ADDItocL, it would already have been generated for the previous ADDIStocHA.
However, at higher optimization levels, the ADDIStocHA may appear in a
different block, which may be assembled textually following the block
containing the LDtocL or ADDItocL. So it is necessary to include the
possibility of creating a new TOC entry for those two instructions.
Note that for LDtocL, we generate a new form of LD called LDrs. This
allows specifying the @toc@l relocation for the offset field of the LD
instruction (i.e., the offset is replaced by a SymbolLo relocation).
When the peephole optimization described above is added, we will need
to do similar things for all immediate-form load and store operations.
The seven "mcm-n.ll" test cases are kept separate because otherwise the
intermingling of various TOC entries and so forth makes the tests fragile
and hard to understand.
The above assumes use of an external assembler. For use of the
integrated assembler, new relocations are added and used by
PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for
proper generation of the various relocations for the same sequences
tested with the external assembler.
llvm-svn: 168708
2012-11-28 01:35:46 +08:00
|
|
|
def PPCaddisTocHA : SDNode<"PPCISD::ADDIS_TOC_HA", SDTIntBinOp, []>;
|
|
|
|
def PPCldTocL : SDNode<"PPCISD::LD_TOC_L", SDTIntBinOp, [SDNPMayLoad]>;
|
|
|
|
def PPCaddiTocL : SDNode<"PPCISD::ADDI_TOC_L", SDTIntBinOp, []>;
|
|
|
|
|
|
|
|
|
2006-11-17 06:43:37 +08:00
|
|
|
// Instructions to support dynamic alloca.
|
|
|
|
def SDTDynOp : SDTypeProfile<1, 2, []>;
|
|
|
|
def PPCdynalloc : SDNode<"PPCISD::DYNALLOC", SDTDynOp, [SDNPHasChain]>;
|
|
|
|
|
2005-09-09 03:50:41 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
2005-09-09 08:39:56 +08:00
|
|
|
// PowerPC specific transformation functions and pattern fragments.
|
|
|
|
//
|
Woo, it kinda works. We now generate this atrociously bad, but correct,
code for long long foo(long long a, long long b) { return a + b; }
_foo:
or r2, r3, r3
or r3, r4, r4
or r4, r5, r5
or r5, r6, r6
rldicr r2, r2, 32, 31
rldicl r3, r3, 0, 32
rldicr r4, r4, 32, 31
rldicl r5, r5, 0, 32
or r2, r3, r2
or r3, r5, r4
add r4, r3, r2
rldicl r2, r4, 32, 32
or r4, r4, r4
or r3, r2, r2
blr
llvm-svn: 23809
2005-10-19 09:12:32 +08:00
|
|
|
|
2005-10-20 02:42:01 +08:00
|
|
|
def SHL32 : SDNodeXForm<imm, [{
|
|
|
|
// Transformation function: 31 - imm
|
2008-09-13 00:56:44 +08:00
|
|
|
return getI32Imm(31 - N->getZExtValue());
|
2005-10-20 02:42:01 +08:00
|
|
|
}]>;
|
|
|
|
|
|
|
|
def SRL32 : SDNodeXForm<imm, [{
|
|
|
|
// Transformation function: 32 - imm
|
2008-09-13 00:56:44 +08:00
|
|
|
return N->getZExtValue() ? getI32Imm(32 - N->getZExtValue()) : getI32Imm(0);
|
2005-10-20 02:42:01 +08:00
|
|
|
}]>;
|
|
|
|
|
2005-09-09 08:39:56 +08:00
|
|
|
def LO16 : SDNodeXForm<imm, [{
|
|
|
|
// Transformation function: get the low 16 bits.
|
2008-09-13 00:56:44 +08:00
|
|
|
return getI32Imm((unsigned short)N->getZExtValue());
|
2005-09-09 08:39:56 +08:00
|
|
|
}]>;
|
|
|
|
|
|
|
|
def HI16 : SDNodeXForm<imm, [{
|
|
|
|
// Transformation function: shift the immediate value down into the low bits.
|
2008-09-13 00:56:44 +08:00
|
|
|
return getI32Imm((unsigned)N->getZExtValue() >> 16);
|
2005-09-09 08:39:56 +08:00
|
|
|
}]>;
|
2005-09-09 01:33:10 +08:00
|
|
|
|
2005-09-29 07:07:13 +08:00
|
|
|
def HA16 : SDNodeXForm<imm, [{
|
|
|
|
// Transformation function: shift the immediate value down into the low bits.
|
2008-09-13 00:56:44 +08:00
|
|
|
signed int Val = N->getZExtValue();
|
2005-09-29 07:07:13 +08:00
|
|
|
return getI32Imm((Val - (signed short)Val) >> 16);
|
|
|
|
}]>;
|
2006-09-22 13:01:56 +08:00
|
|
|
def MB : SDNodeXForm<imm, [{
|
|
|
|
// Transformation function: get the start bit of a mask
|
2008-10-16 21:02:33 +08:00
|
|
|
unsigned mb = 0, me;
|
2008-09-13 00:56:44 +08:00
|
|
|
(void)isRunOfOnes((unsigned)N->getZExtValue(), mb, me);
|
2006-09-22 13:01:56 +08:00
|
|
|
return getI32Imm(mb);
|
|
|
|
}]>;
|
2005-09-29 07:07:13 +08:00
|
|
|
|
2006-09-22 13:01:56 +08:00
|
|
|
def ME : SDNodeXForm<imm, [{
|
|
|
|
// Transformation function: get the end bit of a mask
|
2008-10-16 21:02:33 +08:00
|
|
|
unsigned mb, me = 0;
|
2008-09-13 00:56:44 +08:00
|
|
|
(void)isRunOfOnes((unsigned)N->getZExtValue(), mb, me);
|
2006-09-22 13:01:56 +08:00
|
|
|
return getI32Imm(me);
|
|
|
|
}]>;
|
|
|
|
def maskimm32 : PatLeaf<(imm), [{
|
|
|
|
// maskImm predicate - True if immediate is a run of ones.
|
|
|
|
unsigned mb, me;
|
2009-08-12 04:47:22 +08:00
|
|
|
if (N->getValueType(0) == MVT::i32)
|
2008-09-13 00:56:44 +08:00
|
|
|
return isRunOfOnes((unsigned)N->getZExtValue(), mb, me);
|
2006-09-22 13:01:56 +08:00
|
|
|
else
|
|
|
|
return false;
|
|
|
|
}]>;
|
2005-09-29 07:07:13 +08:00
|
|
|
|
2005-09-09 01:33:10 +08:00
|
|
|
def immSExt16 : PatLeaf<(imm), [{
|
|
|
|
// immSExt16 predicate - True if the immediate fits in a 16-bit sign extended
|
|
|
|
// field. Used by instructions like 'addi'.
|
2009-08-12 04:47:22 +08:00
|
|
|
if (N->getValueType(0) == MVT::i32)
|
2008-09-13 00:56:44 +08:00
|
|
|
return (int32_t)N->getZExtValue() == (short)N->getZExtValue();
|
2006-06-21 07:21:20 +08:00
|
|
|
else
|
2008-09-13 00:56:44 +08:00
|
|
|
return (int64_t)N->getZExtValue() == (short)N->getZExtValue();
|
2005-09-09 01:33:10 +08:00
|
|
|
}]>;
|
2005-09-09 01:40:49 +08:00
|
|
|
def immZExt16 : PatLeaf<(imm), [{
|
|
|
|
// immZExt16 predicate - True if the immediate fits in a 16-bit zero extended
|
|
|
|
// field. Used by instructions like 'ori'.
|
2008-09-13 00:56:44 +08:00
|
|
|
return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
|
2005-09-09 08:39:56 +08:00
|
|
|
}], LO16>;
|
|
|
|
|
Add some 64-bit logical ops.
Split imm16Shifted into a sext/zext form for 64-bit support.
Add some patterns for immediate formation. For example, we now compile this:
static unsigned long long Y;
void test3() {
Y = 0xF0F00F00;
}
into:
_test3:
li r2, 3840
lis r3, ha16(_Y)
xoris r2, r2, 61680
std r2, lo16(_Y)(r3)
blr
GCC produces:
_test3:
li r0,0
lis r2,ha16(_Y)
ori r0,r0,61680
sldi r0,r0,16
ori r0,r0,3840
std r0,lo16(_Y)(r2)
blr
llvm-svn: 28883
2006-06-21 06:34:10 +08:00
|
|
|
// imm16Shifted* - These match immediates where the low 16-bits are zero. There
|
|
|
|
// are two forms: imm16ShiftedSExt and imm16ShiftedZExt. These two forms are
|
|
|
|
// identical in 32-bit mode, but in 64-bit mode, they return true if the
|
|
|
|
// immediate fits into a sign/zero extended 32-bit immediate (with the low bits
|
|
|
|
// clear).
|
|
|
|
def imm16ShiftedZExt : PatLeaf<(imm), [{
|
|
|
|
// imm16ShiftedZExt predicate - True if only bits in the top 16-bits of the
|
|
|
|
// immediate are set. Used by instructions like 'xoris'.
|
2008-09-13 00:56:44 +08:00
|
|
|
return (N->getZExtValue() & ~uint64_t(0xFFFF0000)) == 0;
|
Add some 64-bit logical ops.
Split imm16Shifted into a sext/zext form for 64-bit support.
Add some patterns for immediate formation. For example, we now compile this:
static unsigned long long Y;
void test3() {
Y = 0xF0F00F00;
}
into:
_test3:
li r2, 3840
lis r3, ha16(_Y)
xoris r2, r2, 61680
std r2, lo16(_Y)(r3)
blr
GCC produces:
_test3:
li r0,0
lis r2,ha16(_Y)
ori r0,r0,61680
sldi r0,r0,16
ori r0,r0,3840
std r0,lo16(_Y)(r2)
blr
llvm-svn: 28883
2006-06-21 06:34:10 +08:00
|
|
|
}], HI16>;
|
|
|
|
|
|
|
|
def imm16ShiftedSExt : PatLeaf<(imm), [{
|
|
|
|
// imm16ShiftedSExt predicate - True if only bits in the top 16-bits of the
|
|
|
|
// immediate are set. Used by instructions like 'addis'. Identical to
|
|
|
|
// imm16ShiftedZExt in 32-bit mode.
|
2008-09-13 00:56:44 +08:00
|
|
|
if (N->getZExtValue() & 0xFFFF) return false;
|
2009-08-12 04:47:22 +08:00
|
|
|
if (N->getValueType(0) == MVT::i32)
|
2006-06-21 05:39:30 +08:00
|
|
|
return true;
|
|
|
|
// For 64-bit, make sure it is sext right.
|
2008-09-13 00:56:44 +08:00
|
|
|
return N->getZExtValue() == (uint64_t)(int)N->getZExtValue();
|
2005-09-09 08:39:56 +08:00
|
|
|
}], HI16>;
|
2005-09-09 01:33:10 +08:00
|
|
|
|
2013-03-19 07:00:58 +08:00
|
|
|
// Some r+i load/store instructions (such as LD, STD, LDU, etc.) that require
|
|
|
|
// restricted memrix (offset/4) constants are alignment sensitive. If these
|
|
|
|
// offsets are hidden behind TOC entries than the values of the lower-order
|
|
|
|
// bits cannot be checked directly. As a result, we need to also incorporate
|
|
|
|
// an alignment check into the relevant patterns.
|
|
|
|
|
|
|
|
def aligned4load : PatFrag<(ops node:$ptr), (load node:$ptr), [{
|
|
|
|
return cast<LoadSDNode>(N)->getAlignment() >= 4;
|
|
|
|
}]>;
|
|
|
|
def aligned4store : PatFrag<(ops node:$val, node:$ptr),
|
|
|
|
(store node:$val, node:$ptr), [{
|
|
|
|
return cast<StoreSDNode>(N)->getAlignment() >= 4;
|
|
|
|
}]>;
|
|
|
|
def aligned4sextloadi32 : PatFrag<(ops node:$ptr), (sextloadi32 node:$ptr), [{
|
|
|
|
return cast<LoadSDNode>(N)->getAlignment() >= 4;
|
|
|
|
}]>;
|
|
|
|
def aligned4pre_store : PatFrag<
|
|
|
|
(ops node:$val, node:$base, node:$offset),
|
|
|
|
(pre_store node:$val, node:$base, node:$offset), [{
|
|
|
|
return cast<StoreSDNode>(N)->getAlignment() >= 4;
|
|
|
|
}]>;
|
|
|
|
|
|
|
|
def unaligned4load : PatFrag<(ops node:$ptr), (load node:$ptr), [{
|
|
|
|
return cast<LoadSDNode>(N)->getAlignment() < 4;
|
|
|
|
}]>;
|
|
|
|
def unaligned4store : PatFrag<(ops node:$val, node:$ptr),
|
|
|
|
(store node:$val, node:$ptr), [{
|
|
|
|
return cast<StoreSDNode>(N)->getAlignment() < 4;
|
|
|
|
}]>;
|
|
|
|
def unaligned4sextloadi32 : PatFrag<(ops node:$ptr), (sextloadi32 node:$ptr), [{
|
|
|
|
return cast<LoadSDNode>(N)->getAlignment() < 4;
|
|
|
|
}]>;
|
2006-03-25 14:12:06 +08:00
|
|
|
|
2005-09-09 03:50:41 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// PowerPC Flag Definitions.
|
|
|
|
|
2005-04-19 12:32:54 +08:00
|
|
|
class isPPC64 { bit PPC64 = 1; }
|
2005-04-19 13:15:18 +08:00
|
|
|
class isDOT {
|
|
|
|
list<Register> Defs = [CR0];
|
|
|
|
bit RC = 1;
|
|
|
|
}
|
2005-04-19 12:32:54 +08:00
|
|
|
|
2006-11-08 10:13:12 +08:00
|
|
|
class RegConstraint<string C> {
|
|
|
|
string Constraints = C;
|
|
|
|
}
|
2006-11-16 07:24:18 +08:00
|
|
|
class NoEncode<string E> {
|
|
|
|
string DisableEncoding = E;
|
|
|
|
}
|
2005-09-09 03:50:41 +08:00
|
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// PowerPC Operand Definitions.
|
2004-08-15 07:27:29 +08:00
|
|
|
|
2006-03-25 14:12:06 +08:00
|
|
|
def s5imm : Operand<i32> {
|
|
|
|
let PrintMethod = "printS5ImmOperand";
|
|
|
|
}
|
2005-09-15 04:53:05 +08:00
|
|
|
def u5imm : Operand<i32> {
|
2004-08-21 13:56:39 +08:00
|
|
|
let PrintMethod = "printU5ImmOperand";
|
|
|
|
}
|
2005-09-15 04:53:05 +08:00
|
|
|
def u6imm : Operand<i32> {
|
2004-08-30 10:28:06 +08:00
|
|
|
let PrintMethod = "printU6ImmOperand";
|
|
|
|
}
|
2005-09-15 04:53:05 +08:00
|
|
|
def s16imm : Operand<i32> {
|
2004-09-04 13:00:00 +08:00
|
|
|
let PrintMethod = "printS16ImmOperand";
|
|
|
|
}
|
2005-09-15 04:53:05 +08:00
|
|
|
def u16imm : Operand<i32> {
|
2004-08-15 13:20:16 +08:00
|
|
|
let PrintMethod = "printU16ImmOperand";
|
|
|
|
}
|
2010-11-15 14:09:35 +08:00
|
|
|
def directbrtarget : Operand<OtherVT> {
|
2004-09-02 16:13:00 +08:00
|
|
|
let PrintMethod = "printBranchOperand";
|
2010-11-15 14:09:35 +08:00
|
|
|
let EncoderMethod = "getDirectBrEncoding";
|
|
|
|
}
|
|
|
|
def condbrtarget : Operand<OtherVT> {
|
2010-11-16 09:45:05 +08:00
|
|
|
let PrintMethod = "printBranchOperand";
|
2010-11-15 14:09:35 +08:00
|
|
|
let EncoderMethod = "getCondBrEncoding";
|
2004-09-02 16:13:00 +08:00
|
|
|
}
|
2006-06-17 05:01:35 +08:00
|
|
|
def calltarget : Operand<iPTR> {
|
2010-11-15 14:09:35 +08:00
|
|
|
let EncoderMethod = "getDirectBrEncoding";
|
2005-11-18 03:16:08 +08:00
|
|
|
}
|
2006-06-17 05:01:35 +08:00
|
|
|
def aaddr : Operand<iPTR> {
|
2005-11-16 08:48:01 +08:00
|
|
|
let PrintMethod = "printAbsAddrOperand";
|
|
|
|
}
|
2004-09-04 13:00:00 +08:00
|
|
|
def symbolHi: Operand<i32> {
|
|
|
|
let PrintMethod = "printSymbolHi";
|
2010-11-15 14:33:39 +08:00
|
|
|
let EncoderMethod = "getHA16Encoding";
|
2004-09-04 13:00:00 +08:00
|
|
|
}
|
|
|
|
def symbolLo: Operand<i32> {
|
|
|
|
let PrintMethod = "printSymbolLo";
|
2010-11-15 14:33:39 +08:00
|
|
|
let EncoderMethod = "getLO16Encoding";
|
2004-09-04 13:00:00 +08:00
|
|
|
}
|
2005-07-21 06:42:00 +08:00
|
|
|
def crbitm: Operand<i8> {
|
|
|
|
let PrintMethod = "printcrbitm";
|
2010-11-15 13:19:25 +08:00
|
|
|
let EncoderMethod = "get_crbitm_encoding";
|
2005-07-21 06:42:00 +08:00
|
|
|
}
|
2005-12-20 07:25:09 +08:00
|
|
|
// Address operands
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
// A version of ptr_rc which excludes R0 (or X0 in 64-bit mode).
|
|
|
|
def ptr_rc_nor0 : PointerLikeRegClass<1>;
|
|
|
|
|
2006-06-17 05:01:35 +08:00
|
|
|
def memri : Operand<iPTR> {
|
2005-12-20 07:25:09 +08:00
|
|
|
let PrintMethod = "printMemRegImm";
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
let MIOperandInfo = (ops symbolLo:$imm, ptr_rc_nor0:$reg);
|
split out an encoder for memri operands, allowing a relocation to be plopped
into the immediate field. This allows us to encode stuff like this:
lbz r3, lo16(__ZL4init)(r4) ; globalopt.cpp:5
; encoding: [0x88,0x64,A,A]
; fixup A - offset: 0, value: lo16(__ZL4init), kind: fixup_ppc_lo16
stw r3, lo16(__ZL1s)(r5) ; globalopt.cpp:6
; encoding: [0x90,0x65,A,A]
; fixup A - offset: 0, value: lo16(__ZL1s), kind: fixup_ppc_lo16
With this, we should have a completely function MCCodeEmitter for PPC, wewt.
llvm-svn: 119134
2010-11-15 16:22:03 +08:00
|
|
|
let EncoderMethod = "getMemRIEncoding";
|
2005-12-20 07:25:09 +08:00
|
|
|
}
|
2006-06-17 05:01:35 +08:00
|
|
|
def memrr : Operand<iPTR> {
|
2005-12-20 07:25:09 +08:00
|
|
|
let PrintMethod = "printMemRegReg";
|
2013-03-22 22:59:13 +08:00
|
|
|
let MIOperandInfo = (ops ptr_rc_nor0:$ptrreg, ptr_rc:$offreg);
|
2005-12-20 07:25:09 +08:00
|
|
|
}
|
2006-06-17 05:01:35 +08:00
|
|
|
def memrix : Operand<iPTR> { // memri where the imm is shifted 2 bits.
|
When possible, custom lower 32-bit SINT_TO_FP to this:
_foo2:
extsw r2, r3
std r2, -8(r1)
lfd f0, -8(r1)
fcfid f0, f0
frsp f1, f0
blr
instead of this:
_foo2:
lis r2, ha16(LCPI2_0)
lis r4, 17200
xoris r3, r3, 32768
stw r3, -4(r1)
stw r4, -8(r1)
lfs f0, lo16(LCPI2_0)(r2)
lfd f1, -8(r1)
fsub f0, f1, f0
frsp f1, f0
blr
This speeds up Misc/pi from 2.44s->2.09s with LLC and from 3.01->2.18s
with llcbeta (16.7% and 38.1% respectively).
llvm-svn: 26943
2006-03-22 13:30:33 +08:00
|
|
|
let PrintMethod = "printMemRegImmShifted";
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
let MIOperandInfo = (ops symbolLo:$imm, ptr_rc_nor0:$reg);
|
2010-11-15 16:02:41 +08:00
|
|
|
let EncoderMethod = "getMemRIXEncoding";
|
When possible, custom lower 32-bit SINT_TO_FP to this:
_foo2:
extsw r2, r3
std r2, -8(r1)
lfd f0, -8(r1)
fcfid f0, f0
frsp f1, f0
blr
instead of this:
_foo2:
lis r2, ha16(LCPI2_0)
lis r4, 17200
xoris r3, r3, 32768
stw r3, -4(r1)
stw r4, -8(r1)
lfs f0, lo16(LCPI2_0)(r2)
lfd f1, -8(r1)
fsub f0, f1, f0
frsp f1, f0
blr
This speeds up Misc/pi from 2.44s->2.09s with LLC and from 3.01->2.18s
with llcbeta (16.7% and 38.1% respectively).
llvm-svn: 26943
2006-03-22 13:30:33 +08:00
|
|
|
}
|
2005-12-20 07:25:09 +08:00
|
|
|
|
2013-03-22 05:37:52 +08:00
|
|
|
// A single-register address. This is used with the SjLj
|
|
|
|
// pseudo-instructions.
|
|
|
|
def memr : Operand<iPTR> {
|
|
|
|
let MIOperandInfo = (ops ptr_rc:$ptrreg);
|
|
|
|
}
|
|
|
|
|
2013-03-26 18:53:27 +08:00
|
|
|
// PowerPC Predicate operand.
|
|
|
|
def pred : Operand<OtherVT> {
|
2006-11-04 13:27:39 +08:00
|
|
|
let PrintMethod = "printPredicateOperand";
|
2013-03-26 18:53:27 +08:00
|
|
|
let MIOperandInfo = (ops i32imm:$bibo, CRRC:$reg);
|
2006-11-04 13:27:39 +08:00
|
|
|
}
|
2006-11-04 07:53:25 +08:00
|
|
|
|
2006-01-12 10:05:36 +08:00
|
|
|
// Define PowerPC specific addressing mode.
|
2006-10-12 05:03:53 +08:00
|
|
|
def iaddr : ComplexPattern<iPTR, 2, "SelectAddrImm", [], []>;
|
|
|
|
def xaddr : ComplexPattern<iPTR, 2, "SelectAddrIdx", [], []>;
|
|
|
|
def xoaddr : ComplexPattern<iPTR, 2, "SelectAddrIdxOnly",[], []>;
|
|
|
|
def ixaddr : ComplexPattern<iPTR, 2, "SelectAddrImmShift", [], []>; // "std"
|
2004-08-15 13:20:16 +08:00
|
|
|
|
2013-03-22 05:37:52 +08:00
|
|
|
// The address in a single register. This is used with the SjLj
|
|
|
|
// pseudo-instructions.
|
|
|
|
def addr : ComplexPattern<iPTR, 1, "SelectAddr",[], []>;
|
|
|
|
|
2006-11-16 08:41:37 +08:00
|
|
|
/// This is just the offset part of iaddr, used for preinc.
|
|
|
|
def iaddroff : ComplexPattern<iPTR, 1, "SelectAddrImmOffs", [], []>;
|
2006-11-15 10:43:19 +08:00
|
|
|
|
2005-12-15 06:07:12 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// PowerPC Instruction Predicate Definitions.
|
2007-10-23 14:42:42 +08:00
|
|
|
def In32BitMode : Predicate<"!PPCSubTarget.isPPC64()">;
|
|
|
|
def In64BitMode : Predicate<"PPCSubTarget.isPPC64()">;
|
2011-10-17 12:03:49 +08:00
|
|
|
def IsBookE : Predicate<"PPCSubTarget.isBookE()">;
|
2006-11-15 02:44:47 +08:00
|
|
|
|
2005-09-09 03:50:41 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// PowerPC Instruction Definitions.
|
|
|
|
|
2004-06-22 00:55:25 +08:00
|
|
|
// Pseudo-instructions:
|
2005-09-09 03:50:41 +08:00
|
|
|
|
2006-03-12 17:13:49 +08:00
|
|
|
let hasCtrlDep = 1 in {
|
2007-09-12 03:55:27 +08:00
|
|
|
let Defs = [R1], Uses = [R1] in {
|
2012-10-05 02:14:28 +08:00
|
|
|
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm:$amt), "#ADJCALLSTACKDOWN $amt",
|
2008-10-12 06:08:30 +08:00
|
|
|
[(callseq_start timm:$amt)]>;
|
2012-10-05 02:14:28 +08:00
|
|
|
def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm:$amt1, u16imm:$amt2), "#ADJCALLSTACKUP $amt1 $amt2",
|
2008-10-12 06:08:30 +08:00
|
|
|
[(callseq_end timm:$amt1, timm:$amt2)]>;
|
2007-09-12 03:55:27 +08:00
|
|
|
}
|
For functions that use vector registers, save VRSAVE, mark used
registers, and update it on entry to each function, then restore it on exit.
This compiles:
void func(vfloat *a, vfloat *b, vfloat *c) {
*a = *b * *c + *c;
}
to this:
_func:
mfspr r2, 256
oris r6, r2, 49152
mtspr 256, r6
lvx v0, 0, r5
lvx v1, 0, r4
vmaddfp v0, v1, v0, v0
stvx v0, 0, r3
mtspr 256, r2
blr
GCC produces this (which has additional stack accesses):
_func:
mfspr r0,256
stw r0,-4(r1)
oris r0,r0,0xc000
mtspr 256,r0
lvx v0,0,r5
lvx v1,0,r4
lwz r12,-4(r1)
vmaddfp v0,v0,v1,v0
stvx v0,0,r3
mtspr 256,r12
blr
llvm-svn: 26733
2006-03-14 05:52:10 +08:00
|
|
|
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def UPDATE_VRSAVE : Pseudo<(outs GPRC:$rD), (ins GPRC:$rS),
|
For functions that use vector registers, save VRSAVE, mark used
registers, and update it on entry to each function, then restore it on exit.
This compiles:
void func(vfloat *a, vfloat *b, vfloat *c) {
*a = *b * *c + *c;
}
to this:
_func:
mfspr r2, 256
oris r6, r2, 49152
mtspr 256, r6
lvx v0, 0, r5
lvx v1, 0, r4
vmaddfp v0, v1, v0, v0
stvx v0, 0, r3
mtspr 256, r2
blr
GCC produces this (which has additional stack accesses):
_func:
mfspr r0,256
stw r0,-4(r1)
oris r0,r0,0xc000
mtspr 256,r0
lvx v0,0,r5
lvx v1,0,r4
lwz r12,-4(r1)
vmaddfp v0,v0,v1,v0
stvx v0,0,r3
mtspr 256,r12
blr
llvm-svn: 26733
2006-03-14 05:52:10 +08:00
|
|
|
"UPDATE_VRSAVE $rD, $rS", []>;
|
2004-10-08 06:30:03 +08:00
|
|
|
}
|
2006-11-17 06:43:37 +08:00
|
|
|
|
2007-09-12 03:55:27 +08:00
|
|
|
let Defs = [R1], Uses = [R1] in
|
2012-10-05 02:14:28 +08:00
|
|
|
def DYNALLOC : Pseudo<(outs GPRC:$result), (ins GPRC:$negsize, memri:$fpsi), "#DYNALLOC",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$result,
|
|
|
|
(PPCdynalloc i32:$negsize, iaddr:$fpsi))]>;
|
2006-11-17 06:43:37 +08:00
|
|
|
|
2009-10-30 02:10:34 +08:00
|
|
|
// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after
|
|
|
|
// instruction selection into a branch sequence.
|
|
|
|
let usesCustomInserter = 1, // Expanded after instruction selection.
|
2006-03-12 17:13:49 +08:00
|
|
|
PPC970_Single = 1 in {
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def SELECT_CC_I4 : Pseudo<(outs GPRC:$dst), (ins CRRC:$cond, GPRC:$T, GPRC:$F,
|
2012-10-05 02:14:28 +08:00
|
|
|
i32imm:$BROPC), "#SELECT_CC_I4",
|
2006-09-27 10:55:21 +08:00
|
|
|
[]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def SELECT_CC_I8 : Pseudo<(outs G8RC:$dst), (ins CRRC:$cond, G8RC:$T, G8RC:$F,
|
2012-10-05 02:14:28 +08:00
|
|
|
i32imm:$BROPC), "#SELECT_CC_I8",
|
2006-09-27 10:55:21 +08:00
|
|
|
[]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def SELECT_CC_F4 : Pseudo<(outs F4RC:$dst), (ins CRRC:$cond, F4RC:$T, F4RC:$F,
|
2012-10-05 02:14:28 +08:00
|
|
|
i32imm:$BROPC), "#SELECT_CC_F4",
|
2006-09-27 10:55:21 +08:00
|
|
|
[]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def SELECT_CC_F8 : Pseudo<(outs F8RC:$dst), (ins CRRC:$cond, F8RC:$T, F8RC:$F,
|
2012-10-05 02:14:28 +08:00
|
|
|
i32imm:$BROPC), "#SELECT_CC_F8",
|
2006-09-27 10:55:21 +08:00
|
|
|
[]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def SELECT_CC_VRRC: Pseudo<(outs VRRC:$dst), (ins CRRC:$cond, VRRC:$T, VRRC:$F,
|
2012-10-05 02:14:28 +08:00
|
|
|
i32imm:$BROPC), "#SELECT_CC_VRRC",
|
2006-09-27 10:55:21 +08:00
|
|
|
[]>;
|
2005-08-27 05:23:58 +08:00
|
|
|
}
|
|
|
|
|
2008-03-04 06:19:16 +08:00
|
|
|
// SPILL_CR - Indicate that we're dumping the CR register, so we'll need to
|
|
|
|
// scavenge a register for it.
|
2011-12-07 14:33:57 +08:00
|
|
|
let mayStore = 1 in
|
|
|
|
def SPILL_CR : Pseudo<(outs), (ins CRRC:$cond, memri:$F),
|
2012-10-05 02:14:28 +08:00
|
|
|
"#SPILL_CR", []>;
|
2008-03-04 06:19:16 +08:00
|
|
|
|
2011-12-07 04:55:36 +08:00
|
|
|
// RESTORE_CR - Indicate that we're restoring the CR register (previously
|
|
|
|
// spilled), so we'll need to scavenge a register for it.
|
2011-12-07 14:33:57 +08:00
|
|
|
let mayLoad = 1 in
|
|
|
|
def RESTORE_CR : Pseudo<(outs CRRC:$cond), (ins memri:$F),
|
2012-10-05 02:14:28 +08:00
|
|
|
"#RESTORE_CR", []>;
|
2011-12-07 04:55:36 +08:00
|
|
|
|
2007-07-21 08:34:19 +08:00
|
|
|
let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7 in {
|
2013-03-26 18:53:27 +08:00
|
|
|
let isReturn = 1, Uses = [LR, RM] in
|
|
|
|
def BLR : XLForm_2_ext<19, 16, 20, 0, 0, (outs), (ins), "blr", BrB,
|
|
|
|
[(retflag)]>;
|
2008-10-24 04:41:28 +08:00
|
|
|
let isBranch = 1, isIndirectBranch = 1, Uses = [CTR] in
|
2007-11-12 15:39:39 +08:00
|
|
|
def BCTR : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", BrB, []>;
|
2005-09-09 03:50:41 +08:00
|
|
|
}
|
|
|
|
|
2005-02-16 04:26:49 +08:00
|
|
|
let Defs = [LR] in
|
2012-10-05 02:14:28 +08:00
|
|
|
def MovePCtoLR : Pseudo<(outs), (ins), "#MovePCtoLR", []>,
|
2006-03-12 17:13:49 +08:00
|
|
|
PPC970_Unit_BRU;
|
2004-06-22 00:55:25 +08:00
|
|
|
|
2007-07-21 08:34:19 +08:00
|
|
|
let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7 in {
|
2006-10-14 03:10:34 +08:00
|
|
|
let isBarrier = 1 in {
|
2010-11-15 14:09:35 +08:00
|
|
|
def B : IForm<18, 0, 0, (outs), (ins directbrtarget:$dst),
|
2005-12-05 02:42:54 +08:00
|
|
|
"b $dst", BrB,
|
|
|
|
[(br bb:$dst)]>;
|
2006-10-14 03:10:34 +08:00
|
|
|
}
|
2004-11-23 07:07:01 +08:00
|
|
|
|
2006-11-18 06:37:34 +08:00
|
|
|
// BCC represents an arbitrary conditional branch on a predicate.
|
|
|
|
// FIXME: should be able to write a pattern for PPCcondbranch, but can't use
|
2012-10-05 23:16:11 +08:00
|
|
|
// a two-value operand where a dag node expects two operands. :(
|
|
|
|
let isCodeGenOnly = 1 in
|
|
|
|
def BCC : BForm<16, 0, 0, (outs), (ins pred:$cond, condbrtarget:$dst),
|
|
|
|
"b${cond:cc} ${cond:reg}, $dst"
|
|
|
|
/*[(PPCcondbranch CRRC:$crS, imm:$opc, bb:$dst)]*/>;
|
2012-06-08 23:38:21 +08:00
|
|
|
|
|
|
|
let Defs = [CTR], Uses = [CTR] in {
|
2012-11-14 03:15:52 +08:00
|
|
|
def BDZ : BForm_1<16, 18, 0, 0, (outs), (ins condbrtarget:$dst),
|
|
|
|
"bdz $dst">;
|
|
|
|
def BDNZ : BForm_1<16, 16, 0, 0, (outs), (ins condbrtarget:$dst),
|
|
|
|
"bdnz $dst">;
|
2012-06-08 23:38:21 +08:00
|
|
|
}
|
2004-06-29 02:23:35 +08:00
|
|
|
}
|
|
|
|
|
2013-03-22 05:37:52 +08:00
|
|
|
// The direct BCL used by the SjLj setjmp code.
|
|
|
|
let isCall = 1, hasCtrlDep = 1, PPC970_Unit = 7 in {
|
|
|
|
let Defs = [LR], Uses = [RM] in {
|
|
|
|
def BCL : BForm_2<16, 20, 31, 0, 1, (outs), (ins condbrtarget:$dst),
|
|
|
|
"bcl 20, 31, $dst">;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-03-07 00:41:49 +08:00
|
|
|
let isCall = 1, PPC970_Unit = 7, Defs = [LR] in {
|
2007-02-25 13:34:32 +08:00
|
|
|
// Convenient aliases for call instructions
|
2008-10-30 02:26:45 +08:00
|
|
|
let Uses = [RM] in {
|
2013-03-22 23:24:13 +08:00
|
|
|
def BL : IForm<18, 0, 1, (outs), (ins calltarget:$func),
|
|
|
|
"bl $func", BrB, []>; // See Pat patterns below.
|
|
|
|
def BLA : IForm<18, 1, 1, (outs), (ins aaddr:$func),
|
|
|
|
"bla $func", BrB, [(PPCcall (i32 imm:$func))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
}
|
|
|
|
let Uses = [CTR, RM] in {
|
2013-03-22 23:24:13 +08:00
|
|
|
def BCTRL : XLForm_2_ext<19, 528, 20, 0, 1, (outs), (ins),
|
|
|
|
"bctrl", BrB, [(PPCbctrl)]>,
|
|
|
|
Requires<[In32BitMode]>;
|
2008-10-24 04:41:28 +08:00
|
|
|
}
|
2004-06-30 07:37:36 +08:00
|
|
|
}
|
|
|
|
|
2008-10-30 02:26:45 +08:00
|
|
|
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in
|
2008-04-30 17:16:33 +08:00
|
|
|
def TCRETURNdi :Pseudo< (outs),
|
2012-07-14 04:44:29 +08:00
|
|
|
(ins calltarget:$dst, i32imm:$offset),
|
2008-04-30 17:16:33 +08:00
|
|
|
"#TC_RETURNd $dst $offset",
|
|
|
|
[]>;
|
|
|
|
|
|
|
|
|
2008-10-30 02:26:45 +08:00
|
|
|
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in
|
2012-07-14 04:44:29 +08:00
|
|
|
def TCRETURNai :Pseudo<(outs), (ins aaddr:$func, i32imm:$offset),
|
2008-04-30 17:16:33 +08:00
|
|
|
"#TC_RETURNa $func $offset",
|
|
|
|
[(PPCtc_return (i32 imm:$func), imm:$offset)]>;
|
|
|
|
|
2008-10-30 02:26:45 +08:00
|
|
|
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in
|
2012-07-14 04:44:29 +08:00
|
|
|
def TCRETURNri : Pseudo<(outs), (ins CTRRC:$dst, i32imm:$offset),
|
2008-04-30 17:16:33 +08:00
|
|
|
"#TC_RETURNr $dst $offset",
|
|
|
|
[]>;
|
|
|
|
|
|
|
|
|
|
|
|
let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7, isBranch = 1,
|
2008-10-30 02:26:45 +08:00
|
|
|
isIndirectBranch = 1, isCall = 1, isReturn = 1, Uses = [CTR, RM] in
|
2008-04-30 17:16:33 +08:00
|
|
|
def TAILBCTR : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", BrB, []>,
|
|
|
|
Requires<[In32BitMode]>;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7,
|
2008-10-30 02:26:45 +08:00
|
|
|
isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in
|
2008-04-30 17:16:33 +08:00
|
|
|
def TAILB : IForm<18, 0, 0, (outs), (ins calltarget:$dst),
|
|
|
|
"b $dst", BrB,
|
|
|
|
[]>;
|
|
|
|
|
|
|
|
|
|
|
|
let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7,
|
2008-10-30 02:26:45 +08:00
|
|
|
isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in
|
2008-04-30 17:16:33 +08:00
|
|
|
def TAILBA : IForm<18, 0, 0, (outs), (ins aaddr:$dst),
|
|
|
|
"ba $dst", BrB,
|
|
|
|
[]>;
|
|
|
|
|
2013-03-22 05:37:52 +08:00
|
|
|
let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
|
|
|
|
usesCustomInserter = 1 in {
|
|
|
|
def EH_SjLj_SetJmp32 : Pseudo<(outs GPRC:$dst), (ins memr:$buf),
|
|
|
|
"#EH_SJLJ_SETJMP32",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (PPCeh_sjlj_setjmp addr:$buf))]>,
|
2013-03-22 05:37:52 +08:00
|
|
|
Requires<[In32BitMode]>;
|
|
|
|
let isTerminator = 1 in
|
|
|
|
def EH_SjLj_LongJmp32 : Pseudo<(outs), (ins memr:$buf),
|
|
|
|
"#EH_SJLJ_LONGJMP32",
|
|
|
|
[(PPCeh_sjlj_longjmp addr:$buf)]>,
|
|
|
|
Requires<[In32BitMode]>;
|
|
|
|
}
|
|
|
|
|
|
|
|
let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
|
|
|
|
def EH_SjLj_Setup : Pseudo<(outs), (ins directbrtarget:$dst),
|
|
|
|
"#EH_SjLj_Setup\t$dst", []>;
|
|
|
|
}
|
2008-04-30 17:16:33 +08:00
|
|
|
|
2006-06-07 05:29:23 +08:00
|
|
|
// DCB* instructions.
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def DCBA : DCB_Form<758, 0, (outs), (ins memrr:$dst),
|
2006-10-24 09:08:42 +08:00
|
|
|
"dcba $dst", LdStDCBF, [(int_ppc_dcba xoaddr:$dst)]>,
|
|
|
|
PPC970_DGroup_Single;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def DCBF : DCB_Form<86, 0, (outs), (ins memrr:$dst),
|
2006-10-24 09:08:42 +08:00
|
|
|
"dcbf $dst", LdStDCBF, [(int_ppc_dcbf xoaddr:$dst)]>,
|
|
|
|
PPC970_DGroup_Single;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def DCBI : DCB_Form<470, 0, (outs), (ins memrr:$dst),
|
2006-10-24 09:08:42 +08:00
|
|
|
"dcbi $dst", LdStDCBF, [(int_ppc_dcbi xoaddr:$dst)]>,
|
|
|
|
PPC970_DGroup_Single;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def DCBST : DCB_Form<54, 0, (outs), (ins memrr:$dst),
|
2006-10-24 09:08:42 +08:00
|
|
|
"dcbst $dst", LdStDCBF, [(int_ppc_dcbst xoaddr:$dst)]>,
|
|
|
|
PPC970_DGroup_Single;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def DCBT : DCB_Form<278, 0, (outs), (ins memrr:$dst),
|
2006-10-24 09:08:42 +08:00
|
|
|
"dcbt $dst", LdStDCBF, [(int_ppc_dcbt xoaddr:$dst)]>,
|
|
|
|
PPC970_DGroup_Single;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def DCBTST : DCB_Form<246, 0, (outs), (ins memrr:$dst),
|
2006-10-24 09:08:42 +08:00
|
|
|
"dcbtst $dst", LdStDCBF, [(int_ppc_dcbtst xoaddr:$dst)]>,
|
|
|
|
PPC970_DGroup_Single;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def DCBZ : DCB_Form<1014, 0, (outs), (ins memrr:$dst),
|
2006-10-24 09:08:42 +08:00
|
|
|
"dcbz $dst", LdStDCBF, [(int_ppc_dcbz xoaddr:$dst)]>,
|
|
|
|
PPC970_DGroup_Single;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def DCBZL : DCB_Form<1014, 1, (outs), (ins memrr:$dst),
|
2006-10-24 09:08:42 +08:00
|
|
|
"dcbzl $dst", LdStDCBF, [(int_ppc_dcbzl xoaddr:$dst)]>,
|
|
|
|
PPC970_DGroup_Single;
|
2006-11-15 03:19:53 +08:00
|
|
|
|
2012-04-02 04:08:17 +08:00
|
|
|
def : Pat<(prefetch xoaddr:$dst, (i32 0), imm, (i32 1)),
|
|
|
|
(DCBT xoaddr:$dst)>;
|
|
|
|
|
2008-07-12 10:23:19 +08:00
|
|
|
// Atomic operations
|
2009-10-30 02:10:34 +08:00
|
|
|
let usesCustomInserter = 1 in {
|
2011-04-05 01:07:09 +08:00
|
|
|
let Defs = [CR0] in {
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_LOAD_ADD_I8 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_ADD_I8",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_add_8 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_LOAD_SUB_I8 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_SUB_I8",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_sub_8 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_LOAD_AND_I8 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_AND_I8",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_and_8 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_LOAD_OR_I8 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_OR_I8",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_or_8 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_LOAD_XOR_I8 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "ATOMIC_LOAD_XOR_I8",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_xor_8 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_LOAD_NAND_I8 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_NAND_I8",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_nand_8 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_LOAD_ADD_I16 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_ADD_I16",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_add_16 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_LOAD_SUB_I16 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_SUB_I16",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_sub_16 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_LOAD_AND_I16 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_AND_I16",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_and_16 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_LOAD_OR_I16 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_OR_I16",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_or_16 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_LOAD_XOR_I16 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_XOR_I16",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_xor_16 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_LOAD_NAND_I16 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_NAND_I16",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_nand_16 xoaddr:$ptr, i32:$incr))]>;
|
2008-07-12 10:23:19 +08:00
|
|
|
def ATOMIC_LOAD_ADD_I32 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_ADD_I32",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_add_32 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-26 06:34:37 +08:00
|
|
|
def ATOMIC_LOAD_SUB_I32 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_SUB_I32",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_sub_32 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-26 06:34:37 +08:00
|
|
|
def ATOMIC_LOAD_AND_I32 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_AND_I32",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_and_32 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-26 06:34:37 +08:00
|
|
|
def ATOMIC_LOAD_OR_I32 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_OR_I32",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_or_32 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-26 06:34:37 +08:00
|
|
|
def ATOMIC_LOAD_XOR_I32 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_XOR_I32",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_xor_32 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-26 06:34:37 +08:00
|
|
|
def ATOMIC_LOAD_NAND_I32 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_NAND_I32",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_load_nand_32 xoaddr:$ptr, i32:$incr))]>;
|
2008-08-26 06:34:37 +08:00
|
|
|
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_CMP_SWAP_I8 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$old, GPRC:$new), "#ATOMIC_CMP_SWAP_I8",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_cmp_swap_8 xoaddr:$ptr, i32:$old, i32:$new))]>;
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_CMP_SWAP_I16 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$old, GPRC:$new), "#ATOMIC_CMP_SWAP_I16 $dst $ptr $old $new",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_cmp_swap_16 xoaddr:$ptr, i32:$old, i32:$new))]>;
|
2008-08-22 11:49:10 +08:00
|
|
|
def ATOMIC_CMP_SWAP_I32 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$old, GPRC:$new), "#ATOMIC_CMP_SWAP_I32 $dst $ptr $old $new",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_cmp_swap_32 xoaddr:$ptr, i32:$old, i32:$new))]>;
|
2008-08-26 06:34:37 +08:00
|
|
|
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_SWAP_I8 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$new), "#ATOMIC_SWAP_i8",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_swap_8 xoaddr:$ptr, i32:$new))]>;
|
2008-08-29 01:53:09 +08:00
|
|
|
def ATOMIC_SWAP_I16 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$new), "#ATOMIC_SWAP_I16",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_swap_16 xoaddr:$ptr, i32:$new))]>;
|
2008-08-26 05:09:52 +08:00
|
|
|
def ATOMIC_SWAP_I32 : Pseudo<
|
2012-10-05 02:14:28 +08:00
|
|
|
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$new), "#ATOMIC_SWAP_I32",
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (atomic_swap_32 xoaddr:$ptr, i32:$new))]>;
|
2008-08-22 11:49:10 +08:00
|
|
|
}
|
2008-04-19 09:30:48 +08:00
|
|
|
}
|
|
|
|
|
2008-07-12 10:23:19 +08:00
|
|
|
// Instructions to support atomic operations
|
|
|
|
def LWARX : XForm_1<31, 20, (outs GPRC:$rD), (ins memrr:$src),
|
|
|
|
"lwarx $rD, $src", LdStLWARX,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (PPClarx xoaddr:$src))]>;
|
2008-07-12 10:23:19 +08:00
|
|
|
|
|
|
|
let Defs = [CR0] in
|
|
|
|
def STWCX : XForm_1<31, 150, (outs), (ins GPRC:$rS, memrr:$dst),
|
|
|
|
"stwcx. $rS, $dst", LdStSTWCX,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(PPCstcx i32:$rS, xoaddr:$dst)]>,
|
2008-07-12 10:23:19 +08:00
|
|
|
isDOT;
|
|
|
|
|
2010-05-15 00:46:02 +08:00
|
|
|
let isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
|
2012-04-01 12:44:16 +08:00
|
|
|
def TRAP : XForm_24<31, 4, (outs), (ins), "trap", LdStLoad, [(trap)]>;
|
2008-08-12 01:36:31 +08:00
|
|
|
|
2006-11-15 03:19:53 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// PPC32 Load Instructions.
|
2004-08-30 10:28:06 +08:00
|
|
|
//
|
2006-11-15 03:19:53 +08:00
|
|
|
|
2006-11-15 10:43:19 +08:00
|
|
|
// Unindexed (r+i) Loads.
|
2008-12-04 02:15:48 +08:00
|
|
|
let canFoldAsLoad = 1, PPC970_Unit = 2 in {
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def LBZ : DForm_1<34, (outs GPRC:$rD), (ins memri:$src),
|
2012-04-01 12:44:16 +08:00
|
|
|
"lbz $rD, $src", LdStLoad,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (zextloadi8 iaddr:$src))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def LHA : DForm_1<42, (outs GPRC:$rD), (ins memri:$src),
|
2005-12-20 07:25:09 +08:00
|
|
|
"lha $rD, $src", LdStLHA,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (sextloadi16 iaddr:$src))]>,
|
2006-03-13 13:15:10 +08:00
|
|
|
PPC970_DGroup_Cracked;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def LHZ : DForm_1<40, (outs GPRC:$rD), (ins memri:$src),
|
2012-04-01 12:44:16 +08:00
|
|
|
"lhz $rD, $src", LdStLoad,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (zextloadi16 iaddr:$src))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def LWZ : DForm_1<32, (outs GPRC:$rD), (ins memri:$src),
|
2012-04-01 12:44:16 +08:00
|
|
|
"lwz $rD, $src", LdStLoad,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (load iaddr:$src))]>;
|
2006-11-08 10:13:12 +08:00
|
|
|
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def LFS : DForm_1<48, (outs F4RC:$rD), (ins memri:$src),
|
2012-08-28 10:49:14 +08:00
|
|
|
"lfs $rD, $src", LdStLFD,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$rD, (load iaddr:$src))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def LFD : DForm_1<50, (outs F8RC:$rD), (ins memri:$src),
|
2006-11-10 10:08:47 +08:00
|
|
|
"lfd $rD, $src", LdStLFD,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$rD, (load iaddr:$src))]>;
|
2006-11-10 10:08:47 +08:00
|
|
|
|
|
|
|
|
2006-11-15 10:43:19 +08:00
|
|
|
// Unindexed (r+i) Loads with Update (preinc).
|
2008-12-03 10:30:17 +08:00
|
|
|
let mayLoad = 1 in {
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
def LBZU : DForm_1<35, (outs GPRC:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
|
2012-08-28 10:49:14 +08:00
|
|
|
"lbzu $rD, $addr", LdStLoadUpd,
|
2006-11-16 07:24:18 +08:00
|
|
|
[]>, RegConstraint<"$addr.reg = $ea_result">,
|
|
|
|
NoEncode<"$ea_result">;
|
2006-11-15 10:43:19 +08:00
|
|
|
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
def LHAU : DForm_1<43, (outs GPRC:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
|
2012-08-28 10:49:14 +08:00
|
|
|
"lhau $rD, $addr", LdStLHAU,
|
2006-11-16 07:24:18 +08:00
|
|
|
[]>, RegConstraint<"$addr.reg = $ea_result">,
|
|
|
|
NoEncode<"$ea_result">;
|
2006-11-15 10:43:19 +08:00
|
|
|
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
def LHZU : DForm_1<41, (outs GPRC:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
|
2012-08-28 10:49:14 +08:00
|
|
|
"lhzu $rD, $addr", LdStLoadUpd,
|
2006-11-16 07:24:18 +08:00
|
|
|
[]>, RegConstraint<"$addr.reg = $ea_result">,
|
|
|
|
NoEncode<"$ea_result">;
|
2006-11-15 10:43:19 +08:00
|
|
|
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
def LWZU : DForm_1<33, (outs GPRC:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
|
2012-08-28 10:49:14 +08:00
|
|
|
"lwzu $rD, $addr", LdStLoadUpd,
|
2006-11-16 07:24:18 +08:00
|
|
|
[]>, RegConstraint<"$addr.reg = $ea_result">,
|
|
|
|
NoEncode<"$ea_result">;
|
2006-11-15 10:43:19 +08:00
|
|
|
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
def LFSU : DForm_1<49, (outs F4RC:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
|
2012-08-28 10:49:14 +08:00
|
|
|
"lfsu $rD, $addr", LdStLFDU,
|
2006-11-16 07:24:18 +08:00
|
|
|
[]>, RegConstraint<"$addr.reg = $ea_result">,
|
|
|
|
NoEncode<"$ea_result">;
|
|
|
|
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
def LFDU : DForm_1<51, (outs F8RC:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
|
2012-08-28 10:49:14 +08:00
|
|
|
"lfdu $rD, $addr", LdStLFDU,
|
2006-11-16 07:24:18 +08:00
|
|
|
[]>, RegConstraint<"$addr.reg = $ea_result">,
|
|
|
|
NoEncode<"$ea_result">;
|
2012-06-20 23:43:03 +08:00
|
|
|
|
|
|
|
|
|
|
|
// Indexed (r+r) Loads with Update (preinc).
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
def LBZUX : XForm_1<31, 119, (outs GPRC:$rD, ptr_rc_nor0:$ea_result),
|
2012-06-20 23:43:03 +08:00
|
|
|
(ins memrr:$addr),
|
2012-08-28 10:49:14 +08:00
|
|
|
"lbzux $rD, $addr", LdStLoadUpd,
|
2013-03-22 22:59:13 +08:00
|
|
|
[]>, RegConstraint<"$addr.ptrreg = $ea_result">,
|
2012-06-20 23:43:03 +08:00
|
|
|
NoEncode<"$ea_result">;
|
|
|
|
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
def LHAUX : XForm_1<31, 375, (outs GPRC:$rD, ptr_rc_nor0:$ea_result),
|
2012-06-20 23:43:03 +08:00
|
|
|
(ins memrr:$addr),
|
2012-08-28 10:49:14 +08:00
|
|
|
"lhaux $rD, $addr", LdStLHAU,
|
2013-03-22 22:59:13 +08:00
|
|
|
[]>, RegConstraint<"$addr.ptrreg = $ea_result">,
|
2012-06-20 23:43:03 +08:00
|
|
|
NoEncode<"$ea_result">;
|
|
|
|
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
def LHZUX : XForm_1<31, 311, (outs GPRC:$rD, ptr_rc_nor0:$ea_result),
|
2012-06-20 23:43:03 +08:00
|
|
|
(ins memrr:$addr),
|
2012-08-28 10:49:14 +08:00
|
|
|
"lhzux $rD, $addr", LdStLoadUpd,
|
2013-03-22 22:59:13 +08:00
|
|
|
[]>, RegConstraint<"$addr.ptrreg = $ea_result">,
|
2012-06-20 23:43:03 +08:00
|
|
|
NoEncode<"$ea_result">;
|
|
|
|
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
def LWZUX : XForm_1<31, 55, (outs GPRC:$rD, ptr_rc_nor0:$ea_result),
|
2012-06-20 23:43:03 +08:00
|
|
|
(ins memrr:$addr),
|
2012-08-28 10:49:14 +08:00
|
|
|
"lwzux $rD, $addr", LdStLoadUpd,
|
2013-03-22 22:59:13 +08:00
|
|
|
[]>, RegConstraint<"$addr.ptrreg = $ea_result">,
|
2012-06-20 23:43:03 +08:00
|
|
|
NoEncode<"$ea_result">;
|
|
|
|
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
def LFSUX : XForm_1<31, 567, (outs F4RC:$rD, ptr_rc_nor0:$ea_result),
|
2012-06-20 23:43:03 +08:00
|
|
|
(ins memrr:$addr),
|
2012-08-28 10:49:14 +08:00
|
|
|
"lfsux $rD, $addr", LdStLFDU,
|
2013-03-22 22:59:13 +08:00
|
|
|
[]>, RegConstraint<"$addr.ptrreg = $ea_result">,
|
2012-06-20 23:43:03 +08:00
|
|
|
NoEncode<"$ea_result">;
|
|
|
|
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
def LFDUX : XForm_1<31, 631, (outs F8RC:$rD, ptr_rc_nor0:$ea_result),
|
2012-06-20 23:43:03 +08:00
|
|
|
(ins memrr:$addr),
|
2012-08-28 10:49:14 +08:00
|
|
|
"lfdux $rD, $addr", LdStLFDU,
|
2013-03-22 22:59:13 +08:00
|
|
|
[]>, RegConstraint<"$addr.ptrreg = $ea_result">,
|
2012-06-20 23:43:03 +08:00
|
|
|
NoEncode<"$ea_result">;
|
2004-10-08 06:30:03 +08:00
|
|
|
}
|
2008-12-03 10:30:17 +08:00
|
|
|
}
|
2006-11-08 10:13:12 +08:00
|
|
|
|
2006-11-15 10:43:19 +08:00
|
|
|
// Indexed (r+r) Loads.
|
2006-11-15 03:19:53 +08:00
|
|
|
//
|
2008-12-04 02:15:48 +08:00
|
|
|
let canFoldAsLoad = 1, PPC970_Unit = 2 in {
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def LBZX : XForm_1<31, 87, (outs GPRC:$rD), (ins memrr:$src),
|
2012-04-01 12:44:16 +08:00
|
|
|
"lbzx $rD, $src", LdStLoad,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (zextloadi8 xaddr:$src))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def LHAX : XForm_1<31, 343, (outs GPRC:$rD), (ins memrr:$src),
|
2006-11-15 03:19:53 +08:00
|
|
|
"lhax $rD, $src", LdStLHA,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (sextloadi16 xaddr:$src))]>,
|
2006-11-15 03:19:53 +08:00
|
|
|
PPC970_DGroup_Cracked;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def LHZX : XForm_1<31, 279, (outs GPRC:$rD), (ins memrr:$src),
|
2012-04-01 12:44:16 +08:00
|
|
|
"lhzx $rD, $src", LdStLoad,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (zextloadi16 xaddr:$src))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def LWZX : XForm_1<31, 23, (outs GPRC:$rD), (ins memrr:$src),
|
2012-04-01 12:44:16 +08:00
|
|
|
"lwzx $rD, $src", LdStLoad,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (load xaddr:$src))]>;
|
2006-11-15 03:19:53 +08:00
|
|
|
|
|
|
|
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def LHBRX : XForm_1<31, 790, (outs GPRC:$rD), (ins memrr:$src),
|
2012-04-01 12:44:16 +08:00
|
|
|
"lhbrx $rD, $src", LdStLoad,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (PPClbrx xoaddr:$src, i16))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def LWBRX : XForm_1<31, 534, (outs GPRC:$rD), (ins memrr:$src),
|
2012-04-01 12:44:16 +08:00
|
|
|
"lwbrx $rD, $src", LdStLoad,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (PPClbrx xoaddr:$src, i32))]>;
|
2006-11-15 03:19:53 +08:00
|
|
|
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def LFSX : XForm_25<31, 535, (outs F4RC:$frD), (ins memrr:$src),
|
2012-08-28 10:49:14 +08:00
|
|
|
"lfsx $frD, $src", LdStLFD,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$frD, (load xaddr:$src))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def LFDX : XForm_25<31, 599, (outs F8RC:$frD), (ins memrr:$src),
|
2012-08-28 10:49:14 +08:00
|
|
|
"lfdx $frD, $src", LdStLFD,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$frD, (load xaddr:$src))]>;
|
2006-11-15 03:19:53 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// PPC32 Store Instructions.
|
|
|
|
//
|
|
|
|
|
2006-11-15 10:43:19 +08:00
|
|
|
// Unindexed (r+i) Stores.
|
2008-01-06 13:53:26 +08:00
|
|
|
let PPC970_Unit = 2 in {
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def STB : DForm_1<38, (outs), (ins GPRC:$rS, memri:$src),
|
2012-04-01 12:44:16 +08:00
|
|
|
"stb $rS, $src", LdStStore,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(truncstorei8 i32:$rS, iaddr:$src)]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def STH : DForm_1<44, (outs), (ins GPRC:$rS, memri:$src),
|
2012-04-01 12:44:16 +08:00
|
|
|
"sth $rS, $src", LdStStore,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(truncstorei16 i32:$rS, iaddr:$src)]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def STW : DForm_1<36, (outs), (ins GPRC:$rS, memri:$src),
|
2012-04-01 12:44:16 +08:00
|
|
|
"stw $rS, $src", LdStStore,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(store i32:$rS, iaddr:$src)]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def STFS : DForm_1<52, (outs), (ins F4RC:$rS, memri:$dst),
|
2012-08-28 10:49:14 +08:00
|
|
|
"stfs $rS, $dst", LdStSTFD,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(store f32:$rS, iaddr:$dst)]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def STFD : DForm_1<54, (outs), (ins F8RC:$rS, memri:$dst),
|
2012-08-28 10:49:14 +08:00
|
|
|
"stfd $rS, $dst", LdStSTFD,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(store f64:$rS, iaddr:$dst)]>;
|
2006-11-15 03:19:53 +08:00
|
|
|
}
|
|
|
|
|
2006-11-15 10:43:19 +08:00
|
|
|
// Unindexed (r+i) Stores with Update (preinc).
|
2013-03-20 03:52:04 +08:00
|
|
|
let PPC970_Unit = 2, mayStore = 1 in {
|
|
|
|
def STBU : DForm_1<39, (outs ptr_rc_nor0:$ea_res), (ins GPRC:$rS, memri:$dst),
|
|
|
|
"stbu $rS, $dst", LdStStoreUpd, []>,
|
|
|
|
RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
|
|
|
|
def STHU : DForm_1<45, (outs ptr_rc_nor0:$ea_res), (ins GPRC:$rS, memri:$dst),
|
|
|
|
"sthu $rS, $dst", LdStStoreUpd, []>,
|
|
|
|
RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
|
|
|
|
def STWU : DForm_1<37, (outs ptr_rc_nor0:$ea_res), (ins GPRC:$rS, memri:$dst),
|
|
|
|
"stwu $rS, $dst", LdStStoreUpd, []>,
|
|
|
|
RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
|
|
|
|
def STFSU : DForm_1<37, (outs ptr_rc_nor0:$ea_res), (ins F4RC:$rS, memri:$dst),
|
|
|
|
"stfsu $rS, $dst", LdStSTFDU, []>,
|
|
|
|
RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
|
|
|
|
def STFDU : DForm_1<37, (outs ptr_rc_nor0:$ea_res), (ins F8RC:$rS, memri:$dst),
|
|
|
|
"stfdu $rS, $dst", LdStSTFDU, []>,
|
|
|
|
RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Patterns to match the pre-inc stores. We can't put the patterns on
|
|
|
|
// the instruction definitions directly as ISel wants the address base
|
|
|
|
// and offset to be separate operands, not a single complex operand.
|
2013-03-26 03:04:58 +08:00
|
|
|
def : Pat<(pre_truncsti8 i32:$rS, iPTR:$ptrreg, iaddroff:$ptroff),
|
|
|
|
(STBU $rS, iaddroff:$ptroff, $ptrreg)>;
|
|
|
|
def : Pat<(pre_truncsti16 i32:$rS, iPTR:$ptrreg, iaddroff:$ptroff),
|
|
|
|
(STHU $rS, iaddroff:$ptroff, $ptrreg)>;
|
|
|
|
def : Pat<(pre_store i32:$rS, iPTR:$ptrreg, iaddroff:$ptroff),
|
|
|
|
(STWU $rS, iaddroff:$ptroff, $ptrreg)>;
|
|
|
|
def : Pat<(pre_store f32:$rS, iPTR:$ptrreg, iaddroff:$ptroff),
|
|
|
|
(STFSU $rS, iaddroff:$ptroff, $ptrreg)>;
|
|
|
|
def : Pat<(pre_store f64:$rS, iPTR:$ptrreg, iaddroff:$ptroff),
|
|
|
|
(STFDU $rS, iaddroff:$ptroff, $ptrreg)>;
|
2006-11-15 10:43:19 +08:00
|
|
|
|
2006-11-15 03:19:53 +08:00
|
|
|
// Indexed (r+r) Stores.
|
2008-01-06 13:53:26 +08:00
|
|
|
let PPC970_Unit = 2 in {
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def STBX : XForm_8<31, 215, (outs), (ins GPRC:$rS, memrr:$dst),
|
2012-04-01 12:44:16 +08:00
|
|
|
"stbx $rS, $dst", LdStStore,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(truncstorei8 i32:$rS, xaddr:$dst)]>,
|
2006-11-15 03:19:53 +08:00
|
|
|
PPC970_DGroup_Cracked;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def STHX : XForm_8<31, 407, (outs), (ins GPRC:$rS, memrr:$dst),
|
2012-04-01 12:44:16 +08:00
|
|
|
"sthx $rS, $dst", LdStStore,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(truncstorei16 i32:$rS, xaddr:$dst)]>,
|
2006-11-15 03:19:53 +08:00
|
|
|
PPC970_DGroup_Cracked;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def STWX : XForm_8<31, 151, (outs), (ins GPRC:$rS, memrr:$dst),
|
2012-04-01 12:44:16 +08:00
|
|
|
"stwx $rS, $dst", LdStStore,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(store i32:$rS, xaddr:$dst)]>,
|
2006-11-15 03:19:53 +08:00
|
|
|
PPC970_DGroup_Cracked;
|
2012-06-19 10:34:32 +08:00
|
|
|
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def STHBRX: XForm_8<31, 918, (outs), (ins GPRC:$rS, memrr:$dst),
|
2012-04-01 12:44:16 +08:00
|
|
|
"sthbrx $rS, $dst", LdStStore,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(PPCstbrx i32:$rS, xoaddr:$dst, i16)]>,
|
2006-11-15 03:19:53 +08:00
|
|
|
PPC970_DGroup_Cracked;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def STWBRX: XForm_8<31, 662, (outs), (ins GPRC:$rS, memrr:$dst),
|
2012-04-01 12:44:16 +08:00
|
|
|
"stwbrx $rS, $dst", LdStStore,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(PPCstbrx i32:$rS, xoaddr:$dst, i32)]>,
|
2006-11-15 03:19:53 +08:00
|
|
|
PPC970_DGroup_Cracked;
|
|
|
|
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def STFIWX: XForm_28<31, 983, (outs), (ins F8RC:$frS, memrr:$dst),
|
2012-08-28 10:49:14 +08:00
|
|
|
"stfiwx $frS, $dst", LdStSTFD,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(PPCstfiwx f64:$frS, xoaddr:$dst)]>;
|
2008-01-06 14:44:58 +08:00
|
|
|
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def STFSX : XForm_28<31, 663, (outs), (ins F4RC:$frS, memrr:$dst),
|
2012-08-28 10:49:14 +08:00
|
|
|
"stfsx $frS, $dst", LdStSTFD,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(store f32:$frS, xaddr:$dst)]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def STFDX : XForm_28<31, 727, (outs), (ins F8RC:$frS, memrr:$dst),
|
2012-08-28 10:49:14 +08:00
|
|
|
"stfdx $frS, $dst", LdStSTFD,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(store f64:$frS, xaddr:$dst)]>;
|
2006-11-15 03:19:53 +08:00
|
|
|
}
|
|
|
|
|
2013-03-20 03:52:04 +08:00
|
|
|
// Indexed (r+r) Stores with Update (preinc).
|
|
|
|
let PPC970_Unit = 2, mayStore = 1 in {
|
|
|
|
def STBUX : XForm_8<31, 247, (outs ptr_rc_nor0:$ea_res), (ins GPRC:$rS, memrr:$dst),
|
|
|
|
"stbux $rS, $dst", LdStStoreUpd, []>,
|
2013-03-22 22:59:13 +08:00
|
|
|
RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">,
|
2013-03-20 03:52:04 +08:00
|
|
|
PPC970_DGroup_Cracked;
|
|
|
|
def STHUX : XForm_8<31, 439, (outs ptr_rc_nor0:$ea_res), (ins GPRC:$rS, memrr:$dst),
|
|
|
|
"sthux $rS, $dst", LdStStoreUpd, []>,
|
2013-03-22 22:59:13 +08:00
|
|
|
RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">,
|
2013-03-20 03:52:04 +08:00
|
|
|
PPC970_DGroup_Cracked;
|
|
|
|
def STWUX : XForm_8<31, 183, (outs ptr_rc_nor0:$ea_res), (ins GPRC:$rS, memrr:$dst),
|
|
|
|
"stwux $rS, $dst", LdStStoreUpd, []>,
|
2013-03-22 22:59:13 +08:00
|
|
|
RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">,
|
2013-03-20 03:52:04 +08:00
|
|
|
PPC970_DGroup_Cracked;
|
|
|
|
def STFSUX: XForm_8<31, 695, (outs ptr_rc_nor0:$ea_res), (ins F4RC:$rS, memrr:$dst),
|
|
|
|
"stfsux $rS, $dst", LdStSTFDU, []>,
|
2013-03-22 22:59:13 +08:00
|
|
|
RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">,
|
2013-03-20 03:52:04 +08:00
|
|
|
PPC970_DGroup_Cracked;
|
|
|
|
def STFDUX: XForm_8<31, 759, (outs ptr_rc_nor0:$ea_res), (ins F8RC:$rS, memrr:$dst),
|
|
|
|
"stfdux $rS, $dst", LdStSTFDU, []>,
|
2013-03-22 22:59:13 +08:00
|
|
|
RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">,
|
2013-03-20 03:52:04 +08:00
|
|
|
PPC970_DGroup_Cracked;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Patterns to match the pre-inc stores. We can't put the patterns on
|
|
|
|
// the instruction definitions directly as ISel wants the address base
|
|
|
|
// and offset to be separate operands, not a single complex operand.
|
2013-03-26 03:04:58 +08:00
|
|
|
def : Pat<(pre_truncsti8 i32:$rS, iPTR:$ptrreg, iPTR:$ptroff),
|
|
|
|
(STBUX $rS, $ptrreg, $ptroff)>;
|
|
|
|
def : Pat<(pre_truncsti16 i32:$rS, iPTR:$ptrreg, iPTR:$ptroff),
|
|
|
|
(STHUX $rS, $ptrreg, $ptroff)>;
|
|
|
|
def : Pat<(pre_store i32:$rS, iPTR:$ptrreg, iPTR:$ptroff),
|
|
|
|
(STWUX $rS, $ptrreg, $ptroff)>;
|
|
|
|
def : Pat<(pre_store f32:$rS, iPTR:$ptrreg, iPTR:$ptroff),
|
|
|
|
(STFSUX $rS, $ptrreg, $ptroff)>;
|
|
|
|
def : Pat<(pre_store f64:$rS, iPTR:$ptrreg, iPTR:$ptroff),
|
|
|
|
(STFDUX $rS, $ptrreg, $ptroff)>;
|
2013-03-20 03:52:04 +08:00
|
|
|
|
2008-08-23 01:20:54 +08:00
|
|
|
def SYNC : XForm_24_sync<31, 598, (outs), (ins),
|
|
|
|
"sync", LdStSync,
|
|
|
|
[(int_ppc_sync)]>;
|
2006-11-15 03:19:53 +08:00
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// PPC32 Arithmetic Instructions.
|
|
|
|
//
|
2006-11-08 10:13:12 +08:00
|
|
|
|
2006-03-12 17:13:49 +08:00
|
|
|
let PPC970_Unit = 1 in { // FXU Operations.
|
2013-03-26 18:55:20 +08:00
|
|
|
def ADDI : DForm_2<14, (outs GPRC:$rD), (ins GPRC_NOR0:$rA, symbolLo:$imm),
|
2012-06-13 03:01:24 +08:00
|
|
|
"addi $rD, $rA, $imm", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (add i32:$rA, immSExt16:$imm))]>;
|
2009-09-19 04:15:22 +08:00
|
|
|
let Defs = [CARRY] in {
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def ADDIC : DForm_2<12, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
|
2005-10-20 03:51:16 +08:00
|
|
|
"addic $rD, $rA, $imm", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (addc i32:$rA, immSExt16:$imm))]>,
|
2006-03-13 13:15:10 +08:00
|
|
|
PPC970_DGroup_Cracked;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def ADDICo : DForm_2<13, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
|
2005-10-20 03:51:16 +08:00
|
|
|
"addic. $rD, $rA, $imm", IntGeneral,
|
2005-09-09 01:33:10 +08:00
|
|
|
[]>;
|
2009-09-19 04:15:22 +08:00
|
|
|
}
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
def ADDIS : DForm_2<15, (outs GPRC:$rD), (ins GPRC_NOR0:$rA, symbolHi:$imm),
|
2012-06-13 03:01:24 +08:00
|
|
|
"addis $rD, $rA, $imm", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (add i32:$rA, imm16ShiftedSExt:$imm))]>;
|
Prepare to make r0 an allocatable register on PPC
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
llvm-svn: 177423
2013-03-20 02:51:05 +08:00
|
|
|
def LA : DForm_2<14, (outs GPRC:$rD), (ins GPRC_NOR0:$rA, symbolLo:$sym),
|
2005-10-20 03:51:16 +08:00
|
|
|
"la $rD, $sym($rA)", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (add i32:$rA,
|
2005-11-18 01:52:01 +08:00
|
|
|
(PPClo tglobaladdr:$sym, 0)))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def MULLI : DForm_2< 7, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
|
2005-10-20 03:51:16 +08:00
|
|
|
"mulli $rD, $rA, $imm", IntMulLI,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (mul i32:$rA, immSExt16:$imm))]>;
|
2009-09-19 04:15:22 +08:00
|
|
|
let Defs = [CARRY] in {
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def SUBFIC : DForm_2< 8, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
|
2005-10-20 03:51:16 +08:00
|
|
|
"subfic $rD, $rA, $imm", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, (subc immSExt16:$imm, i32:$rA))]>;
|
2009-09-19 04:15:22 +08:00
|
|
|
}
|
Initial commit of the machine code LICM pass. It successfully hoists this:
_foo:
li r2, 0
LBB1_1: ; bb
li r5, 0
stw r5, 0(r3)
addi r2, r2, 1
addi r3, r3, 4
cmplw cr0, r2, r4
bne cr0, LBB1_1 ; bb
LBB1_2: ; return
blr
to:
_foo:
li r2, 0
li r5, 0
LBB1_1: ; bb
stw r5, 0(r3)
addi r2, r2, 1
addi r3, r3, 4
cmplw cr0, r2, r4
bne cr0, LBB1_1 ; bb
LBB1_2: ; return
blr
ZOMG!! :-)
Moar to come...
llvm-svn: 44687
2007-12-08 05:42:31 +08:00
|
|
|
|
2012-08-28 10:10:33 +08:00
|
|
|
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
|
Initial commit of the machine code LICM pass. It successfully hoists this:
_foo:
li r2, 0
LBB1_1: ; bb
li r5, 0
stw r5, 0(r3)
addi r2, r2, 1
addi r3, r3, 4
cmplw cr0, r2, r4
bne cr0, LBB1_1 ; bb
LBB1_2: ; return
blr
to:
_foo:
li r2, 0
li r5, 0
LBB1_1: ; bb
stw r5, 0(r3)
addi r2, r2, 1
addi r3, r3, 4
cmplw cr0, r2, r4
bne cr0, LBB1_1 ; bb
LBB1_2: ; return
blr
ZOMG!! :-)
Moar to come...
llvm-svn: 44687
2007-12-08 05:42:31 +08:00
|
|
|
def LI : DForm_2_r0<14, (outs GPRC:$rD), (ins symbolLo:$imm),
|
2012-06-13 03:01:24 +08:00
|
|
|
"li $rD, $imm", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, immSExt16:$imm)]>;
|
Initial commit of the machine code LICM pass. It successfully hoists this:
_foo:
li r2, 0
LBB1_1: ; bb
li r5, 0
stw r5, 0(r3)
addi r2, r2, 1
addi r3, r3, 4
cmplw cr0, r2, r4
bne cr0, LBB1_1 ; bb
LBB1_2: ; return
blr
to:
_foo:
li r2, 0
li r5, 0
LBB1_1: ; bb
stw r5, 0(r3)
addi r2, r2, 1
addi r3, r3, 4
cmplw cr0, r2, r4
bne cr0, LBB1_1 ; bb
LBB1_2: ; return
blr
ZOMG!! :-)
Moar to come...
llvm-svn: 44687
2007-12-08 05:42:31 +08:00
|
|
|
def LIS : DForm_2_r0<15, (outs GPRC:$rD), (ins symbolHi:$imm),
|
2012-06-13 03:01:24 +08:00
|
|
|
"lis $rD, $imm", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rD, imm16ShiftedSExt:$imm)]>;
|
Initial commit of the machine code LICM pass. It successfully hoists this:
_foo:
li r2, 0
LBB1_1: ; bb
li r5, 0
stw r5, 0(r3)
addi r2, r2, 1
addi r3, r3, 4
cmplw cr0, r2, r4
bne cr0, LBB1_1 ; bb
LBB1_2: ; return
blr
to:
_foo:
li r2, 0
li r5, 0
LBB1_1: ; bb
stw r5, 0(r3)
addi r2, r2, 1
addi r3, r3, 4
cmplw cr0, r2, r4
bne cr0, LBB1_1 ; bb
LBB1_2: ; return
blr
ZOMG!! :-)
Moar to come...
llvm-svn: 44687
2007-12-08 05:42:31 +08:00
|
|
|
}
|
2006-03-12 17:13:49 +08:00
|
|
|
}
|
2006-11-15 03:19:53 +08:00
|
|
|
|
2006-03-12 17:13:49 +08:00
|
|
|
let PPC970_Unit = 1 in { // FXU Operations.
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def ANDIo : DForm_4<28, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2),
|
2005-10-20 03:51:16 +08:00
|
|
|
"andi. $dst, $src1, $src2", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (and i32:$src1, immZExt16:$src2))]>,
|
2006-02-12 17:09:52 +08:00
|
|
|
isDOT;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def ANDISo : DForm_4<29, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2),
|
2005-10-20 03:51:16 +08:00
|
|
|
"andis. $dst, $src1, $src2", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (and i32:$src1, imm16ShiftedZExt:$src2))]>,
|
2006-02-12 17:09:52 +08:00
|
|
|
isDOT;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def ORI : DForm_4<24, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2),
|
2012-06-13 03:01:24 +08:00
|
|
|
"ori $dst, $src1, $src2", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (or i32:$src1, immZExt16:$src2))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def ORIS : DForm_4<25, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2),
|
2012-06-13 03:01:24 +08:00
|
|
|
"oris $dst, $src1, $src2", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (or i32:$src1, imm16ShiftedZExt:$src2))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def XORI : DForm_4<26, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2),
|
2012-06-13 03:01:24 +08:00
|
|
|
"xori $dst, $src1, $src2", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (xor i32:$src1, immZExt16:$src2))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def XORIS : DForm_4<27, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2),
|
2012-06-13 03:01:24 +08:00
|
|
|
"xoris $dst, $src1, $src2", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$dst, (xor i32:$src1, imm16ShiftedZExt:$src2))]>;
|
2012-06-13 03:01:24 +08:00
|
|
|
def NOP : DForm_4_zero<24, (outs), (ins), "nop", IntSimple,
|
2005-12-10 07:54:18 +08:00
|
|
|
[]>;
|
2007-08-02 07:07:38 +08:00
|
|
|
def CMPWI : DForm_5_ext<11, (outs CRRC:$crD), (ins GPRC:$rA, s16imm:$imm),
|
2005-10-20 03:51:16 +08:00
|
|
|
"cmpwi $crD, $rA, $imm", IntCompare>;
|
2007-08-02 07:07:38 +08:00
|
|
|
def CMPLWI : DForm_6_ext<10, (outs CRRC:$dst), (ins GPRC:$src1, u16imm:$src2),
|
2005-10-20 03:51:16 +08:00
|
|
|
"cmplwi $dst, $src1, $src2", IntCompare>;
|
2006-03-12 17:13:49 +08:00
|
|
|
}
|
2006-07-11 04:56:58 +08:00
|
|
|
|
2006-03-25 15:51:43 +08:00
|
|
|
|
2006-03-12 17:13:49 +08:00
|
|
|
let PPC970_Unit = 1 in { // FXU Operations.
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def NAND : XForm_6<31, 476, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
|
2012-06-13 03:01:24 +08:00
|
|
|
"nand $rA, $rS, $rB", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rA, (not (and i32:$rS, i32:$rB)))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def AND : XForm_6<31, 28, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
|
2012-06-13 03:01:24 +08:00
|
|
|
"and $rA, $rS, $rB", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rA, (and i32:$rS, i32:$rB))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def ANDC : XForm_6<31, 60, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
|
2012-06-13 03:01:24 +08:00
|
|
|
"andc $rA, $rS, $rB", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rA, (and i32:$rS, (not i32:$rB)))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def OR : XForm_6<31, 444, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
|
2012-06-13 03:01:24 +08:00
|
|
|
"or $rA, $rS, $rB", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rA, (or i32:$rS, i32:$rB))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def NOR : XForm_6<31, 124, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
|
2012-06-13 03:01:24 +08:00
|
|
|
"nor $rA, $rS, $rB", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rA, (not (or i32:$rS, i32:$rB)))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def ORC : XForm_6<31, 412, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
|
2012-06-13 03:01:24 +08:00
|
|
|
"orc $rA, $rS, $rB", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rA, (or i32:$rS, (not i32:$rB)))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def EQV : XForm_6<31, 284, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
|
2012-06-13 03:01:24 +08:00
|
|
|
"eqv $rA, $rS, $rB", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rA, (not (xor i32:$rS, i32:$rB)))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def XOR : XForm_6<31, 316, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
|
2012-06-13 03:01:24 +08:00
|
|
|
"xor $rA, $rS, $rB", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rA, (xor i32:$rS, i32:$rB))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def SLW : XForm_6<31, 24, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"slw $rA, $rS, $rB", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rA, (PPCshl i32:$rS, i32:$rB))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def SRW : XForm_6<31, 536, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"srw $rA, $rS, $rB", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rA, (PPCsrl i32:$rS, i32:$rB))]>;
|
2009-09-19 04:15:22 +08:00
|
|
|
let Defs = [CARRY] in {
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def SRAW : XForm_6<31, 792, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"sraw $rA, $rS, $rB", IntShift,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rA, (PPCsra i32:$rS, i32:$rB))]>;
|
2006-03-12 17:13:49 +08:00
|
|
|
}
|
2009-09-19 04:15:22 +08:00
|
|
|
}
|
2006-11-15 03:19:53 +08:00
|
|
|
|
2006-03-12 17:13:49 +08:00
|
|
|
let PPC970_Unit = 1 in { // FXU Operations.
|
2009-09-19 04:15:22 +08:00
|
|
|
let Defs = [CARRY] in {
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def SRAWI : XForm_10<31, 824, (outs GPRC:$rA), (ins GPRC:$rS, u5imm:$SH),
|
2005-10-20 03:51:16 +08:00
|
|
|
"srawi $rA, $rS, $SH", IntShift,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rA, (sra i32:$rS, (i32 imm:$SH)))]>;
|
2009-09-19 04:15:22 +08:00
|
|
|
}
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def CNTLZW : XForm_11<31, 26, (outs GPRC:$rA), (ins GPRC:$rS),
|
2005-10-20 03:51:16 +08:00
|
|
|
"cntlzw $rA, $rS", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rA, (ctlz i32:$rS))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def EXTSB : XForm_11<31, 954, (outs GPRC:$rA), (ins GPRC:$rS),
|
2012-06-13 03:01:24 +08:00
|
|
|
"extsb $rA, $rS", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rA, (sext_inreg i32:$rS, i8))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def EXTSH : XForm_11<31, 922, (outs GPRC:$rA), (ins GPRC:$rS),
|
2012-06-13 03:01:24 +08:00
|
|
|
"extsh $rA, $rS", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rA, (sext_inreg i32:$rS, i16))]>;
|
When possible, custom lower 32-bit SINT_TO_FP to this:
_foo2:
extsw r2, r3
std r2, -8(r1)
lfd f0, -8(r1)
fcfid f0, f0
frsp f1, f0
blr
instead of this:
_foo2:
lis r2, ha16(LCPI2_0)
lis r4, 17200
xoris r3, r3, 32768
stw r3, -4(r1)
stw r4, -8(r1)
lfs f0, lo16(LCPI2_0)(r2)
lfd f1, -8(r1)
fsub f0, f1, f0
frsp f1, f0
blr
This speeds up Misc/pi from 2.44s->2.09s with LLC and from 3.01->2.18s
with llcbeta (16.7% and 38.1% respectively).
llvm-svn: 26943
2006-03-22 13:30:33 +08:00
|
|
|
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def CMPW : XForm_16_ext<31, 0, (outs CRRC:$crD), (ins GPRC:$rA, GPRC:$rB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"cmpw $crD, $rA, $rB", IntCompare>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def CMPLW : XForm_16_ext<31, 32, (outs CRRC:$crD), (ins GPRC:$rA, GPRC:$rB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"cmplw $crD, $rA, $rB", IntCompare>;
|
2006-03-12 17:13:49 +08:00
|
|
|
}
|
|
|
|
let PPC970_Unit = 3 in { // FPU Operations.
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
//def FCMPO : XForm_17<63, 32, (outs CRRC:$crD), (ins FPRC:$fA, FPRC:$fB),
|
2005-10-20 03:51:16 +08:00
|
|
|
// "fcmpo $crD, $fA, $fB", FPCompare>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def FCMPUS : XForm_17<63, 0, (outs CRRC:$crD), (ins F4RC:$fA, F4RC:$fB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"fcmpu $crD, $fA, $fB", FPCompare>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def FCMPUD : XForm_17<63, 0, (outs CRRC:$crD), (ins F8RC:$fA, F8RC:$fB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"fcmpu $crD, $fA, $fB", FPCompare>;
|
2006-11-15 03:19:53 +08:00
|
|
|
|
2008-10-30 02:26:45 +08:00
|
|
|
let Uses = [RM] in {
|
|
|
|
def FCTIWZ : XForm_26<63, 15, (outs F8RC:$frD), (ins F8RC:$frB),
|
|
|
|
"fctiwz $frD, $frB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$frD, (PPCfctiwz f64:$frB))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FRSP : XForm_26<63, 12, (outs F4RC:$frD), (ins F8RC:$frB),
|
|
|
|
"frsp $frD, $frB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$frD, (fround f64:$frB))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FSQRT : XForm_26<63, 22, (outs F8RC:$frD), (ins F8RC:$frB),
|
|
|
|
"fsqrt $frD, $frB", FPSqrt,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$frD, (fsqrt f64:$frB))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FSQRTS : XForm_26<59, 22, (outs F4RC:$frD), (ins F4RC:$frB),
|
|
|
|
"fsqrts $frD, $frB", FPSqrt,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$frD, (fsqrt f32:$frB))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
}
|
2006-03-12 17:13:49 +08:00
|
|
|
}
|
2005-10-01 09:35:02 +08:00
|
|
|
|
2010-07-17 05:03:52 +08:00
|
|
|
/// Note that FMR is defined as pseudo-ops on the PPC970 because they are
|
2006-03-24 15:12:19 +08:00
|
|
|
/// often coalesced away and we don't want the dispatch group builder to think
|
2006-03-12 17:13:49 +08:00
|
|
|
/// that they will fill slots (which could cause the load of a LSU reject to
|
|
|
|
/// sneak into a d-group with a store).
|
2010-02-27 05:53:24 +08:00
|
|
|
def FMR : XForm_26<63, 72, (outs F4RC:$frD), (ins F4RC:$frB),
|
|
|
|
"fmr $frD, $frB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[]>, // (set f32:$frD, f32:$frB)
|
2010-02-27 05:53:24 +08:00
|
|
|
PPC970_Unit_Pseudo;
|
2005-10-01 09:35:02 +08:00
|
|
|
|
2006-03-12 17:13:49 +08:00
|
|
|
let PPC970_Unit = 3 in { // FPU Operations.
|
2005-10-01 09:35:02 +08:00
|
|
|
// These are artificially split into two different forms, for 4/8 byte FP.
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def FABSS : XForm_26<63, 264, (outs F4RC:$frD), (ins F4RC:$frB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"fabs $frD, $frB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$frD, (fabs f32:$frB))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def FABSD : XForm_26<63, 264, (outs F8RC:$frD), (ins F8RC:$frB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"fabs $frD, $frB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$frD, (fabs f64:$frB))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def FNABSS : XForm_26<63, 136, (outs F4RC:$frD), (ins F4RC:$frB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"fnabs $frD, $frB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$frD, (fneg (fabs f32:$frB)))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def FNABSD : XForm_26<63, 136, (outs F8RC:$frD), (ins F8RC:$frB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"fnabs $frD, $frB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$frD, (fneg (fabs f64:$frB)))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def FNEGS : XForm_26<63, 40, (outs F4RC:$frD), (ins F4RC:$frB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"fneg $frD, $frB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$frD, (fneg f32:$frB))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def FNEGD : XForm_26<63, 40, (outs F8RC:$frD), (ins F8RC:$frB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"fneg $frD, $frB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$frD, (fneg f64:$frB))]>;
|
2006-03-12 17:13:49 +08:00
|
|
|
}
|
2005-10-01 09:35:02 +08:00
|
|
|
|
2004-08-30 06:45:13 +08:00
|
|
|
|
2004-08-30 10:28:06 +08:00
|
|
|
// XL-Form instructions. condition register logical ops.
|
|
|
|
//
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def MCRF : XLForm_3<19, 0, (outs CRRC:$BF), (ins CRRC:$BFA),
|
2006-03-12 17:13:49 +08:00
|
|
|
"mcrf $BF, $BFA", BrMCR>,
|
|
|
|
PPC970_DGroup_First, PPC970_Unit_CRU;
|
2004-08-30 10:28:06 +08:00
|
|
|
|
2008-03-10 22:12:10 +08:00
|
|
|
def CREQV : XLForm_1<19, 289, (outs CRBITRC:$CRD),
|
|
|
|
(ins CRBITRC:$CRA, CRBITRC:$CRB),
|
2007-02-25 13:34:32 +08:00
|
|
|
"creqv $CRD, $CRA, $CRB", BrCR,
|
|
|
|
[]>;
|
|
|
|
|
2008-03-10 22:12:10 +08:00
|
|
|
def CROR : XLForm_1<19, 449, (outs CRBITRC:$CRD),
|
|
|
|
(ins CRBITRC:$CRA, CRBITRC:$CRB),
|
|
|
|
"cror $CRD, $CRA, $CRB", BrCR,
|
|
|
|
[]>;
|
|
|
|
|
|
|
|
def CRSET : XLForm_1_ext<19, 289, (outs CRBITRC:$dst), (ins),
|
2007-02-25 13:34:32 +08:00
|
|
|
"creqv $dst, $dst, $dst", BrCR,
|
|
|
|
[]>;
|
|
|
|
|
2011-08-31 01:04:16 +08:00
|
|
|
def CRUNSET: XLForm_1_ext<19, 193, (outs CRBITRC:$dst), (ins),
|
|
|
|
"crxor $dst, $dst, $dst", BrCR,
|
|
|
|
[]>;
|
|
|
|
|
2012-08-28 10:10:27 +08:00
|
|
|
let Defs = [CR1EQ], CRD = 6 in {
|
|
|
|
def CR6SET : XLForm_1_ext<19, 289, (outs), (ins),
|
|
|
|
"creqv 6, 6, 6", BrCR,
|
|
|
|
[(PPCcr6set)]>;
|
|
|
|
|
|
|
|
def CR6UNSET: XLForm_1_ext<19, 193, (outs), (ins),
|
|
|
|
"crxor 6, 6, 6", BrCR,
|
|
|
|
[(PPCcr6unset)]>;
|
|
|
|
}
|
|
|
|
|
2006-03-12 17:13:49 +08:00
|
|
|
// XFX-Form instructions. Instructions that deal with SPRs.
|
2004-08-30 10:28:06 +08:00
|
|
|
//
|
2008-10-24 04:41:28 +08:00
|
|
|
let Uses = [CTR] in {
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def MFCTR : XFXForm_1_ext<31, 339, 9, (outs GPRC:$rT), (ins),
|
|
|
|
"mfctr $rT", SprMFSPR>,
|
2006-03-12 17:13:49 +08:00
|
|
|
PPC970_DGroup_First, PPC970_Unit_FXU;
|
2008-10-24 04:41:28 +08:00
|
|
|
}
|
2013-03-26 03:05:30 +08:00
|
|
|
let Defs = [CTR], Pattern = [(PPCmtctr i32:$rS)] in {
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def MTCTR : XFXForm_7_ext<31, 467, 9, (outs), (ins GPRC:$rS),
|
|
|
|
"mtctr $rS", SprMTSPR>,
|
For functions that use vector registers, save VRSAVE, mark used
registers, and update it on entry to each function, then restore it on exit.
This compiles:
void func(vfloat *a, vfloat *b, vfloat *c) {
*a = *b * *c + *c;
}
to this:
_func:
mfspr r2, 256
oris r6, r2, 49152
mtspr 256, r6
lvx v0, 0, r5
lvx v1, 0, r4
vmaddfp v0, v1, v0, v0
stvx v0, 0, r3
mtspr 256, r2
blr
GCC produces this (which has additional stack accesses):
_func:
mfspr r0,256
stw r0,-4(r1)
oris r0,r0,0xc000
mtspr 256,r0
lvx v0,0,r5
lvx v1,0,r4
lwz r12,-4(r1)
vmaddfp v0,v0,v1,v0
stvx v0,0,r3
mtspr 256,r12
blr
llvm-svn: 26733
2006-03-14 05:52:10 +08:00
|
|
|
PPC970_DGroup_First, PPC970_Unit_FXU;
|
2006-05-18 03:00:46 +08:00
|
|
|
}
|
For functions that use vector registers, save VRSAVE, mark used
registers, and update it on entry to each function, then restore it on exit.
This compiles:
void func(vfloat *a, vfloat *b, vfloat *c) {
*a = *b * *c + *c;
}
to this:
_func:
mfspr r2, 256
oris r6, r2, 49152
mtspr 256, r6
lvx v0, 0, r5
lvx v1, 0, r4
vmaddfp v0, v1, v0, v0
stvx v0, 0, r3
mtspr 256, r2
blr
GCC produces this (which has additional stack accesses):
_func:
mfspr r0,256
stw r0,-4(r1)
oris r0,r0,0xc000
mtspr 256,r0
lvx v0,0,r5
lvx v1,0,r4
lwz r12,-4(r1)
vmaddfp v0,v0,v1,v0
stvx v0,0,r3
mtspr 256,r12
blr
llvm-svn: 26733
2006-03-14 05:52:10 +08:00
|
|
|
|
2008-10-24 04:41:28 +08:00
|
|
|
let Defs = [LR] in {
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def MTLR : XFXForm_7_ext<31, 467, 8, (outs), (ins GPRC:$rS),
|
|
|
|
"mtlr $rS", SprMTSPR>,
|
For functions that use vector registers, save VRSAVE, mark used
registers, and update it on entry to each function, then restore it on exit.
This compiles:
void func(vfloat *a, vfloat *b, vfloat *c) {
*a = *b * *c + *c;
}
to this:
_func:
mfspr r2, 256
oris r6, r2, 49152
mtspr 256, r6
lvx v0, 0, r5
lvx v1, 0, r4
vmaddfp v0, v1, v0, v0
stvx v0, 0, r3
mtspr 256, r2
blr
GCC produces this (which has additional stack accesses):
_func:
mfspr r0,256
stw r0,-4(r1)
oris r0,r0,0xc000
mtspr 256,r0
lvx v0,0,r5
lvx v1,0,r4
lwz r12,-4(r1)
vmaddfp v0,v0,v1,v0
stvx v0,0,r3
mtspr 256,r12
blr
llvm-svn: 26733
2006-03-14 05:52:10 +08:00
|
|
|
PPC970_DGroup_First, PPC970_Unit_FXU;
|
2008-10-24 04:41:28 +08:00
|
|
|
}
|
|
|
|
let Uses = [LR] in {
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def MFLR : XFXForm_1_ext<31, 339, 8, (outs GPRC:$rT), (ins),
|
|
|
|
"mflr $rT", SprMFSPR>,
|
2006-03-12 17:13:49 +08:00
|
|
|
PPC970_DGroup_First, PPC970_Unit_FXU;
|
2008-10-24 04:41:28 +08:00
|
|
|
}
|
For functions that use vector registers, save VRSAVE, mark used
registers, and update it on entry to each function, then restore it on exit.
This compiles:
void func(vfloat *a, vfloat *b, vfloat *c) {
*a = *b * *c + *c;
}
to this:
_func:
mfspr r2, 256
oris r6, r2, 49152
mtspr 256, r6
lvx v0, 0, r5
lvx v1, 0, r4
vmaddfp v0, v1, v0, v0
stvx v0, 0, r3
mtspr 256, r2
blr
GCC produces this (which has additional stack accesses):
_func:
mfspr r0,256
stw r0,-4(r1)
oris r0,r0,0xc000
mtspr 256,r0
lvx v0,0,r5
lvx v1,0,r4
lwz r12,-4(r1)
vmaddfp v0,v0,v1,v0
stvx v0,0,r3
mtspr 256,r12
blr
llvm-svn: 26733
2006-03-14 05:52:10 +08:00
|
|
|
|
|
|
|
// Move to/from VRSAVE: despite being a SPR, the VRSAVE register is renamed like
|
|
|
|
// a GPR on the PPC970. As such, copies in and out have the same performance
|
|
|
|
// characteristics as an OR instruction.
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def MTVRSAVE : XFXForm_7_ext<31, 467, 256, (outs), (ins GPRC:$rS),
|
For functions that use vector registers, save VRSAVE, mark used
registers, and update it on entry to each function, then restore it on exit.
This compiles:
void func(vfloat *a, vfloat *b, vfloat *c) {
*a = *b * *c + *c;
}
to this:
_func:
mfspr r2, 256
oris r6, r2, 49152
mtspr 256, r6
lvx v0, 0, r5
lvx v1, 0, r4
vmaddfp v0, v1, v0, v0
stvx v0, 0, r3
mtspr 256, r2
blr
GCC produces this (which has additional stack accesses):
_func:
mfspr r0,256
stw r0,-4(r1)
oris r0,r0,0xc000
mtspr 256,r0
lvx v0,0,r5
lvx v1,0,r4
lwz r12,-4(r1)
vmaddfp v0,v0,v1,v0
stvx v0,0,r3
mtspr 256,r12
blr
llvm-svn: 26733
2006-03-14 05:52:10 +08:00
|
|
|
"mtspr 256, $rS", IntGeneral>,
|
2006-03-15 13:25:05 +08:00
|
|
|
PPC970_DGroup_Single, PPC970_Unit_FXU;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def MFVRSAVE : XFXForm_1_ext<31, 339, 256, (outs GPRC:$rT), (ins),
|
For functions that use vector registers, save VRSAVE, mark used
registers, and update it on entry to each function, then restore it on exit.
This compiles:
void func(vfloat *a, vfloat *b, vfloat *c) {
*a = *b * *c + *c;
}
to this:
_func:
mfspr r2, 256
oris r6, r2, 49152
mtspr 256, r6
lvx v0, 0, r5
lvx v1, 0, r4
vmaddfp v0, v1, v0, v0
stvx v0, 0, r3
mtspr 256, r2
blr
GCC produces this (which has additional stack accesses):
_func:
mfspr r0,256
stw r0,-4(r1)
oris r0,r0,0xc000
mtspr 256,r0
lvx v0,0,r5
lvx v1,0,r4
lwz r12,-4(r1)
vmaddfp v0,v0,v1,v0
stvx v0,0,r3
mtspr 256,r12
blr
llvm-svn: 26733
2006-03-14 05:52:10 +08:00
|
|
|
"mfspr $rT, 256", IntGeneral>,
|
2006-03-15 13:25:05 +08:00
|
|
|
PPC970_DGroup_First, PPC970_Unit_FXU;
|
For functions that use vector registers, save VRSAVE, mark used
registers, and update it on entry to each function, then restore it on exit.
This compiles:
void func(vfloat *a, vfloat *b, vfloat *c) {
*a = *b * *c + *c;
}
to this:
_func:
mfspr r2, 256
oris r6, r2, 49152
mtspr 256, r6
lvx v0, 0, r5
lvx v1, 0, r4
vmaddfp v0, v1, v0, v0
stvx v0, 0, r3
mtspr 256, r2
blr
GCC produces this (which has additional stack accesses):
_func:
mfspr r0,256
stw r0,-4(r1)
oris r0,r0,0xc000
mtspr 256,r0
lvx v0,0,r5
lvx v1,0,r4
lwz r12,-4(r1)
vmaddfp v0,v0,v1,v0
stvx v0,0,r3
mtspr 256,r12
blr
llvm-svn: 26733
2006-03-14 05:52:10 +08:00
|
|
|
|
2013-03-22 03:03:21 +08:00
|
|
|
let isCodeGenOnly = 1 in {
|
|
|
|
def MTVRSAVEv : XFXForm_7_ext<31, 467, 256,
|
|
|
|
(outs VRSAVERC:$reg), (ins GPRC:$rS),
|
|
|
|
"mtspr 256, $rS", IntGeneral>,
|
|
|
|
PPC970_DGroup_Single, PPC970_Unit_FXU;
|
|
|
|
def MFVRSAVEv : XFXForm_1_ext<31, 339, 256, (outs GPRC:$rT),
|
|
|
|
(ins VRSAVERC:$reg),
|
|
|
|
"mfspr $rT, 256", IntGeneral>,
|
|
|
|
PPC970_DGroup_First, PPC970_Unit_FXU;
|
|
|
|
}
|
|
|
|
|
|
|
|
// SPILL_VRSAVE - Indicate that we're dumping the VRSAVE register,
|
|
|
|
// so we'll need to scavenge a register for it.
|
|
|
|
let mayStore = 1 in
|
|
|
|
def SPILL_VRSAVE : Pseudo<(outs), (ins VRSAVERC:$vrsave, memri:$F),
|
|
|
|
"#SPILL_VRSAVE", []>;
|
|
|
|
|
|
|
|
// RESTORE_VRSAVE - Indicate that we're restoring the VRSAVE register (previously
|
|
|
|
// spilled), so we'll need to scavenge a register for it.
|
|
|
|
let mayLoad = 1 in
|
|
|
|
def RESTORE_VRSAVE : Pseudo<(outs VRSAVERC:$vrsave), (ins memri:$F),
|
|
|
|
"#RESTORE_VRSAVE", []>;
|
|
|
|
|
2011-12-07 14:34:06 +08:00
|
|
|
def MTCRF : XFXForm_5<31, 144, (outs crbitm:$FXM), (ins GPRC:$rS),
|
2006-03-12 17:13:49 +08:00
|
|
|
"mtcrf $FXM, $rS", BrMCRX>,
|
|
|
|
PPC970_MicroCode, PPC970_Unit_CRU;
|
2010-05-21 01:48:26 +08:00
|
|
|
|
|
|
|
// This is a pseudo for MFCR, which implicitly uses all 8 of its subregisters;
|
|
|
|
// declaring that here gives the local register allocator problems with this:
|
2008-10-30 02:26:45 +08:00
|
|
|
// vreg = MCRF CR0
|
|
|
|
// MFCR <kill of whatever preg got assigned to vreg>
|
2010-05-21 01:48:26 +08:00
|
|
|
// while not declaring it breaks DeadMachineInstructionElimination.
|
|
|
|
// As it turns out, in all cases where we currently use this,
|
|
|
|
// we're only interested in one subregister of it. Represent this in the
|
|
|
|
// instruction to keep the register allocator from becoming confused.
|
2010-11-15 06:03:15 +08:00
|
|
|
//
|
|
|
|
// FIXME: Make this a real Pseudo instruction when the JIT switches to MC.
|
2010-05-21 01:48:26 +08:00
|
|
|
def MFCRpseud: XFXForm_3<31, 19, (outs GPRC:$rT), (ins crbitm:$FXM),
|
2012-10-05 02:14:28 +08:00
|
|
|
"#MFCRpseud", SprMFCR>,
|
2006-03-26 18:06:40 +08:00
|
|
|
PPC970_MicroCode, PPC970_Unit_CRU;
|
2010-11-15 06:03:15 +08:00
|
|
|
|
|
|
|
def MFCR : XFXForm_3<31, 19, (outs GPRC:$rT), (ins),
|
|
|
|
"mfcr $rT", SprMFCR>,
|
|
|
|
PPC970_MicroCode, PPC970_Unit_CRU;
|
|
|
|
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def MFOCRF: XFXForm_5a<31, 19, (outs GPRC:$rT), (ins crbitm:$FXM),
|
2012-06-11 23:43:15 +08:00
|
|
|
"mfocrf $rT, $FXM", SprMFCR>,
|
2006-03-12 17:13:49 +08:00
|
|
|
PPC970_DGroup_First, PPC970_Unit_CRU;
|
2004-08-30 10:28:06 +08:00
|
|
|
|
2007-10-10 09:01:31 +08:00
|
|
|
// Instructions to manipulate FPSCR. Only long double handling uses these.
|
|
|
|
// FPSCR is not modelled; we use the SDNode Flag to keep things in order.
|
|
|
|
|
2008-10-30 02:26:45 +08:00
|
|
|
let Uses = [RM], Defs = [RM] in {
|
|
|
|
def MTFSB0 : XForm_43<63, 70, (outs), (ins u5imm:$FM),
|
|
|
|
"mtfsb0 $FM", IntMTFSB0,
|
|
|
|
[(PPCmtfsb0 (i32 imm:$FM))]>,
|
|
|
|
PPC970_DGroup_Single, PPC970_Unit_FPU;
|
|
|
|
def MTFSB1 : XForm_43<63, 38, (outs), (ins u5imm:$FM),
|
|
|
|
"mtfsb1 $FM", IntMTFSB0,
|
|
|
|
[(PPCmtfsb1 (i32 imm:$FM))]>,
|
|
|
|
PPC970_DGroup_Single, PPC970_Unit_FPU;
|
|
|
|
// MTFSF does not actually produce an FP result. We pretend it copies
|
|
|
|
// input reg B to the output. If we didn't do this it would look like the
|
|
|
|
// instruction had no outputs (because we aren't modelling the FPSCR) and
|
|
|
|
// it would be deleted.
|
|
|
|
def MTFSF : XFLForm<63, 711, (outs F8RC:$FRA),
|
|
|
|
(ins i32imm:$FM, F8RC:$rT, F8RC:$FRB),
|
|
|
|
"mtfsf $FM, $rT", "$FRB = $FRA", IntMTFSB0,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$FRA, (PPCmtfsf (i32 imm:$FM),
|
|
|
|
f64:$rT, f64:$FRB))]>,
|
2008-10-30 02:26:45 +08:00
|
|
|
PPC970_DGroup_Single, PPC970_Unit_FPU;
|
|
|
|
}
|
|
|
|
let Uses = [RM] in {
|
|
|
|
def MFFS : XForm_42<63, 583, (outs F8RC:$rT), (ins),
|
|
|
|
"mffs $rT", IntMFFS,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$rT, (PPCmffs))]>,
|
2008-10-30 02:26:45 +08:00
|
|
|
PPC970_DGroup_Single, PPC970_Unit_FPU;
|
|
|
|
def FADDrtz: AForm_2<63, 21,
|
|
|
|
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRB),
|
2012-08-28 10:49:14 +08:00
|
|
|
"fadd $FRT, $FRA, $FRB", FPAddSub,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$FRT, (PPCfaddrtz f64:$FRA, f64:$FRB))]>,
|
2008-10-30 02:26:45 +08:00
|
|
|
PPC970_DGroup_Single, PPC970_Unit_FPU;
|
|
|
|
}
|
|
|
|
|
2007-10-10 09:01:31 +08:00
|
|
|
|
2006-03-12 17:13:49 +08:00
|
|
|
let PPC970_Unit = 1 in { // FXU Operations.
|
2004-08-30 10:28:06 +08:00
|
|
|
|
|
|
|
// XO-Form instructions. Arithmetic instructions that can set overflow bit
|
|
|
|
//
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def ADD4 : XOForm_1<31, 266, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
|
2012-06-13 03:01:24 +08:00
|
|
|
"add $rT, $rA, $rB", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (add i32:$rA, i32:$rB))]>;
|
2009-09-19 04:15:22 +08:00
|
|
|
let Defs = [CARRY] in {
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def ADDC : XOForm_1<31, 10, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"addc $rT, $rA, $rB", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (addc i32:$rA, i32:$rB))]>,
|
2006-03-13 13:15:10 +08:00
|
|
|
PPC970_DGroup_Cracked;
|
2009-09-19 04:15:22 +08:00
|
|
|
}
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def DIVW : XOForm_1<31, 491, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"divw $rT, $rA, $rB", IntDivW,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (sdiv i32:$rA, i32:$rB))]>,
|
2006-03-13 13:15:10 +08:00
|
|
|
PPC970_DGroup_First, PPC970_DGroup_Cracked;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def DIVWU : XOForm_1<31, 459, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"divwu $rT, $rA, $rB", IntDivW,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (udiv i32:$rA, i32:$rB))]>,
|
2006-03-13 13:15:10 +08:00
|
|
|
PPC970_DGroup_First, PPC970_DGroup_Cracked;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def MULHW : XOForm_1<31, 75, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"mulhw $rT, $rA, $rB", IntMulHW,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (mulhs i32:$rA, i32:$rB))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def MULHWU : XOForm_1<31, 11, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"mulhwu $rT, $rA, $rB", IntMulHWU,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (mulhu i32:$rA, i32:$rB))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def MULLW : XOForm_1<31, 235, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"mullw $rT, $rA, $rB", IntMulHW,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (mul i32:$rA, i32:$rB))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def SUBF : XOForm_1<31, 40, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"subf $rT, $rA, $rB", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (sub i32:$rB, i32:$rA))]>;
|
2009-09-19 04:15:22 +08:00
|
|
|
let Defs = [CARRY] in {
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def SUBFC : XOForm_1<31, 8, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"subfc $rT, $rA, $rB", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (subc i32:$rB, i32:$rA))]>,
|
2006-03-13 13:15:10 +08:00
|
|
|
PPC970_DGroup_Cracked;
|
2009-09-19 04:15:22 +08:00
|
|
|
}
|
|
|
|
def NEG : XOForm_3<31, 104, 0, (outs GPRC:$rT), (ins GPRC:$rA),
|
2012-06-13 03:01:24 +08:00
|
|
|
"neg $rT, $rA", IntSimple,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (ineg i32:$rA))]>;
|
2009-09-19 04:15:22 +08:00
|
|
|
let Uses = [CARRY], Defs = [CARRY] in {
|
|
|
|
def ADDE : XOForm_1<31, 138, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
|
|
|
|
"adde $rT, $rA, $rB", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (adde i32:$rA, i32:$rB))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def ADDME : XOForm_3<31, 234, 0, (outs GPRC:$rT), (ins GPRC:$rA),
|
2005-10-20 03:51:16 +08:00
|
|
|
"addme $rT, $rA", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (adde i32:$rA, -1))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def ADDZE : XOForm_3<31, 202, 0, (outs GPRC:$rT), (ins GPRC:$rA),
|
2005-10-20 03:51:16 +08:00
|
|
|
"addze $rT, $rA", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (adde i32:$rA, 0))]>;
|
2009-09-19 04:15:22 +08:00
|
|
|
def SUBFE : XOForm_1<31, 136, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
|
|
|
|
"subfe $rT, $rA, $rB", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (sube i32:$rB, i32:$rA))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def SUBFME : XOForm_3<31, 232, 0, (outs GPRC:$rT), (ins GPRC:$rA),
|
2006-02-17 13:43:56 +08:00
|
|
|
"subfme $rT, $rA", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (sube -1, i32:$rA))]>;
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
def SUBFZE : XOForm_3<31, 200, 0, (outs GPRC:$rT), (ins GPRC:$rA),
|
2005-10-20 03:51:16 +08:00
|
|
|
"subfze $rT, $rA", IntGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set i32:$rT, (sube 0, i32:$rA))]>;
|
2006-03-12 17:13:49 +08:00
|
|
|
}
|
2009-09-19 04:15:22 +08:00
|
|
|
}
|
2004-08-30 10:28:06 +08:00
|
|
|
|
|
|
|
// A-Form instructions. Most of the instructions executed in the FPU are of
|
|
|
|
// this type.
|
|
|
|
//
|
2006-03-12 17:13:49 +08:00
|
|
|
let PPC970_Unit = 3 in { // FPU Operations.
|
2008-10-30 02:26:45 +08:00
|
|
|
let Uses = [RM] in {
|
|
|
|
def FMADD : AForm_1<63, 29,
|
|
|
|
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC, F8RC:$FRB),
|
|
|
|
"fmadd $FRT, $FRA, $FRC, $FRB", FPFused,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$FRT, (fma f64:$FRA, f64:$FRC, f64:$FRB))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FMADDS : AForm_1<59, 29,
|
|
|
|
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
|
|
|
|
"fmadds $FRT, $FRA, $FRC, $FRB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$FRT, (fma f32:$FRA, f32:$FRC, f32:$FRB))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FMSUB : AForm_1<63, 28,
|
|
|
|
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC, F8RC:$FRB),
|
|
|
|
"fmsub $FRT, $FRA, $FRC, $FRB", FPFused,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$FRT,
|
|
|
|
(fma f64:$FRA, f64:$FRC, (fneg f64:$FRB)))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FMSUBS : AForm_1<59, 28,
|
|
|
|
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
|
|
|
|
"fmsubs $FRT, $FRA, $FRC, $FRB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$FRT,
|
|
|
|
(fma f32:$FRA, f32:$FRC, (fneg f32:$FRB)))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FNMADD : AForm_1<63, 31,
|
|
|
|
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC, F8RC:$FRB),
|
|
|
|
"fnmadd $FRT, $FRA, $FRC, $FRB", FPFused,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$FRT,
|
|
|
|
(fneg (fma f64:$FRA, f64:$FRC, f64:$FRB)))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FNMADDS : AForm_1<59, 31,
|
|
|
|
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
|
|
|
|
"fnmadds $FRT, $FRA, $FRC, $FRB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$FRT,
|
|
|
|
(fneg (fma f32:$FRA, f32:$FRC, f32:$FRB)))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FNMSUB : AForm_1<63, 30,
|
|
|
|
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC, F8RC:$FRB),
|
|
|
|
"fnmsub $FRT, $FRA, $FRC, $FRB", FPFused,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$FRT, (fneg (fma f64:$FRA, f64:$FRC,
|
|
|
|
(fneg f64:$FRB))))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FNMSUBS : AForm_1<59, 30,
|
|
|
|
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
|
|
|
|
"fnmsubs $FRT, $FRA, $FRC, $FRB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$FRT, (fneg (fma f32:$FRA, f32:$FRC,
|
|
|
|
(fneg f32:$FRB))))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
}
|
2005-10-02 15:07:49 +08:00
|
|
|
// FSEL is artificially split into 4 and 8-byte forms for the result. To avoid
|
|
|
|
// having 4 of these, force the comparison to always be an 8-byte double (code
|
|
|
|
// should use an FMRSD if the input comparison value really wants to be a float)
|
2005-10-02 14:58:23 +08:00
|
|
|
// and 4/8 byte forms for the result and operand type..
|
2005-10-02 15:07:49 +08:00
|
|
|
def FSELD : AForm_1<63, 23,
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC, F8RC:$FRB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"fsel $FRT, $FRA, $FRC, $FRB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$FRT, (PPCfsel f64:$FRA, f64:$FRC, f64:$FRB))]>;
|
2005-10-02 15:07:49 +08:00
|
|
|
def FSELS : AForm_1<63, 23,
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
(outs F4RC:$FRT), (ins F8RC:$FRA, F4RC:$FRC, F4RC:$FRB),
|
2005-10-20 03:51:16 +08:00
|
|
|
"fsel $FRT, $FRA, $FRC, $FRB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$FRT, (PPCfsel f64:$FRA, f32:$FRC, f32:$FRB))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
let Uses = [RM] in {
|
|
|
|
def FADD : AForm_2<63, 21,
|
|
|
|
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRB),
|
2012-08-28 10:49:14 +08:00
|
|
|
"fadd $FRT, $FRA, $FRB", FPAddSub,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$FRT, (fadd f64:$FRA, f64:$FRB))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FADDS : AForm_2<59, 21,
|
|
|
|
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRB),
|
|
|
|
"fadds $FRT, $FRA, $FRB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$FRT, (fadd f32:$FRA, f32:$FRB))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FDIV : AForm_2<63, 18,
|
|
|
|
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRB),
|
|
|
|
"fdiv $FRT, $FRA, $FRB", FPDivD,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$FRT, (fdiv f64:$FRA, f64:$FRB))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FDIVS : AForm_2<59, 18,
|
|
|
|
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRB),
|
|
|
|
"fdivs $FRT, $FRA, $FRB", FPDivS,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$FRT, (fdiv f32:$FRA, f32:$FRB))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FMUL : AForm_3<63, 25,
|
2012-11-14 03:19:46 +08:00
|
|
|
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC),
|
|
|
|
"fmul $FRT, $FRA, $FRC", FPFused,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$FRT, (fmul f64:$FRA, f64:$FRC))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FMULS : AForm_3<59, 25,
|
2012-11-14 03:19:46 +08:00
|
|
|
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRC),
|
|
|
|
"fmuls $FRT, $FRA, $FRC", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$FRT, (fmul f32:$FRA, f32:$FRC))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FSUB : AForm_2<63, 20,
|
|
|
|
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRB),
|
2012-08-28 10:49:14 +08:00
|
|
|
"fsub $FRT, $FRA, $FRB", FPAddSub,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f64:$FRT, (fsub f64:$FRA, f64:$FRB))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
def FSUBS : AForm_2<59, 20,
|
|
|
|
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRB),
|
|
|
|
"fsubs $FRT, $FRA, $FRB", FPGeneral,
|
2013-03-26 03:05:30 +08:00
|
|
|
[(set f32:$FRT, (fsub f32:$FRA, f32:$FRB))]>;
|
2008-10-30 02:26:45 +08:00
|
|
|
}
|
2006-03-12 17:13:49 +08:00
|
|
|
}
|
2004-08-30 10:28:06 +08:00
|
|
|
|
2012-06-23 07:10:08 +08:00
|
|
|
let PPC970_Unit = 1 in { // FXU Operations.
|
2012-11-14 03:14:19 +08:00
|
|
|
def ISEL : AForm_4<31, 15,
|
2013-03-26 18:54:54 +08:00
|
|
|
(outs GPRC:$rT), (ins GPRC_NOR0:$rA, GPRC:$rB, CRBITRC:$cond),
|
2012-06-23 07:10:08 +08:00
|
|
|
"isel $rT, $rA, $rB, $cond", IntGeneral,
|
|
|
|
[]>;
|
|
|
|
}
|
|
|
|
|
2006-03-12 17:13:49 +08:00
|
|
|
let PPC970_Unit = 1 in { // FXU Operations.
|
2004-08-31 10:28:08 +08:00
|
|
|
// M-Form instructions. rotate and mask instructions.
|
|
|
|
//
|
2006-11-16 07:24:18 +08:00
|
|
|
let isCommutable = 1 in {
|
2005-09-10 02:17:41 +08:00
|
|
|
// RLWIMI can be commuted if the rotate amount is zero.
|
2005-04-19 13:21:30 +08:00
|
|
|
def RLWIMI : MForm_2<20,
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
(outs GPRC:$rA), (ins GPRC:$rSi, GPRC:$rS, u5imm:$SH, u5imm:$MB,
|
2005-10-20 03:51:16 +08:00
|
|
|
u5imm:$ME), "rlwimi $rA, $rS, $SH, $MB, $ME", IntRotate,
|
2006-11-16 07:24:18 +08:00
|
|
|
[]>, PPC970_DGroup_Cracked, RegConstraint<"$rSi = $rA">,
|
|
|
|
NoEncode<"$rSi">;
|
2004-10-17 04:43:38 +08:00
|
|
|
}
|
2005-04-19 13:21:30 +08:00
|
|
|
def RLWINM : MForm_2<21,
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
(outs GPRC:$rA), (ins GPRC:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME),
|
2005-10-20 03:51:16 +08:00
|
|
|
"rlwinm $rA, $rS, $SH, $MB, $ME", IntGeneral,
|
2005-10-20 02:42:01 +08:00
|
|
|
[]>;
|
2005-04-19 13:21:30 +08:00
|
|
|
def RLWINMo : MForm_2<21,
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
(outs GPRC:$rA), (ins GPRC:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME),
|
2005-10-20 03:51:16 +08:00
|
|
|
"rlwinm. $rA, $rS, $SH, $MB, $ME", IntGeneral,
|
2006-03-13 13:15:10 +08:00
|
|
|
[]>, isDOT, PPC970_DGroup_Cracked;
|
2005-04-19 13:21:30 +08:00
|
|
|
def RLWNM : MForm_2<23,
|
Change instruction description to split OperandList into OutOperandList and
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
2007-07-19 09:14:50 +08:00
|
|
|
(outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB, u5imm:$MB, u5imm:$ME),
|
2005-10-20 03:51:16 +08:00
|
|
|
"rlwnm $rA, $rS, $rB, $MB, $ME", IntGeneral,
|
2005-10-20 02:42:01 +08:00
|
|
|
[]>;
|
2006-03-12 17:13:49 +08:00
|
|
|
}
|
2004-08-31 10:28:08 +08:00
|
|
|
|
2006-03-20 14:15:45 +08:00
|
|
|
|
2005-09-09 08:39:56 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// PowerPC Instruction Patterns
|
|
|
|
//
|
|
|
|
|
2005-09-27 06:20:16 +08:00
|
|
|
// Arbitrary immediate support. Implement in terms of LIS/ORI.
|
|
|
|
def : Pat<(i32 imm:$imm),
|
|
|
|
(ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))>;
|
2005-09-29 01:13:15 +08:00
|
|
|
|
|
|
|
// Implement the 'not' operation with the NOR instruction.
|
2013-03-26 03:04:58 +08:00
|
|
|
def NOT : Pat<(not i32:$in),
|
|
|
|
(NOR $in, $in)>;
|
2005-09-29 01:13:15 +08:00
|
|
|
|
2005-09-29 07:07:13 +08:00
|
|
|
// ADD an arbitrary immediate.
|
2013-03-26 03:04:58 +08:00
|
|
|
def : Pat<(add i32:$in, imm:$imm),
|
|
|
|
(ADDIS (ADDI $in, (LO16 imm:$imm)), (HA16 imm:$imm))>;
|
2005-09-29 07:07:13 +08:00
|
|
|
// OR an arbitrary immediate.
|
2013-03-26 03:04:58 +08:00
|
|
|
def : Pat<(or i32:$in, imm:$imm),
|
|
|
|
(ORIS (ORI $in, (LO16 imm:$imm)), (HI16 imm:$imm))>;
|
2005-09-29 07:07:13 +08:00
|
|
|
// XOR an arbitrary immediate.
|
2013-03-26 03:04:58 +08:00
|
|
|
def : Pat<(xor i32:$in, imm:$imm),
|
|
|
|
(XORIS (XORI $in, (LO16 imm:$imm)), (HI16 imm:$imm))>;
|
2006-02-17 13:43:56 +08:00
|
|
|
// SUBFIC
|
2013-03-26 03:04:58 +08:00
|
|
|
def : Pat<(sub immSExt16:$imm, i32:$in),
|
|
|
|
(SUBFIC $in, imm:$imm)>;
|
2005-10-19 09:38:02 +08:00
|
|
|
|
2006-06-17 04:22:01 +08:00
|
|
|
// SHL/SRL
|
2013-03-26 03:04:58 +08:00
|
|
|
def : Pat<(shl i32:$in, (i32 imm:$imm)),
|
|
|
|
(RLWINM $in, imm:$imm, 0, (SHL32 imm:$imm))>;
|
|
|
|
def : Pat<(srl i32:$in, (i32 imm:$imm)),
|
|
|
|
(RLWINM $in, (SRL32 imm:$imm), imm:$imm, 31)>;
|
2005-10-20 02:42:01 +08:00
|
|
|
|
2006-01-12 05:21:00 +08:00
|
|
|
// ROTL
|
2013-03-26 03:04:58 +08:00
|
|
|
def : Pat<(rotl i32:$in, i32:$sh),
|
|
|
|
(RLWNM $in, $sh, 0, 31)>;
|
|
|
|
def : Pat<(rotl i32:$in, (i32 imm:$imm)),
|
|
|
|
(RLWINM $in, imm:$imm, 0, 31)>;
|
2006-05-18 03:00:46 +08:00
|
|
|
|
2006-09-22 13:01:56 +08:00
|
|
|
// RLWNM
|
2013-03-26 03:04:58 +08:00
|
|
|
def : Pat<(and (rotl i32:$in, i32:$sh), maskimm32:$imm),
|
|
|
|
(RLWNM $in, $sh, (MB maskimm32:$imm), (ME maskimm32:$imm))>;
|
2006-09-22 13:01:56 +08:00
|
|
|
|
2006-05-18 03:00:46 +08:00
|
|
|
// Calls
|
2013-03-22 23:24:13 +08:00
|
|
|
def : Pat<(PPCcall (i32 tglobaladdr:$dst)),
|
|
|
|
(BL tglobaladdr:$dst)>;
|
|
|
|
def : Pat<(PPCcall (i32 texternalsym:$dst)),
|
|
|
|
(BL texternalsym:$dst)>;
|
2006-05-18 03:00:46 +08:00
|
|
|
|
2008-04-30 17:16:33 +08:00
|
|
|
|
|
|
|
def : Pat<(PPCtc_return (i32 tglobaladdr:$dst), imm:$imm),
|
|
|
|
(TCRETURNdi tglobaladdr:$dst, imm:$imm)>;
|
|
|
|
|
|
|
|
def : Pat<(PPCtc_return (i32 texternalsym:$dst), imm:$imm),
|
|
|
|
(TCRETURNdi texternalsym:$dst, imm:$imm)>;
|
|
|
|
|
|
|
|
def : Pat<(PPCtc_return CTRRC:$dst, imm:$imm),
|
|
|
|
(TCRETURNri CTRRC:$dst, imm:$imm)>;
|
|
|
|
|
|
|
|
|
|
|
|
|
2005-11-17 15:30:41 +08:00
|
|
|
// Hi and Lo for Darwin Global Addresses.
|
2005-12-11 15:45:47 +08:00
|
|
|
def : Pat<(PPChi tglobaladdr:$in, 0), (LIS tglobaladdr:$in)>;
|
|
|
|
def : Pat<(PPClo tglobaladdr:$in, 0), (LI tglobaladdr:$in)>;
|
|
|
|
def : Pat<(PPChi tconstpool:$in, 0), (LIS tconstpool:$in)>;
|
|
|
|
def : Pat<(PPClo tconstpool:$in, 0), (LI tconstpool:$in)>;
|
2006-04-23 02:53:45 +08:00
|
|
|
def : Pat<(PPChi tjumptable:$in, 0), (LIS tjumptable:$in)>;
|
|
|
|
def : Pat<(PPClo tjumptable:$in, 0), (LI tjumptable:$in)>;
|
2009-11-05 05:31:18 +08:00
|
|
|
def : Pat<(PPChi tblockaddress:$in, 0), (LIS tblockaddress:$in)>;
|
|
|
|
def : Pat<(PPClo tblockaddress:$in, 0), (LI tblockaddress:$in)>;
|
2013-03-26 03:04:58 +08:00
|
|
|
def : Pat<(PPChi tglobaltlsaddr:$g, i32:$in),
|
|
|
|
(ADDIS $in, tglobaltlsaddr:$g)>;
|
|
|
|
def : Pat<(PPClo tglobaltlsaddr:$g, i32:$in),
|
2013-03-26 18:55:20 +08:00
|
|
|
(ADDI $in, tglobaltlsaddr:$g)>;
|
2013-03-26 03:04:58 +08:00
|
|
|
def : Pat<(add i32:$in, (PPChi tglobaladdr:$g, 0)),
|
|
|
|
(ADDIS $in, tglobaladdr:$g)>;
|
|
|
|
def : Pat<(add i32:$in, (PPChi tconstpool:$g, 0)),
|
|
|
|
(ADDIS $in, tconstpool:$g)>;
|
|
|
|
def : Pat<(add i32:$in, (PPChi tjumptable:$g, 0)),
|
|
|
|
(ADDIS $in, tjumptable:$g)>;
|
|
|
|
def : Pat<(add i32:$in, (PPChi tblockaddress:$g, 0)),
|
|
|
|
(ADDIS $in, tblockaddress:$g)>;
|
2005-11-17 15:30:41 +08:00
|
|
|
|
2005-12-06 10:10:38 +08:00
|
|
|
// Standard shifts. These are represented separately from the real shifts above
|
|
|
|
// so that we can distinguish between shifts that allow 5-bit and 6-bit shift
|
|
|
|
// amounts.
|
2013-03-26 03:04:58 +08:00
|
|
|
def : Pat<(sra i32:$rS, i32:$rB),
|
|
|
|
(SRAW $rS, $rB)>;
|
|
|
|
def : Pat<(srl i32:$rS, i32:$rB),
|
|
|
|
(SRW $rS, $rB)>;
|
|
|
|
def : Pat<(shl i32:$rS, i32:$rB),
|
|
|
|
(SLW $rS, $rB)>;
|
2005-12-06 10:10:38 +08:00
|
|
|
|
2006-10-10 04:57:25 +08:00
|
|
|
def : Pat<(zextloadi1 iaddr:$src),
|
2005-12-20 07:25:09 +08:00
|
|
|
(LBZ iaddr:$src)>;
|
2006-10-10 04:57:25 +08:00
|
|
|
def : Pat<(zextloadi1 xaddr:$src),
|
2005-12-20 07:25:09 +08:00
|
|
|
(LBZX xaddr:$src)>;
|
2006-10-10 04:57:25 +08:00
|
|
|
def : Pat<(extloadi1 iaddr:$src),
|
2005-12-20 07:25:09 +08:00
|
|
|
(LBZ iaddr:$src)>;
|
2006-10-10 04:57:25 +08:00
|
|
|
def : Pat<(extloadi1 xaddr:$src),
|
2005-12-20 07:25:09 +08:00
|
|
|
(LBZX xaddr:$src)>;
|
2006-10-10 04:57:25 +08:00
|
|
|
def : Pat<(extloadi8 iaddr:$src),
|
2005-12-20 07:25:09 +08:00
|
|
|
(LBZ iaddr:$src)>;
|
2006-10-10 04:57:25 +08:00
|
|
|
def : Pat<(extloadi8 xaddr:$src),
|
2005-12-20 07:25:09 +08:00
|
|
|
(LBZX xaddr:$src)>;
|
2006-10-10 04:57:25 +08:00
|
|
|
def : Pat<(extloadi16 iaddr:$src),
|
2005-12-20 07:25:09 +08:00
|
|
|
(LHZ iaddr:$src)>;
|
2006-10-10 04:57:25 +08:00
|
|
|
def : Pat<(extloadi16 xaddr:$src),
|
2005-12-20 07:25:09 +08:00
|
|
|
(LHZX xaddr:$src)>;
|
2010-07-17 05:03:52 +08:00
|
|
|
def : Pat<(f64 (extloadf32 iaddr:$src)),
|
|
|
|
(COPY_TO_REGCLASS (LFS iaddr:$src), F8RC)>;
|
|
|
|
def : Pat<(f64 (extloadf32 xaddr:$src)),
|
|
|
|
(COPY_TO_REGCLASS (LFSX xaddr:$src), F8RC)>;
|
|
|
|
|
2013-03-26 03:04:58 +08:00
|
|
|
def : Pat<(f64 (fextend f32:$src)),
|
|
|
|
(COPY_TO_REGCLASS $src, F8RC)>;
|
2005-12-20 07:25:09 +08:00
|
|
|
|
2008-08-23 01:20:54 +08:00
|
|
|
// Memory barriers
|
2010-02-23 14:54:29 +08:00
|
|
|
def : Pat<(membarrier (i32 imm /*ll*/),
|
|
|
|
(i32 imm /*ls*/),
|
|
|
|
(i32 imm /*sl*/),
|
|
|
|
(i32 imm /*ss*/),
|
|
|
|
(i32 imm /*device*/)),
|
2008-08-23 01:20:54 +08:00
|
|
|
(SYNC)>;
|
|
|
|
|
2011-07-28 06:21:52 +08:00
|
|
|
def : Pat<(atomic_fence (imm), (imm)), (SYNC)>;
|
|
|
|
|
2006-03-25 15:51:43 +08:00
|
|
|
include "PPCInstrAltivec.td"
|
2006-06-17 04:22:01 +08:00
|
|
|
include "PPCInstr64Bit.td"
|