llvm-project/clang/lib/AST/ExprCXX.cpp

1395 lines
57 KiB
C++
Raw Normal View History

//===--- ExprCXX.cpp - (C++) Expression AST Node Implementation -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the subclesses of Expr class declared in ExprCXX.h
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/IdentifierTable.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Child Iterators for iterating over subexpressions/substatements
//===----------------------------------------------------------------------===//
bool CXXTypeidExpr::isPotentiallyEvaluated() const {
if (isTypeOperand())
return false;
// C++11 [expr.typeid]p3:
// When typeid is applied to an expression other than a glvalue of
// polymorphic class type, [...] the expression is an unevaluated operand.
const Expr *E = getExprOperand();
if (const CXXRecordDecl *RD = E->getType()->getAsCXXRecordDecl())
if (RD->isPolymorphic() && E->isGLValue())
return true;
return false;
}
QualType CXXTypeidExpr::getTypeOperand() const {
assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
return Operand.get<TypeSourceInfo *>()->getType().getNonReferenceType()
.getUnqualifiedType();
}
QualType CXXUuidofExpr::getTypeOperand() const {
assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
return Operand.get<TypeSourceInfo *>()->getType().getNonReferenceType()
.getUnqualifiedType();
}
// static
UuidAttr *CXXUuidofExpr::GetUuidAttrOfType(QualType QT) {
// Optionally remove one level of pointer, reference or array indirection.
const Type *Ty = QT.getTypePtr();
if (QT->isPointerType() || QT->isReferenceType())
Ty = QT->getPointeeType().getTypePtr();
else if (QT->isArrayType())
Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
// Loop all record redeclaration looking for an uuid attribute.
CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
E = RD->redecls_end(); I != E; ++I) {
if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
return Uuid;
}
return 0;
}
// CXXScalarValueInitExpr
SourceRange CXXScalarValueInitExpr::getSourceRange() const {
SourceLocation Start = RParenLoc;
if (TypeInfo)
Start = TypeInfo->getTypeLoc().getBeginLoc();
return SourceRange(Start, RParenLoc);
}
// CXXNewExpr
CXXNewExpr::CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
FunctionDecl *operatorDelete,
bool usualArrayDeleteWantsSize,
ArrayRef<Expr*> placementArgs,
SourceRange typeIdParens, Expr *arraySize,
InitializationStyle initializationStyle,
Expr *initializer, QualType ty,
TypeSourceInfo *allocatedTypeInfo,
SourceRange Range, SourceRange directInitRange)
: Expr(CXXNewExprClass, ty, VK_RValue, OK_Ordinary,
ty->isDependentType(), ty->isDependentType(),
ty->isInstantiationDependentType(),
ty->containsUnexpandedParameterPack()),
SubExprs(0), OperatorNew(operatorNew), OperatorDelete(operatorDelete),
AllocatedTypeInfo(allocatedTypeInfo), TypeIdParens(typeIdParens),
Range(Range), DirectInitRange(directInitRange),
GlobalNew(globalNew), UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) {
assert((initializer != 0 || initializationStyle == NoInit) &&
"Only NoInit can have no initializer.");
StoredInitializationStyle = initializer ? initializationStyle + 1 : 0;
AllocateArgsArray(C, arraySize != 0, placementArgs.size(), initializer != 0);
unsigned i = 0;
if (Array) {
if (arraySize->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (arraySize->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
SubExprs[i++] = arraySize;
}
if (initializer) {
if (initializer->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (initializer->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
SubExprs[i++] = initializer;
}
for (unsigned j = 0; j != placementArgs.size(); ++j) {
if (placementArgs[j]->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (placementArgs[j]->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
SubExprs[i++] = placementArgs[j];
}
switch (getInitializationStyle()) {
case CallInit:
this->Range.setEnd(DirectInitRange.getEnd()); break;
case ListInit:
this->Range.setEnd(getInitializer()->getSourceRange().getEnd()); break;
default: break;
}
}
void CXXNewExpr::AllocateArgsArray(ASTContext &C, bool isArray,
unsigned numPlaceArgs, bool hasInitializer){
assert(SubExprs == 0 && "SubExprs already allocated");
Array = isArray;
NumPlacementArgs = numPlaceArgs;
unsigned TotalSize = Array + hasInitializer + NumPlacementArgs;
SubExprs = new (C) Stmt*[TotalSize];
}
bool CXXNewExpr::shouldNullCheckAllocation(ASTContext &Ctx) const {
return getOperatorNew()->getType()->
castAs<FunctionProtoType>()->isNothrow(Ctx);
}
// CXXDeleteExpr
QualType CXXDeleteExpr::getDestroyedType() const {
const Expr *Arg = getArgument();
// The type-to-delete may not be a pointer if it's a dependent type.
const QualType ArgType = Arg->getType();
if (ArgType->isDependentType() && !ArgType->isPointerType())
return QualType();
return ArgType->getAs<PointerType>()->getPointeeType();
}
// CXXPseudoDestructorExpr
PseudoDestructorTypeStorage::PseudoDestructorTypeStorage(TypeSourceInfo *Info)
: Type(Info)
{
Location = Info->getTypeLoc().getLocalSourceRange().getBegin();
}
CXXPseudoDestructorExpr::CXXPseudoDestructorExpr(ASTContext &Context,
Expr *Base, bool isArrow, SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc, TypeSourceInfo *ScopeType,
SourceLocation ColonColonLoc, SourceLocation TildeLoc,
PseudoDestructorTypeStorage DestroyedType)
: Expr(CXXPseudoDestructorExprClass,
Context.getPointerType(Context.getFunctionType(Context.VoidTy, 0, 0,
FunctionProtoType::ExtProtoInfo())),
VK_RValue, OK_Ordinary,
/*isTypeDependent=*/(Base->isTypeDependent() ||
(DestroyedType.getTypeSourceInfo() &&
DestroyedType.getTypeSourceInfo()->getType()->isDependentType())),
/*isValueDependent=*/Base->isValueDependent(),
(Base->isInstantiationDependent() ||
(QualifierLoc &&
QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) ||
(ScopeType &&
ScopeType->getType()->isInstantiationDependentType()) ||
(DestroyedType.getTypeSourceInfo() &&
DestroyedType.getTypeSourceInfo()->getType()
->isInstantiationDependentType())),
// ContainsUnexpandedParameterPack
(Base->containsUnexpandedParameterPack() ||
(QualifierLoc &&
QualifierLoc.getNestedNameSpecifier()
->containsUnexpandedParameterPack()) ||
(ScopeType &&
ScopeType->getType()->containsUnexpandedParameterPack()) ||
(DestroyedType.getTypeSourceInfo() &&
DestroyedType.getTypeSourceInfo()->getType()
->containsUnexpandedParameterPack()))),
Base(static_cast<Stmt *>(Base)), IsArrow(isArrow),
OperatorLoc(OperatorLoc), QualifierLoc(QualifierLoc),
ScopeType(ScopeType), ColonColonLoc(ColonColonLoc), TildeLoc(TildeLoc),
DestroyedType(DestroyedType) { }
QualType CXXPseudoDestructorExpr::getDestroyedType() const {
if (TypeSourceInfo *TInfo = DestroyedType.getTypeSourceInfo())
return TInfo->getType();
return QualType();
}
SourceRange CXXPseudoDestructorExpr::getSourceRange() const {
SourceLocation End = DestroyedType.getLocation();
if (TypeSourceInfo *TInfo = DestroyedType.getTypeSourceInfo())
End = TInfo->getTypeLoc().getLocalSourceRange().getEnd();
return SourceRange(Base->getLocStart(), End);
}
// UnresolvedLookupExpr
UnresolvedLookupExpr *
UnresolvedLookupExpr::Create(ASTContext &C,
CXXRecordDecl *NamingClass,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
bool ADL,
const TemplateArgumentListInfo *Args,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End)
{
assert(Args || TemplateKWLoc.isValid());
unsigned num_args = Args ? Args->size() : 0;
void *Mem = C.Allocate(sizeof(UnresolvedLookupExpr) +
ASTTemplateKWAndArgsInfo::sizeFor(num_args));
return new (Mem) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
TemplateKWLoc, NameInfo,
ADL, /*Overload*/ true, Args,
Begin, End);
}
UnresolvedLookupExpr *
UnresolvedLookupExpr::CreateEmpty(ASTContext &C,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs) {
std::size_t size = sizeof(UnresolvedLookupExpr);
if (HasTemplateKWAndArgsInfo)
size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
void *Mem = C.Allocate(size, llvm::alignOf<UnresolvedLookupExpr>());
UnresolvedLookupExpr *E = new (Mem) UnresolvedLookupExpr(EmptyShell());
E->HasTemplateKWAndArgsInfo = HasTemplateKWAndArgsInfo;
return E;
}
OverloadExpr::OverloadExpr(StmtClass K, ASTContext &C,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End,
bool KnownDependent,
bool KnownInstantiationDependent,
bool KnownContainsUnexpandedParameterPack)
: Expr(K, C.OverloadTy, VK_LValue, OK_Ordinary, KnownDependent,
KnownDependent,
(KnownInstantiationDependent ||
NameInfo.isInstantiationDependent() ||
(QualifierLoc &&
QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())),
(KnownContainsUnexpandedParameterPack ||
NameInfo.containsUnexpandedParameterPack() ||
(QualifierLoc &&
QualifierLoc.getNestedNameSpecifier()
->containsUnexpandedParameterPack()))),
NameInfo(NameInfo), QualifierLoc(QualifierLoc),
Results(0), NumResults(End - Begin),
HasTemplateKWAndArgsInfo(TemplateArgs != 0 || TemplateKWLoc.isValid())
{
NumResults = End - Begin;
if (NumResults) {
// Determine whether this expression is type-dependent.
for (UnresolvedSetImpl::const_iterator I = Begin; I != End; ++I) {
if ((*I)->getDeclContext()->isDependentContext() ||
isa<UnresolvedUsingValueDecl>(*I)) {
ExprBits.TypeDependent = true;
ExprBits.ValueDependent = true;
ExprBits.InstantiationDependent = true;
}
}
Results = static_cast<DeclAccessPair *>(
C.Allocate(sizeof(DeclAccessPair) * NumResults,
llvm::alignOf<DeclAccessPair>()));
memcpy(Results, &*Begin.getIterator(),
NumResults * sizeof(DeclAccessPair));
}
// If we have explicit template arguments, check for dependent
// template arguments and whether they contain any unexpanded pack
// expansions.
if (TemplateArgs) {
bool Dependent = false;
bool InstantiationDependent = false;
bool ContainsUnexpandedParameterPack = false;
getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
Dependent,
InstantiationDependent,
ContainsUnexpandedParameterPack);
if (Dependent) {
ExprBits.TypeDependent = true;
ExprBits.ValueDependent = true;
}
if (InstantiationDependent)
ExprBits.InstantiationDependent = true;
if (ContainsUnexpandedParameterPack)
ExprBits.ContainsUnexpandedParameterPack = true;
} else if (TemplateKWLoc.isValid()) {
getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
}
if (isTypeDependent())
setType(C.DependentTy);
}
void OverloadExpr::initializeResults(ASTContext &C,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End) {
assert(Results == 0 && "Results already initialized!");
NumResults = End - Begin;
if (NumResults) {
Results = static_cast<DeclAccessPair *>(
C.Allocate(sizeof(DeclAccessPair) * NumResults,
llvm::alignOf<DeclAccessPair>()));
memcpy(Results, &*Begin.getIterator(),
NumResults * sizeof(DeclAccessPair));
}
}
CXXRecordDecl *OverloadExpr::getNamingClass() const {
if (isa<UnresolvedLookupExpr>(this))
return cast<UnresolvedLookupExpr>(this)->getNamingClass();
else
return cast<UnresolvedMemberExpr>(this)->getNamingClass();
}
// DependentScopeDeclRefExpr
DependentScopeDeclRefExpr::DependentScopeDeclRefExpr(QualType T,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *Args)
: Expr(DependentScopeDeclRefExprClass, T, VK_LValue, OK_Ordinary,
true, true,
(NameInfo.isInstantiationDependent() ||
(QualifierLoc &&
QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())),
(NameInfo.containsUnexpandedParameterPack() ||
(QualifierLoc &&
QualifierLoc.getNestedNameSpecifier()
->containsUnexpandedParameterPack()))),
QualifierLoc(QualifierLoc), NameInfo(NameInfo),
HasTemplateKWAndArgsInfo(Args != 0 || TemplateKWLoc.isValid())
{
if (Args) {
bool Dependent = true;
bool InstantiationDependent = true;
bool ContainsUnexpandedParameterPack
= ExprBits.ContainsUnexpandedParameterPack;
getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *Args,
Dependent,
InstantiationDependent,
ContainsUnexpandedParameterPack);
ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
} else if (TemplateKWLoc.isValid()) {
getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
}
}
DependentScopeDeclRefExpr *
DependentScopeDeclRefExpr::Create(ASTContext &C,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *Args) {
std::size_t size = sizeof(DependentScopeDeclRefExpr);
if (Args)
size += ASTTemplateKWAndArgsInfo::sizeFor(Args->size());
else if (TemplateKWLoc.isValid())
size += ASTTemplateKWAndArgsInfo::sizeFor(0);
void *Mem = C.Allocate(size);
return new (Mem) DependentScopeDeclRefExpr(C.DependentTy, QualifierLoc,
TemplateKWLoc, NameInfo, Args);
}
DependentScopeDeclRefExpr *
DependentScopeDeclRefExpr::CreateEmpty(ASTContext &C,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs) {
std::size_t size = sizeof(DependentScopeDeclRefExpr);
if (HasTemplateKWAndArgsInfo)
size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
void *Mem = C.Allocate(size);
DependentScopeDeclRefExpr *E
= new (Mem) DependentScopeDeclRefExpr(QualType(), NestedNameSpecifierLoc(),
SourceLocation(),
DeclarationNameInfo(), 0);
E->HasTemplateKWAndArgsInfo = HasTemplateKWAndArgsInfo;
return E;
}
SourceRange CXXConstructExpr::getSourceRange() const {
if (isa<CXXTemporaryObjectExpr>(this))
return cast<CXXTemporaryObjectExpr>(this)->getSourceRange();
if (ParenRange.isValid())
return SourceRange(Loc, ParenRange.getEnd());
SourceLocation End = Loc;
for (unsigned I = getNumArgs(); I > 0; --I) {
const Expr *Arg = getArg(I-1);
if (!Arg->isDefaultArgument()) {
SourceLocation NewEnd = Arg->getLocEnd();
if (NewEnd.isValid()) {
End = NewEnd;
break;
}
}
}
return SourceRange(Loc, End);
}
SourceRange CXXOperatorCallExpr::getSourceRangeImpl() const {
OverloadedOperatorKind Kind = getOperator();
if (Kind == OO_PlusPlus || Kind == OO_MinusMinus) {
if (getNumArgs() == 1)
// Prefix operator
return SourceRange(getOperatorLoc(), getArg(0)->getLocEnd());
else
// Postfix operator
return SourceRange(getArg(0)->getLocStart(), getOperatorLoc());
} else if (Kind == OO_Arrow) {
return getArg(0)->getSourceRange();
} else if (Kind == OO_Call) {
return SourceRange(getArg(0)->getLocStart(), getRParenLoc());
} else if (Kind == OO_Subscript) {
return SourceRange(getArg(0)->getLocStart(), getRParenLoc());
} else if (getNumArgs() == 1) {
return SourceRange(getOperatorLoc(), getArg(0)->getLocEnd());
} else if (getNumArgs() == 2) {
return SourceRange(getArg(0)->getLocStart(), getArg(1)->getLocEnd());
} else {
return getOperatorLoc();
}
}
Expr *CXXMemberCallExpr::getImplicitObjectArgument() const {
const Expr *Callee = getCallee()->IgnoreParens();
if (const MemberExpr *MemExpr = dyn_cast<MemberExpr>(Callee))
return MemExpr->getBase();
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Callee))
if (BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI)
return BO->getLHS();
// FIXME: Will eventually need to cope with member pointers.
return 0;
}
CXXMethodDecl *CXXMemberCallExpr::getMethodDecl() const {
if (const MemberExpr *MemExpr =
dyn_cast<MemberExpr>(getCallee()->IgnoreParens()))
return cast<CXXMethodDecl>(MemExpr->getMemberDecl());
// FIXME: Will eventually need to cope with member pointers.
return 0;
}
CXXRecordDecl *CXXMemberCallExpr::getRecordDecl() const {
Expr* ThisArg = getImplicitObjectArgument();
if (!ThisArg)
return 0;
if (ThisArg->getType()->isAnyPointerType())
return ThisArg->getType()->getPointeeType()->getAsCXXRecordDecl();
return ThisArg->getType()->getAsCXXRecordDecl();
}
//===----------------------------------------------------------------------===//
// Named casts
//===----------------------------------------------------------------------===//
/// getCastName - Get the name of the C++ cast being used, e.g.,
/// "static_cast", "dynamic_cast", "reinterpret_cast", or
/// "const_cast". The returned pointer must not be freed.
const char *CXXNamedCastExpr::getCastName() const {
switch (getStmtClass()) {
case CXXStaticCastExprClass: return "static_cast";
case CXXDynamicCastExprClass: return "dynamic_cast";
case CXXReinterpretCastExprClass: return "reinterpret_cast";
case CXXConstCastExprClass: return "const_cast";
default: return "<invalid cast>";
}
}
CXXStaticCastExpr *CXXStaticCastExpr::Create(ASTContext &C, QualType T,
ExprValueKind VK,
CastKind K, Expr *Op,
const CXXCastPath *BasePath,
TypeSourceInfo *WrittenTy,
SourceLocation L,
SourceLocation RParenLoc) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer = C.Allocate(sizeof(CXXStaticCastExpr)
+ PathSize * sizeof(CXXBaseSpecifier*));
CXXStaticCastExpr *E =
new (Buffer) CXXStaticCastExpr(T, VK, K, Op, PathSize, WrittenTy, L,
RParenLoc);
if (PathSize) E->setCastPath(*BasePath);
return E;
}
CXXStaticCastExpr *CXXStaticCastExpr::CreateEmpty(ASTContext &C,
unsigned PathSize) {
void *Buffer =
C.Allocate(sizeof(CXXStaticCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
return new (Buffer) CXXStaticCastExpr(EmptyShell(), PathSize);
}
CXXDynamicCastExpr *CXXDynamicCastExpr::Create(ASTContext &C, QualType T,
ExprValueKind VK,
CastKind K, Expr *Op,
const CXXCastPath *BasePath,
TypeSourceInfo *WrittenTy,
SourceLocation L,
SourceLocation RParenLoc) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer = C.Allocate(sizeof(CXXDynamicCastExpr)
+ PathSize * sizeof(CXXBaseSpecifier*));
CXXDynamicCastExpr *E =
new (Buffer) CXXDynamicCastExpr(T, VK, K, Op, PathSize, WrittenTy, L,
RParenLoc);
if (PathSize) E->setCastPath(*BasePath);
return E;
}
CXXDynamicCastExpr *CXXDynamicCastExpr::CreateEmpty(ASTContext &C,
unsigned PathSize) {
void *Buffer =
C.Allocate(sizeof(CXXDynamicCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
return new (Buffer) CXXDynamicCastExpr(EmptyShell(), PathSize);
}
/// isAlwaysNull - Return whether the result of the dynamic_cast is proven
/// to always be null. For example:
///
/// struct A { };
/// struct B final : A { };
/// struct C { };
///
/// C *f(B* b) { return dynamic_cast<C*>(b); }
bool CXXDynamicCastExpr::isAlwaysNull() const
{
QualType SrcType = getSubExpr()->getType();
QualType DestType = getType();
if (const PointerType *SrcPTy = SrcType->getAs<PointerType>()) {
SrcType = SrcPTy->getPointeeType();
DestType = DestType->castAs<PointerType>()->getPointeeType();
}
if (DestType->isVoidType())
return false;
const CXXRecordDecl *SrcRD =
cast<CXXRecordDecl>(SrcType->castAs<RecordType>()->getDecl());
if (!SrcRD->hasAttr<FinalAttr>())
return false;
const CXXRecordDecl *DestRD =
cast<CXXRecordDecl>(DestType->castAs<RecordType>()->getDecl());
return !DestRD->isDerivedFrom(SrcRD);
}
CXXReinterpretCastExpr *
CXXReinterpretCastExpr::Create(ASTContext &C, QualType T, ExprValueKind VK,
CastKind K, Expr *Op,
const CXXCastPath *BasePath,
TypeSourceInfo *WrittenTy, SourceLocation L,
SourceLocation RParenLoc) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer =
C.Allocate(sizeof(CXXReinterpretCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
CXXReinterpretCastExpr *E =
new (Buffer) CXXReinterpretCastExpr(T, VK, K, Op, PathSize, WrittenTy, L,
RParenLoc);
if (PathSize) E->setCastPath(*BasePath);
return E;
}
CXXReinterpretCastExpr *
CXXReinterpretCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
void *Buffer = C.Allocate(sizeof(CXXReinterpretCastExpr)
+ PathSize * sizeof(CXXBaseSpecifier*));
return new (Buffer) CXXReinterpretCastExpr(EmptyShell(), PathSize);
}
CXXConstCastExpr *CXXConstCastExpr::Create(ASTContext &C, QualType T,
ExprValueKind VK, Expr *Op,
TypeSourceInfo *WrittenTy,
SourceLocation L,
SourceLocation RParenLoc) {
return new (C) CXXConstCastExpr(T, VK, Op, WrittenTy, L, RParenLoc);
}
CXXConstCastExpr *CXXConstCastExpr::CreateEmpty(ASTContext &C) {
return new (C) CXXConstCastExpr(EmptyShell());
}
CXXFunctionalCastExpr *
CXXFunctionalCastExpr::Create(ASTContext &C, QualType T, ExprValueKind VK,
TypeSourceInfo *Written, SourceLocation L,
CastKind K, Expr *Op, const CXXCastPath *BasePath,
SourceLocation R) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer = C.Allocate(sizeof(CXXFunctionalCastExpr)
+ PathSize * sizeof(CXXBaseSpecifier*));
CXXFunctionalCastExpr *E =
new (Buffer) CXXFunctionalCastExpr(T, VK, Written, L, K, Op, PathSize, R);
if (PathSize) E->setCastPath(*BasePath);
return E;
}
CXXFunctionalCastExpr *
CXXFunctionalCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
void *Buffer = C.Allocate(sizeof(CXXFunctionalCastExpr)
+ PathSize * sizeof(CXXBaseSpecifier*));
return new (Buffer) CXXFunctionalCastExpr(EmptyShell(), PathSize);
}
UserDefinedLiteral::LiteralOperatorKind
UserDefinedLiteral::getLiteralOperatorKind() const {
if (getNumArgs() == 0)
return LOK_Template;
if (getNumArgs() == 2)
return LOK_String;
assert(getNumArgs() == 1 && "unexpected #args in literal operator call");
QualType ParamTy =
cast<FunctionDecl>(getCalleeDecl())->getParamDecl(0)->getType();
if (ParamTy->isPointerType())
return LOK_Raw;
if (ParamTy->isAnyCharacterType())
return LOK_Character;
if (ParamTy->isIntegerType())
return LOK_Integer;
if (ParamTy->isFloatingType())
return LOK_Floating;
llvm_unreachable("unknown kind of literal operator");
}
Expr *UserDefinedLiteral::getCookedLiteral() {
#ifndef NDEBUG
LiteralOperatorKind LOK = getLiteralOperatorKind();
assert(LOK != LOK_Template && LOK != LOK_Raw && "not a cooked literal");
#endif
return getArg(0);
}
const IdentifierInfo *UserDefinedLiteral::getUDSuffix() const {
return cast<FunctionDecl>(getCalleeDecl())->getLiteralIdentifier();
}
CXXDefaultArgExpr *
CXXDefaultArgExpr::Create(ASTContext &C, SourceLocation Loc,
ParmVarDecl *Param, Expr *SubExpr) {
void *Mem = C.Allocate(sizeof(CXXDefaultArgExpr) + sizeof(Stmt *));
return new (Mem) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param,
SubExpr);
}
CXXTemporary *CXXTemporary::Create(ASTContext &C,
const CXXDestructorDecl *Destructor) {
return new (C) CXXTemporary(Destructor);
}
CXXBindTemporaryExpr *CXXBindTemporaryExpr::Create(ASTContext &C,
CXXTemporary *Temp,
Expr* SubExpr) {
assert((SubExpr->getType()->isRecordType() ||
SubExpr->getType()->isArrayType()) &&
"Expression bound to a temporary must have record or array type!");
return new (C) CXXBindTemporaryExpr(Temp, SubExpr);
}
CXXTemporaryObjectExpr::CXXTemporaryObjectExpr(ASTContext &C,
CXXConstructorDecl *Cons,
TypeSourceInfo *Type,
ArrayRef<Expr*> Args,
SourceRange parenRange,
bool HadMultipleCandidates,
bool ZeroInitialization)
: CXXConstructExpr(C, CXXTemporaryObjectExprClass,
Type->getType().getNonReferenceType(),
Type->getTypeLoc().getBeginLoc(),
Cons, false, Args,
Represent C++ direct initializers as ParenListExprs before semantic analysis instead of having a special-purpose function. - ActOnCXXDirectInitializer, which was mostly duplication of AddInitializerToDecl (leading e.g. to PR10620, which Eli fixed a few days ago), is dropped completely. - MultiInitializer, which was an ugly hack I added, is dropped again. - We now have the infrastructure in place to distinguish between int x = {1}; int x({1}); int x{1}; -- VarDecl now has getInitStyle(), which indicates which of the above was used. -- CXXConstructExpr now has a flag to indicate that it represents list- initialization, although this is not yet used. - InstantiateInitializer was renamed to SubstInitializer and simplified. - ActOnParenOrParenListExpr has been replaced by ActOnParenListExpr, which always produces a ParenListExpr. Placed that so far failed to convert that back to a ParenExpr containing comma operators have been fixed. I'm pretty sure I could have made a crashing test case before this. The end result is a (I hope) considerably cleaner design of initializers. More importantly, the fact that I can now distinguish between the various initialization kinds means that I can get the tricky generalized initializer test cases Johannes Schaub supplied to work. (This is not yet done.) This commit passed self-host, with the resulting compiler passing the tests. I hope it doesn't break more complicated code. It's a pretty big change, but one that I feel is necessary. llvm-svn: 150318
2012-02-12 07:51:47 +08:00
HadMultipleCandidates, /*FIXME*/false, ZeroInitialization,
CXXConstructExpr::CK_Complete, parenRange),
Type(Type) {
}
SourceRange CXXTemporaryObjectExpr::getSourceRange() const {
return SourceRange(Type->getTypeLoc().getBeginLoc(),
getParenRange().getEnd());
}
CXXConstructExpr *CXXConstructExpr::Create(ASTContext &C, QualType T,
SourceLocation Loc,
CXXConstructorDecl *D, bool Elidable,
ArrayRef<Expr*> Args,
bool HadMultipleCandidates,
Represent C++ direct initializers as ParenListExprs before semantic analysis instead of having a special-purpose function. - ActOnCXXDirectInitializer, which was mostly duplication of AddInitializerToDecl (leading e.g. to PR10620, which Eli fixed a few days ago), is dropped completely. - MultiInitializer, which was an ugly hack I added, is dropped again. - We now have the infrastructure in place to distinguish between int x = {1}; int x({1}); int x{1}; -- VarDecl now has getInitStyle(), which indicates which of the above was used. -- CXXConstructExpr now has a flag to indicate that it represents list- initialization, although this is not yet used. - InstantiateInitializer was renamed to SubstInitializer and simplified. - ActOnParenOrParenListExpr has been replaced by ActOnParenListExpr, which always produces a ParenListExpr. Placed that so far failed to convert that back to a ParenExpr containing comma operators have been fixed. I'm pretty sure I could have made a crashing test case before this. The end result is a (I hope) considerably cleaner design of initializers. More importantly, the fact that I can now distinguish between the various initialization kinds means that I can get the tricky generalized initializer test cases Johannes Schaub supplied to work. (This is not yet done.) This commit passed self-host, with the resulting compiler passing the tests. I hope it doesn't break more complicated code. It's a pretty big change, but one that I feel is necessary. llvm-svn: 150318
2012-02-12 07:51:47 +08:00
bool ListInitialization,
Rework base and member initialization in constructors, with several (necessarily simultaneous) changes: - CXXBaseOrMemberInitializer now contains only a single initializer rather than a set of initialiation arguments + a constructor. The single initializer covers all aspects of initialization, including constructor calls as necessary but also cleanup of temporaries created by the initializer (which we never handled before!). - Rework + simplify code generation for CXXBaseOrMemberInitializers, since we can now just emit the initializer as an initializer. - Switched base and member initialization over to the new initialization code (InitializationSequence), so that it - Improved diagnostics for the new initialization code when initializing bases and members, to match the diagnostics produced by the previous (special-purpose) code. - Simplify the representation of type-checked constructor initializers in templates; instead of keeping the fully-type-checked AST, which is rather hard to undo at template instantiation time, throw away the type-checked AST and store the raw expressions in the AST. This simplifies instantiation, but loses a little but of information in the AST. - When type-checking implicit base or member initializers within a dependent context, don't add the generated initializers into the AST, because they'll look like they were explicit. - Record in CXXConstructExpr when the constructor call is to initialize a base class, so that CodeGen does not have to infer it from context. This ensures that we call the right kind of constructor. There are also a few "opportunity" fixes here that were needed to not regress, for example: - Diagnose default-initialization of a const-qualified class that does not have a user-declared default constructor. We had this diagnostic specifically for bases and members, but missed it for variables. That's fixed now. - When defining the implicit constructors, destructor, and copy-assignment operator, set the CurContext to that constructor when we're defining the body. llvm-svn: 94952
2010-01-31 17:12:51 +08:00
bool ZeroInitialization,
ConstructionKind ConstructKind,
SourceRange ParenRange) {
return new (C) CXXConstructExpr(C, CXXConstructExprClass, T, Loc, D,
Elidable, Args,
Represent C++ direct initializers as ParenListExprs before semantic analysis instead of having a special-purpose function. - ActOnCXXDirectInitializer, which was mostly duplication of AddInitializerToDecl (leading e.g. to PR10620, which Eli fixed a few days ago), is dropped completely. - MultiInitializer, which was an ugly hack I added, is dropped again. - We now have the infrastructure in place to distinguish between int x = {1}; int x({1}); int x{1}; -- VarDecl now has getInitStyle(), which indicates which of the above was used. -- CXXConstructExpr now has a flag to indicate that it represents list- initialization, although this is not yet used. - InstantiateInitializer was renamed to SubstInitializer and simplified. - ActOnParenOrParenListExpr has been replaced by ActOnParenListExpr, which always produces a ParenListExpr. Placed that so far failed to convert that back to a ParenExpr containing comma operators have been fixed. I'm pretty sure I could have made a crashing test case before this. The end result is a (I hope) considerably cleaner design of initializers. More importantly, the fact that I can now distinguish between the various initialization kinds means that I can get the tricky generalized initializer test cases Johannes Schaub supplied to work. (This is not yet done.) This commit passed self-host, with the resulting compiler passing the tests. I hope it doesn't break more complicated code. It's a pretty big change, but one that I feel is necessary. llvm-svn: 150318
2012-02-12 07:51:47 +08:00
HadMultipleCandidates, ListInitialization,
ZeroInitialization, ConstructKind,
ParenRange);
}
CXXConstructExpr::CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
SourceLocation Loc,
CXXConstructorDecl *D, bool elidable,
ArrayRef<Expr*> args,
bool HadMultipleCandidates,
Represent C++ direct initializers as ParenListExprs before semantic analysis instead of having a special-purpose function. - ActOnCXXDirectInitializer, which was mostly duplication of AddInitializerToDecl (leading e.g. to PR10620, which Eli fixed a few days ago), is dropped completely. - MultiInitializer, which was an ugly hack I added, is dropped again. - We now have the infrastructure in place to distinguish between int x = {1}; int x({1}); int x{1}; -- VarDecl now has getInitStyle(), which indicates which of the above was used. -- CXXConstructExpr now has a flag to indicate that it represents list- initialization, although this is not yet used. - InstantiateInitializer was renamed to SubstInitializer and simplified. - ActOnParenOrParenListExpr has been replaced by ActOnParenListExpr, which always produces a ParenListExpr. Placed that so far failed to convert that back to a ParenExpr containing comma operators have been fixed. I'm pretty sure I could have made a crashing test case before this. The end result is a (I hope) considerably cleaner design of initializers. More importantly, the fact that I can now distinguish between the various initialization kinds means that I can get the tricky generalized initializer test cases Johannes Schaub supplied to work. (This is not yet done.) This commit passed self-host, with the resulting compiler passing the tests. I hope it doesn't break more complicated code. It's a pretty big change, but one that I feel is necessary. llvm-svn: 150318
2012-02-12 07:51:47 +08:00
bool ListInitialization,
bool ZeroInitialization,
ConstructionKind ConstructKind,
SourceRange ParenRange)
: Expr(SC, T, VK_RValue, OK_Ordinary,
T->isDependentType(), T->isDependentType(),
T->isInstantiationDependentType(),
T->containsUnexpandedParameterPack()),
Constructor(D), Loc(Loc), ParenRange(ParenRange), NumArgs(args.size()),
Elidable(elidable), HadMultipleCandidates(HadMultipleCandidates),
Represent C++ direct initializers as ParenListExprs before semantic analysis instead of having a special-purpose function. - ActOnCXXDirectInitializer, which was mostly duplication of AddInitializerToDecl (leading e.g. to PR10620, which Eli fixed a few days ago), is dropped completely. - MultiInitializer, which was an ugly hack I added, is dropped again. - We now have the infrastructure in place to distinguish between int x = {1}; int x({1}); int x{1}; -- VarDecl now has getInitStyle(), which indicates which of the above was used. -- CXXConstructExpr now has a flag to indicate that it represents list- initialization, although this is not yet used. - InstantiateInitializer was renamed to SubstInitializer and simplified. - ActOnParenOrParenListExpr has been replaced by ActOnParenListExpr, which always produces a ParenListExpr. Placed that so far failed to convert that back to a ParenExpr containing comma operators have been fixed. I'm pretty sure I could have made a crashing test case before this. The end result is a (I hope) considerably cleaner design of initializers. More importantly, the fact that I can now distinguish between the various initialization kinds means that I can get the tricky generalized initializer test cases Johannes Schaub supplied to work. (This is not yet done.) This commit passed self-host, with the resulting compiler passing the tests. I hope it doesn't break more complicated code. It's a pretty big change, but one that I feel is necessary. llvm-svn: 150318
2012-02-12 07:51:47 +08:00
ListInitialization(ListInitialization),
ZeroInitialization(ZeroInitialization),
ConstructKind(ConstructKind), Args(0)
{
if (NumArgs) {
Args = new (C) Stmt*[args.size()];
for (unsigned i = 0; i != args.size(); ++i) {
assert(args[i] && "NULL argument in CXXConstructExpr");
if (args[i]->isValueDependent())
ExprBits.ValueDependent = true;
if (args[i]->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (args[i]->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
Args[i] = args[i];
}
}
}
LambdaExpr::Capture::Capture(SourceLocation Loc, bool Implicit,
LambdaCaptureKind Kind, VarDecl *Var,
SourceLocation EllipsisLoc)
: VarAndBits(Var, 0), Loc(Loc), EllipsisLoc(EllipsisLoc)
{
unsigned Bits = 0;
if (Implicit)
Bits |= Capture_Implicit;
switch (Kind) {
case LCK_This:
assert(Var == 0 && "'this' capture cannot have a variable!");
break;
case LCK_ByCopy:
Bits |= Capture_ByCopy;
// Fall through
case LCK_ByRef:
assert(Var && "capture must have a variable!");
break;
}
VarAndBits.setInt(Bits);
}
LambdaCaptureKind LambdaExpr::Capture::getCaptureKind() const {
if (capturesThis())
return LCK_This;
return (VarAndBits.getInt() & Capture_ByCopy)? LCK_ByCopy : LCK_ByRef;
}
LambdaExpr::LambdaExpr(QualType T,
SourceRange IntroducerRange,
LambdaCaptureDefault CaptureDefault,
ArrayRef<Capture> Captures,
bool ExplicitParams,
bool ExplicitResultType,
ArrayRef<Expr *> CaptureInits,
ArrayRef<VarDecl *> ArrayIndexVars,
ArrayRef<unsigned> ArrayIndexStarts,
SourceLocation ClosingBrace,
bool ContainsUnexpandedParameterPack)
: Expr(LambdaExprClass, T, VK_RValue, OK_Ordinary,
T->isDependentType(), T->isDependentType(), T->isDependentType(),
ContainsUnexpandedParameterPack),
IntroducerRange(IntroducerRange),
NumCaptures(Captures.size()),
CaptureDefault(CaptureDefault),
ExplicitParams(ExplicitParams),
ExplicitResultType(ExplicitResultType),
ClosingBrace(ClosingBrace)
{
assert(CaptureInits.size() == Captures.size() && "Wrong number of arguments");
CXXRecordDecl *Class = getLambdaClass();
CXXRecordDecl::LambdaDefinitionData &Data = Class->getLambdaData();
// FIXME: Propagate "has unexpanded parameter pack" bit.
// Copy captures.
ASTContext &Context = Class->getASTContext();
Data.NumCaptures = NumCaptures;
Data.NumExplicitCaptures = 0;
Data.Captures = (Capture *)Context.Allocate(sizeof(Capture) * NumCaptures);
Capture *ToCapture = Data.Captures;
for (unsigned I = 0, N = Captures.size(); I != N; ++I) {
if (Captures[I].isExplicit())
++Data.NumExplicitCaptures;
*ToCapture++ = Captures[I];
}
// Copy initialization expressions for the non-static data members.
Stmt **Stored = getStoredStmts();
for (unsigned I = 0, N = CaptureInits.size(); I != N; ++I)
*Stored++ = CaptureInits[I];
// Copy the body of the lambda.
*Stored++ = getCallOperator()->getBody();
// Copy the array index variables, if any.
HasArrayIndexVars = !ArrayIndexVars.empty();
if (HasArrayIndexVars) {
assert(ArrayIndexStarts.size() == NumCaptures);
memcpy(getArrayIndexVars(), ArrayIndexVars.data(),
sizeof(VarDecl *) * ArrayIndexVars.size());
memcpy(getArrayIndexStarts(), ArrayIndexStarts.data(),
sizeof(unsigned) * Captures.size());
getArrayIndexStarts()[Captures.size()] = ArrayIndexVars.size();
}
}
LambdaExpr *LambdaExpr::Create(ASTContext &Context,
CXXRecordDecl *Class,
SourceRange IntroducerRange,
LambdaCaptureDefault CaptureDefault,
ArrayRef<Capture> Captures,
bool ExplicitParams,
bool ExplicitResultType,
ArrayRef<Expr *> CaptureInits,
ArrayRef<VarDecl *> ArrayIndexVars,
ArrayRef<unsigned> ArrayIndexStarts,
SourceLocation ClosingBrace,
bool ContainsUnexpandedParameterPack) {
// Determine the type of the expression (i.e., the type of the
// function object we're creating).
QualType T = Context.getTypeDeclType(Class);
unsigned Size = sizeof(LambdaExpr) + sizeof(Stmt *) * (Captures.size() + 1);
if (!ArrayIndexVars.empty()) {
Size += sizeof(unsigned) * (Captures.size() + 1);
// Realign for following VarDecl array.
Size = llvm::RoundUpToAlignment(Size, llvm::alignOf<VarDecl*>());
Size += sizeof(VarDecl *) * ArrayIndexVars.size();
}
void *Mem = Context.Allocate(Size);
return new (Mem) LambdaExpr(T, IntroducerRange, CaptureDefault,
Captures, ExplicitParams, ExplicitResultType,
CaptureInits, ArrayIndexVars, ArrayIndexStarts,
ClosingBrace, ContainsUnexpandedParameterPack);
}
LambdaExpr *LambdaExpr::CreateDeserialized(ASTContext &C, unsigned NumCaptures,
unsigned NumArrayIndexVars) {
unsigned Size = sizeof(LambdaExpr) + sizeof(Stmt *) * (NumCaptures + 1);
if (NumArrayIndexVars)
Size += sizeof(VarDecl) * NumArrayIndexVars
+ sizeof(unsigned) * (NumCaptures + 1);
void *Mem = C.Allocate(Size);
return new (Mem) LambdaExpr(EmptyShell(), NumCaptures, NumArrayIndexVars > 0);
}
LambdaExpr::capture_iterator LambdaExpr::capture_begin() const {
return getLambdaClass()->getLambdaData().Captures;
}
LambdaExpr::capture_iterator LambdaExpr::capture_end() const {
return capture_begin() + NumCaptures;
}
LambdaExpr::capture_iterator LambdaExpr::explicit_capture_begin() const {
return capture_begin();
}
LambdaExpr::capture_iterator LambdaExpr::explicit_capture_end() const {
struct CXXRecordDecl::LambdaDefinitionData &Data
= getLambdaClass()->getLambdaData();
return Data.Captures + Data.NumExplicitCaptures;
}
LambdaExpr::capture_iterator LambdaExpr::implicit_capture_begin() const {
return explicit_capture_end();
}
LambdaExpr::capture_iterator LambdaExpr::implicit_capture_end() const {
return capture_end();
}
ArrayRef<VarDecl *>
LambdaExpr::getCaptureInitIndexVars(capture_init_iterator Iter) const {
assert(HasArrayIndexVars && "No array index-var data?");
unsigned Index = Iter - capture_init_begin();
assert(Index < getLambdaClass()->getLambdaData().NumCaptures &&
"Capture index out-of-range");
VarDecl **IndexVars = getArrayIndexVars();
unsigned *IndexStarts = getArrayIndexStarts();
return ArrayRef<VarDecl *>(IndexVars + IndexStarts[Index],
IndexVars + IndexStarts[Index + 1]);
}
CXXRecordDecl *LambdaExpr::getLambdaClass() const {
return getType()->getAsCXXRecordDecl();
}
CXXMethodDecl *LambdaExpr::getCallOperator() const {
CXXRecordDecl *Record = getLambdaClass();
DeclarationName Name
= Record->getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
DeclContext::lookup_result Calls = Record->lookup(Name);
assert(Calls.first != Calls.second && "Missing lambda call operator!");
CXXMethodDecl *Result = cast<CXXMethodDecl>(*Calls.first++);
assert(Calls.first == Calls.second && "More than lambda one call operator?");
return Result;
}
CompoundStmt *LambdaExpr::getBody() const {
if (!getStoredStmts()[NumCaptures])
getStoredStmts()[NumCaptures] = getCallOperator()->getBody();
return reinterpret_cast<CompoundStmt *>(getStoredStmts()[NumCaptures]);
}
bool LambdaExpr::isMutable() const {
return !getCallOperator()->isConst();
}
ExprWithCleanups::ExprWithCleanups(Expr *subexpr,
ArrayRef<CleanupObject> objects)
: Expr(ExprWithCleanupsClass, subexpr->getType(),
subexpr->getValueKind(), subexpr->getObjectKind(),
subexpr->isTypeDependent(), subexpr->isValueDependent(),
subexpr->isInstantiationDependent(),
subexpr->containsUnexpandedParameterPack()),
SubExpr(subexpr) {
ExprWithCleanupsBits.NumObjects = objects.size();
for (unsigned i = 0, e = objects.size(); i != e; ++i)
getObjectsBuffer()[i] = objects[i];
2009-04-25 06:47:04 +08:00
}
ExprWithCleanups *ExprWithCleanups::Create(ASTContext &C, Expr *subexpr,
ArrayRef<CleanupObject> objects) {
size_t size = sizeof(ExprWithCleanups)
+ objects.size() * sizeof(CleanupObject);
void *buffer = C.Allocate(size, llvm::alignOf<ExprWithCleanups>());
return new (buffer) ExprWithCleanups(subexpr, objects);
}
ExprWithCleanups::ExprWithCleanups(EmptyShell empty, unsigned numObjects)
: Expr(ExprWithCleanupsClass, empty) {
ExprWithCleanupsBits.NumObjects = numObjects;
}
ExprWithCleanups *ExprWithCleanups::Create(ASTContext &C, EmptyShell empty,
unsigned numObjects) {
size_t size = sizeof(ExprWithCleanups) + numObjects * sizeof(CleanupObject);
void *buffer = C.Allocate(size, llvm::alignOf<ExprWithCleanups>());
return new (buffer) ExprWithCleanups(empty, numObjects);
}
CXXUnresolvedConstructExpr::CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
SourceLocation LParenLoc,
ArrayRef<Expr*> Args,
SourceLocation RParenLoc)
: Expr(CXXUnresolvedConstructExprClass,
Type->getType().getNonReferenceType(),
(Type->getType()->isLValueReferenceType() ? VK_LValue
:Type->getType()->isRValueReferenceType()? VK_XValue
:VK_RValue),
OK_Ordinary,
Type->getType()->isDependentType(), true, true,
Type->getType()->containsUnexpandedParameterPack()),
Type(Type),
LParenLoc(LParenLoc),
RParenLoc(RParenLoc),
NumArgs(Args.size()) {
Stmt **StoredArgs = reinterpret_cast<Stmt **>(this + 1);
for (unsigned I = 0; I != Args.size(); ++I) {
if (Args[I]->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
StoredArgs[I] = Args[I];
}
}
CXXUnresolvedConstructExpr *
CXXUnresolvedConstructExpr::Create(ASTContext &C,
TypeSourceInfo *Type,
SourceLocation LParenLoc,
ArrayRef<Expr*> Args,
SourceLocation RParenLoc) {
void *Mem = C.Allocate(sizeof(CXXUnresolvedConstructExpr) +
sizeof(Expr *) * Args.size());
return new (Mem) CXXUnresolvedConstructExpr(Type, LParenLoc, Args, RParenLoc);
}
CXXUnresolvedConstructExpr *
CXXUnresolvedConstructExpr::CreateEmpty(ASTContext &C, unsigned NumArgs) {
Stmt::EmptyShell Empty;
void *Mem = C.Allocate(sizeof(CXXUnresolvedConstructExpr) +
sizeof(Expr *) * NumArgs);
return new (Mem) CXXUnresolvedConstructExpr(Empty, NumArgs);
}
SourceRange CXXUnresolvedConstructExpr::getSourceRange() const {
return SourceRange(Type->getTypeLoc().getBeginLoc(), RParenLoc);
}
CXXDependentScopeMemberExpr::CXXDependentScopeMemberExpr(ASTContext &C,
Expr *Base, QualType BaseType,
bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierFoundInScope,
DeclarationNameInfo MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs)
: Expr(CXXDependentScopeMemberExprClass, C.DependentTy,
VK_LValue, OK_Ordinary, true, true, true,
((Base && Base->containsUnexpandedParameterPack()) ||
(QualifierLoc &&
QualifierLoc.getNestedNameSpecifier()
->containsUnexpandedParameterPack()) ||
MemberNameInfo.containsUnexpandedParameterPack())),
Base(Base), BaseType(BaseType), IsArrow(IsArrow),
HasTemplateKWAndArgsInfo(TemplateArgs != 0 || TemplateKWLoc.isValid()),
OperatorLoc(OperatorLoc), QualifierLoc(QualifierLoc),
FirstQualifierFoundInScope(FirstQualifierFoundInScope),
MemberNameInfo(MemberNameInfo) {
if (TemplateArgs) {
bool Dependent = true;
bool InstantiationDependent = true;
bool ContainsUnexpandedParameterPack = false;
getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
Dependent,
InstantiationDependent,
ContainsUnexpandedParameterPack);
if (ContainsUnexpandedParameterPack)
ExprBits.ContainsUnexpandedParameterPack = true;
} else if (TemplateKWLoc.isValid()) {
getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
}
}
CXXDependentScopeMemberExpr::CXXDependentScopeMemberExpr(ASTContext &C,
Expr *Base, QualType BaseType,
bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
NamedDecl *FirstQualifierFoundInScope,
DeclarationNameInfo MemberNameInfo)
: Expr(CXXDependentScopeMemberExprClass, C.DependentTy,
VK_LValue, OK_Ordinary, true, true, true,
((Base && Base->containsUnexpandedParameterPack()) ||
(QualifierLoc &&
QualifierLoc.getNestedNameSpecifier()->
containsUnexpandedParameterPack()) ||
MemberNameInfo.containsUnexpandedParameterPack())),
Base(Base), BaseType(BaseType), IsArrow(IsArrow),
HasTemplateKWAndArgsInfo(false),
OperatorLoc(OperatorLoc), QualifierLoc(QualifierLoc),
FirstQualifierFoundInScope(FirstQualifierFoundInScope),
MemberNameInfo(MemberNameInfo) { }
CXXDependentScopeMemberExpr *
CXXDependentScopeMemberExpr::Create(ASTContext &C,
Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierFoundInScope,
DeclarationNameInfo MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs) {
if (!TemplateArgs && !TemplateKWLoc.isValid())
return new (C) CXXDependentScopeMemberExpr(C, Base, BaseType,
IsArrow, OperatorLoc,
QualifierLoc,
FirstQualifierFoundInScope,
MemberNameInfo);
unsigned NumTemplateArgs = TemplateArgs ? TemplateArgs->size() : 0;
std::size_t size = sizeof(CXXDependentScopeMemberExpr)
+ ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
void *Mem = C.Allocate(size, llvm::alignOf<CXXDependentScopeMemberExpr>());
return new (Mem) CXXDependentScopeMemberExpr(C, Base, BaseType,
IsArrow, OperatorLoc,
QualifierLoc,
TemplateKWLoc,
FirstQualifierFoundInScope,
MemberNameInfo, TemplateArgs);
}
CXXDependentScopeMemberExpr *
CXXDependentScopeMemberExpr::CreateEmpty(ASTContext &C,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs) {
if (!HasTemplateKWAndArgsInfo)
return new (C) CXXDependentScopeMemberExpr(C, 0, QualType(),
0, SourceLocation(),
NestedNameSpecifierLoc(), 0,
DeclarationNameInfo());
std::size_t size = sizeof(CXXDependentScopeMemberExpr) +
ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
void *Mem = C.Allocate(size, llvm::alignOf<CXXDependentScopeMemberExpr>());
CXXDependentScopeMemberExpr *E
= new (Mem) CXXDependentScopeMemberExpr(C, 0, QualType(),
0, SourceLocation(),
NestedNameSpecifierLoc(),
SourceLocation(), 0,
DeclarationNameInfo(), 0);
E->HasTemplateKWAndArgsInfo = true;
return E;
}
bool CXXDependentScopeMemberExpr::isImplicitAccess() const {
if (Base == 0)
return true;
return cast<Expr>(Base)->isImplicitCXXThis();
}
static bool hasOnlyNonStaticMemberFunctions(UnresolvedSetIterator begin,
UnresolvedSetIterator end) {
do {
NamedDecl *decl = *begin;
if (isa<UnresolvedUsingValueDecl>(decl))
return false;
if (isa<UsingShadowDecl>(decl))
decl = cast<UsingShadowDecl>(decl)->getUnderlyingDecl();
// Unresolved member expressions should only contain methods and
// method templates.
assert(isa<CXXMethodDecl>(decl) || isa<FunctionTemplateDecl>(decl));
if (isa<FunctionTemplateDecl>(decl))
decl = cast<FunctionTemplateDecl>(decl)->getTemplatedDecl();
if (cast<CXXMethodDecl>(decl)->isStatic())
return false;
} while (++begin != end);
return true;
}
UnresolvedMemberExpr::UnresolvedMemberExpr(ASTContext &C,
bool HasUnresolvedUsing,
Expr *Base, QualType BaseType,
bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End)
: OverloadExpr(UnresolvedMemberExprClass, C, QualifierLoc, TemplateKWLoc,
MemberNameInfo, TemplateArgs, Begin, End,
// Dependent
((Base && Base->isTypeDependent()) ||
BaseType->isDependentType()),
((Base && Base->isInstantiationDependent()) ||
BaseType->isInstantiationDependentType()),
// Contains unexpanded parameter pack
((Base && Base->containsUnexpandedParameterPack()) ||
BaseType->containsUnexpandedParameterPack())),
IsArrow(IsArrow), HasUnresolvedUsing(HasUnresolvedUsing),
Base(Base), BaseType(BaseType), OperatorLoc(OperatorLoc) {
// Check whether all of the members are non-static member functions,
// and if so, mark give this bound-member type instead of overload type.
if (hasOnlyNonStaticMemberFunctions(Begin, End))
setType(C.BoundMemberTy);
}
bool UnresolvedMemberExpr::isImplicitAccess() const {
if (Base == 0)
return true;
return cast<Expr>(Base)->isImplicitCXXThis();
}
UnresolvedMemberExpr *
UnresolvedMemberExpr::Create(ASTContext &C,
bool HasUnresolvedUsing,
Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End) {
std::size_t size = sizeof(UnresolvedMemberExpr);
if (TemplateArgs)
size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
else if (TemplateKWLoc.isValid())
size += ASTTemplateKWAndArgsInfo::sizeFor(0);
void *Mem = C.Allocate(size, llvm::alignOf<UnresolvedMemberExpr>());
return new (Mem) UnresolvedMemberExpr(C,
HasUnresolvedUsing, Base, BaseType,
IsArrow, OperatorLoc, QualifierLoc, TemplateKWLoc,
MemberNameInfo, TemplateArgs, Begin, End);
}
UnresolvedMemberExpr *
UnresolvedMemberExpr::CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs) {
std::size_t size = sizeof(UnresolvedMemberExpr);
if (HasTemplateKWAndArgsInfo)
size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
void *Mem = C.Allocate(size, llvm::alignOf<UnresolvedMemberExpr>());
UnresolvedMemberExpr *E = new (Mem) UnresolvedMemberExpr(EmptyShell());
E->HasTemplateKWAndArgsInfo = HasTemplateKWAndArgsInfo;
return E;
}
CXXRecordDecl *UnresolvedMemberExpr::getNamingClass() const {
// Unlike for UnresolvedLookupExpr, it is very easy to re-derive this.
// If there was a nested name specifier, it names the naming class.
// It can't be dependent: after all, we were actually able to do the
// lookup.
CXXRecordDecl *Record = 0;
if (getQualifier()) {
const Type *T = getQualifier()->getAsType();
assert(T && "qualifier in member expression does not name type");
Record = T->getAsCXXRecordDecl();
assert(Record && "qualifier in member expression does not name record");
}
// Otherwise the naming class must have been the base class.
else {
QualType BaseType = getBaseType().getNonReferenceType();
if (isArrow()) {
const PointerType *PT = BaseType->getAs<PointerType>();
assert(PT && "base of arrow member access is not pointer");
BaseType = PT->getPointeeType();
}
Record = BaseType->getAsCXXRecordDecl();
assert(Record && "base of member expression does not name record");
}
return Record;
}
SubstNonTypeTemplateParmPackExpr::
SubstNonTypeTemplateParmPackExpr(QualType T,
NonTypeTemplateParmDecl *Param,
SourceLocation NameLoc,
const TemplateArgument &ArgPack)
: Expr(SubstNonTypeTemplateParmPackExprClass, T, VK_RValue, OK_Ordinary,
true, true, true, true),
Param(Param), Arguments(ArgPack.pack_begin()),
NumArguments(ArgPack.pack_size()), NameLoc(NameLoc) { }
TemplateArgument SubstNonTypeTemplateParmPackExpr::getArgumentPack() const {
return TemplateArgument(Arguments, NumArguments);
}
FunctionParmPackExpr::FunctionParmPackExpr(QualType T, ParmVarDecl *ParamPack,
SourceLocation NameLoc,
unsigned NumParams,
Decl * const *Params)
: Expr(FunctionParmPackExprClass, T, VK_LValue, OK_Ordinary,
true, true, true, true),
ParamPack(ParamPack), NameLoc(NameLoc), NumParameters(NumParams) {
if (Params)
std::uninitialized_copy(Params, Params + NumParams,
reinterpret_cast<Decl**>(this+1));
}
FunctionParmPackExpr *
FunctionParmPackExpr::Create(ASTContext &Context, QualType T,
ParmVarDecl *ParamPack, SourceLocation NameLoc,
llvm::ArrayRef<Decl*> Params) {
return new (Context.Allocate(sizeof(FunctionParmPackExpr) +
sizeof(ParmVarDecl*) * Params.size()))
FunctionParmPackExpr(T, ParamPack, NameLoc, Params.size(), Params.data());
}
FunctionParmPackExpr *
FunctionParmPackExpr::CreateEmpty(ASTContext &Context, unsigned NumParams) {
return new (Context.Allocate(sizeof(FunctionParmPackExpr) +
sizeof(ParmVarDecl*) * NumParams))
FunctionParmPackExpr(QualType(), 0, SourceLocation(), 0, 0);
}
TypeTraitExpr::TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
ArrayRef<TypeSourceInfo *> Args,
SourceLocation RParenLoc,
bool Value)
: Expr(TypeTraitExprClass, T, VK_RValue, OK_Ordinary,
/*TypeDependent=*/false,
/*ValueDependent=*/false,
/*InstantiationDependent=*/false,
/*ContainsUnexpandedParameterPack=*/false),
Loc(Loc), RParenLoc(RParenLoc)
{
TypeTraitExprBits.Kind = Kind;
TypeTraitExprBits.Value = Value;
TypeTraitExprBits.NumArgs = Args.size();
TypeSourceInfo **ToArgs = getTypeSourceInfos();
for (unsigned I = 0, N = Args.size(); I != N; ++I) {
if (Args[I]->getType()->isDependentType())
setValueDependent(true);
if (Args[I]->getType()->isInstantiationDependentType())
setInstantiationDependent(true);
if (Args[I]->getType()->containsUnexpandedParameterPack())
setContainsUnexpandedParameterPack(true);
ToArgs[I] = Args[I];
}
}
TypeTraitExpr *TypeTraitExpr::Create(ASTContext &C, QualType T,
SourceLocation Loc,
TypeTrait Kind,
ArrayRef<TypeSourceInfo *> Args,
SourceLocation RParenLoc,
bool Value) {
unsigned Size = sizeof(TypeTraitExpr) + sizeof(TypeSourceInfo*) * Args.size();
void *Mem = C.Allocate(Size);
return new (Mem) TypeTraitExpr(T, Loc, Kind, Args, RParenLoc, Value);
}
TypeTraitExpr *TypeTraitExpr::CreateDeserialized(ASTContext &C,
unsigned NumArgs) {
unsigned Size = sizeof(TypeTraitExpr) + sizeof(TypeSourceInfo*) * NumArgs;
void *Mem = C.Allocate(Size);
return new (Mem) TypeTraitExpr(EmptyShell());
}
void ArrayTypeTraitExpr::anchor() { }