2008-02-27 04:26:43 +08:00
|
|
|
//===-LTOCodeGenerator.cpp - LLVM Link Time Optimizer ---------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
2012-03-31 18:50:14 +08:00
|
|
|
//
|
2008-02-27 04:26:43 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
2012-03-31 18:50:14 +08:00
|
|
|
// This file implements the Link Time Optimization library. This library is
|
2008-02-27 04:26:43 +08:00
|
|
|
// intended to be used by linker to optimize code at link time.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2013-09-25 07:52:22 +08:00
|
|
|
#include "llvm/LTO/LTOCodeGenerator.h"
|
2016-02-17 05:41:51 +08:00
|
|
|
#include "llvm/ADT/Statistic.h"
|
2012-12-04 18:44:52 +08:00
|
|
|
#include "llvm/ADT/StringExtras.h"
|
2009-06-17 14:52:10 +08:00
|
|
|
#include "llvm/Analysis/Passes.h"
|
2015-01-15 10:16:27 +08:00
|
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
2015-01-31 19:17:59 +08:00
|
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
2008-02-27 04:26:43 +08:00
|
|
|
#include "llvm/Bitcode/ReaderWriter.h"
|
2015-08-28 07:37:36 +08:00
|
|
|
#include "llvm/CodeGen/ParallelCG.h"
|
2013-11-13 05:44:01 +08:00
|
|
|
#include "llvm/CodeGen/RuntimeLibcalls.h"
|
2012-03-31 19:15:43 +08:00
|
|
|
#include "llvm/Config/config.h"
|
2013-01-02 19:36:10 +08:00
|
|
|
#include "llvm/IR/Constants.h"
|
|
|
|
#include "llvm/IR/DataLayout.h"
|
|
|
|
#include "llvm/IR/DerivedTypes.h"
|
2014-01-16 06:04:35 +08:00
|
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
|
|
#include "llvm/IR/DiagnosticPrinter.h"
|
2013-01-02 19:36:10 +08:00
|
|
|
#include "llvm/IR/LLVMContext.h"
|
2015-02-13 18:01:29 +08:00
|
|
|
#include "llvm/IR/LegacyPassManager.h"
|
2014-01-08 05:19:40 +08:00
|
|
|
#include "llvm/IR/Mangler.h"
|
2013-01-02 19:36:10 +08:00
|
|
|
#include "llvm/IR/Module.h"
|
2014-01-13 17:26:24 +08:00
|
|
|
#include "llvm/IR/Verifier.h"
|
2013-07-23 02:40:34 +08:00
|
|
|
#include "llvm/InitializePasses.h"
|
2014-01-07 19:48:04 +08:00
|
|
|
#include "llvm/LTO/LTOModule.h"
|
2014-03-06 11:42:23 +08:00
|
|
|
#include "llvm/Linker/Linker.h"
|
2010-03-13 02:44:54 +08:00
|
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
|
|
#include "llvm/MC/MCContext.h"
|
2011-06-29 09:14:12 +08:00
|
|
|
#include "llvm/MC/SubtargetFeature.h"
|
2010-03-13 02:44:54 +08:00
|
|
|
#include "llvm/Support/CommandLine.h"
|
2013-06-18 02:05:35 +08:00
|
|
|
#include "llvm/Support/FileSystem.h"
|
2010-11-30 02:47:54 +08:00
|
|
|
#include "llvm/Support/Host.h"
|
2012-12-04 18:44:52 +08:00
|
|
|
#include "llvm/Support/MemoryBuffer.h"
|
2010-11-30 02:47:54 +08:00
|
|
|
#include "llvm/Support/Signals.h"
|
2011-08-25 02:08:43 +08:00
|
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
|
|
#include "llvm/Support/TargetSelect.h"
|
2012-12-04 18:44:52 +08:00
|
|
|
#include "llvm/Support/ToolOutputFile.h"
|
2014-03-04 18:07:28 +08:00
|
|
|
#include "llvm/Support/raw_ostream.h"
|
2013-11-13 05:44:01 +08:00
|
|
|
#include "llvm/Target/TargetLowering.h"
|
2013-10-01 00:39:19 +08:00
|
|
|
#include "llvm/Target/TargetOptions.h"
|
2012-12-04 18:44:52 +08:00
|
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
2014-08-05 05:25:23 +08:00
|
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
2012-12-04 18:44:52 +08:00
|
|
|
#include "llvm/Transforms/IPO.h"
|
|
|
|
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
|
2013-03-30 07:28:55 +08:00
|
|
|
#include "llvm/Transforms/ObjCARC.h"
|
2014-06-13 01:38:55 +08:00
|
|
|
#include <system_error>
|
2008-02-27 04:26:43 +08:00
|
|
|
using namespace llvm;
|
|
|
|
|
2012-03-31 18:49:43 +08:00
|
|
|
const char* LTOCodeGenerator::getVersionString() {
|
2008-02-27 04:26:43 +08:00
|
|
|
#ifdef LLVM_VERSION_INFO
|
2012-03-31 18:49:43 +08:00
|
|
|
return PACKAGE_NAME " version " PACKAGE_VERSION ", " LLVM_VERSION_INFO;
|
2008-02-27 04:26:43 +08:00
|
|
|
#else
|
2012-03-31 18:49:43 +08:00
|
|
|
return PACKAGE_NAME " version " PACKAGE_VERSION;
|
2008-02-27 04:26:43 +08:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2015-12-04 10:42:28 +08:00
|
|
|
LTOCodeGenerator::LTOCodeGenerator(LLVMContext &Context)
|
2015-12-05 06:08:53 +08:00
|
|
|
: Context(Context), MergedModule(new Module("ld-temp.o", Context)),
|
2015-12-19 03:28:59 +08:00
|
|
|
TheLinker(new Linker(*MergedModule)) {
|
2015-04-28 07:19:26 +08:00
|
|
|
initializeLTOPasses();
|
2014-11-12 07:03:29 +08:00
|
|
|
}
|
|
|
|
|
2015-08-25 06:22:53 +08:00
|
|
|
LTOCodeGenerator::~LTOCodeGenerator() {}
|
2008-02-27 04:26:43 +08:00
|
|
|
|
2015-09-01 18:13:49 +08:00
|
|
|
// Initialize LTO passes. Please keep this function in sync with
|
2013-07-23 14:44:34 +08:00
|
|
|
// PassManagerBuilder::populateLTOPassManager(), and make sure all LTO
|
2014-01-11 04:24:35 +08:00
|
|
|
// passes are initialized.
|
2013-07-23 02:40:34 +08:00
|
|
|
void LTOCodeGenerator::initializeLTOPasses() {
|
|
|
|
PassRegistry &R = *PassRegistry::getPassRegistry();
|
|
|
|
|
|
|
|
initializeInternalizePassPass(R);
|
|
|
|
initializeIPSCCPPass(R);
|
|
|
|
initializeGlobalOptPass(R);
|
|
|
|
initializeConstantMergePass(R);
|
|
|
|
initializeDAHPass(R);
|
2015-01-21 06:44:35 +08:00
|
|
|
initializeInstructionCombiningPassPass(R);
|
2013-07-23 02:40:34 +08:00
|
|
|
initializeSimpleInlinerPass(R);
|
|
|
|
initializePruneEHPass(R);
|
|
|
|
initializeGlobalDCEPass(R);
|
|
|
|
initializeArgPromotionPass(R);
|
|
|
|
initializeJumpThreadingPass(R);
|
2015-09-12 17:09:14 +08:00
|
|
|
initializeSROALegacyPassPass(R);
|
2013-07-23 02:40:34 +08:00
|
|
|
initializeSROA_DTPass(R);
|
|
|
|
initializeSROA_SSAUpPass(R);
|
2016-02-18 19:03:11 +08:00
|
|
|
initializePostOrderFunctionAttrsLegacyPassPass(R);
|
2016-01-08 18:55:52 +08:00
|
|
|
initializeReversePostOrderFunctionAttrsPass(R);
|
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
llvm-svn: 247167
2015-09-10 01:55:00 +08:00
|
|
|
initializeGlobalsAAWrapperPassPass(R);
|
2013-07-23 02:40:34 +08:00
|
|
|
initializeLICMPass(R);
|
2014-07-19 03:13:09 +08:00
|
|
|
initializeMergedLoadStoreMotionPass(R);
|
2013-07-23 02:40:34 +08:00
|
|
|
initializeGVNPass(R);
|
|
|
|
initializeMemCpyOptPass(R);
|
|
|
|
initializeDCEPass(R);
|
2013-08-06 10:43:45 +08:00
|
|
|
initializeCFGSimplifyPassPass(R);
|
2013-07-23 02:40:34 +08:00
|
|
|
}
|
|
|
|
|
2015-09-01 07:44:06 +08:00
|
|
|
bool LTOCodeGenerator::addModule(LTOModule *Mod) {
|
|
|
|
assert(&Mod->getModule().getContext() == &Context &&
|
2014-11-12 07:13:10 +08:00
|
|
|
"Expected module in same context");
|
|
|
|
|
2015-12-19 03:28:59 +08:00
|
|
|
bool ret = TheLinker->linkInModule(Mod->takeModule());
|
2011-03-02 12:14:42 +08:00
|
|
|
|
2015-09-01 07:44:06 +08:00
|
|
|
const std::vector<const char *> &undefs = Mod->getAsmUndefinedRefs();
|
2011-03-02 12:14:42 +08:00
|
|
|
for (int i = 0, e = undefs.size(); i != e; ++i)
|
2013-09-05 01:44:24 +08:00
|
|
|
AsmUndefinedRefs[undefs[i]] = 1;
|
2011-03-02 12:14:42 +08:00
|
|
|
|
2013-08-07 13:19:23 +08:00
|
|
|
return !ret;
|
2008-02-27 04:26:43 +08:00
|
|
|
}
|
2012-03-31 18:50:14 +08:00
|
|
|
|
2015-08-25 06:22:53 +08:00
|
|
|
void LTOCodeGenerator::setModule(std::unique_ptr<LTOModule> Mod) {
|
2015-02-24 08:45:56 +08:00
|
|
|
assert(&Mod->getModule().getContext() == &Context &&
|
|
|
|
"Expected module in same context");
|
|
|
|
|
|
|
|
AsmUndefinedRefs.clear();
|
|
|
|
|
2015-08-25 06:22:53 +08:00
|
|
|
MergedModule = Mod->takeModule();
|
2015-12-19 03:28:59 +08:00
|
|
|
TheLinker = make_unique<Linker>(*MergedModule);
|
2015-02-24 08:45:56 +08:00
|
|
|
|
|
|
|
const std::vector<const char*> &Undefs = Mod->getAsmUndefinedRefs();
|
|
|
|
for (int I = 0, E = Undefs.size(); I != E; ++I)
|
|
|
|
AsmUndefinedRefs[Undefs[I]] = 1;
|
|
|
|
}
|
|
|
|
|
2015-09-01 07:44:06 +08:00
|
|
|
void LTOCodeGenerator::setTargetOptions(TargetOptions Options) {
|
|
|
|
this->Options = Options;
|
2013-10-01 00:39:19 +08:00
|
|
|
}
|
|
|
|
|
2015-09-01 07:44:06 +08:00
|
|
|
void LTOCodeGenerator::setDebugInfo(lto_debug_model Debug) {
|
|
|
|
switch (Debug) {
|
2012-03-31 19:15:43 +08:00
|
|
|
case LTO_DEBUG_MODEL_NONE:
|
2013-09-05 01:44:24 +08:00
|
|
|
EmitDwarfDebugInfo = false;
|
2013-08-07 13:19:23 +08:00
|
|
|
return;
|
2008-02-27 04:26:43 +08:00
|
|
|
|
2012-03-31 19:15:43 +08:00
|
|
|
case LTO_DEBUG_MODEL_DWARF:
|
2013-09-05 01:44:24 +08:00
|
|
|
EmitDwarfDebugInfo = true;
|
2013-08-07 13:19:23 +08:00
|
|
|
return;
|
2012-03-31 19:15:43 +08:00
|
|
|
}
|
|
|
|
llvm_unreachable("Unknown debug format!");
|
2008-02-27 04:26:43 +08:00
|
|
|
}
|
|
|
|
|
2015-09-01 07:44:06 +08:00
|
|
|
void LTOCodeGenerator::setOptLevel(unsigned Level) {
|
|
|
|
OptLevel = Level;
|
2015-08-22 10:25:53 +08:00
|
|
|
switch (OptLevel) {
|
|
|
|
case 0:
|
|
|
|
CGOptLevel = CodeGenOpt::None;
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
CGOptLevel = CodeGenOpt::Less;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
CGOptLevel = CodeGenOpt::Default;
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
CGOptLevel = CodeGenOpt::Aggressive;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-11-18 03:48:12 +08:00
|
|
|
bool LTOCodeGenerator::writeMergedModules(const char *Path) {
|
|
|
|
if (!determineTarget())
|
2013-08-07 13:19:23 +08:00
|
|
|
return false;
|
2009-08-23 15:49:08 +08:00
|
|
|
|
2013-08-09 07:51:04 +08:00
|
|
|
// mark which symbols can not be internalized
|
|
|
|
applyScopeRestrictions();
|
2009-08-23 15:49:08 +08:00
|
|
|
|
|
|
|
// create output file
|
2014-08-26 02:16:47 +08:00
|
|
|
std::error_code EC;
|
2015-09-01 07:44:06 +08:00
|
|
|
tool_output_file Out(Path, EC, sys::fs::F_None);
|
2014-08-26 02:16:47 +08:00
|
|
|
if (EC) {
|
2015-11-18 03:48:12 +08:00
|
|
|
std::string ErrMsg = "could not open bitcode file for writing: ";
|
2015-09-01 07:44:06 +08:00
|
|
|
ErrMsg += Path;
|
2015-11-18 03:48:12 +08:00
|
|
|
emitError(ErrMsg);
|
2013-08-07 13:19:23 +08:00
|
|
|
return false;
|
2009-08-23 15:49:08 +08:00
|
|
|
}
|
2012-03-31 18:50:14 +08:00
|
|
|
|
2009-08-23 15:49:08 +08:00
|
|
|
// write bitcode to it
|
2015-08-25 06:22:53 +08:00
|
|
|
WriteBitcodeToFile(MergedModule.get(), Out.os(), ShouldEmbedUselists);
|
2010-09-01 22:20:41 +08:00
|
|
|
Out.os().close();
|
2010-05-28 04:19:47 +08:00
|
|
|
|
2010-09-01 22:20:41 +08:00
|
|
|
if (Out.os().has_error()) {
|
2015-11-18 03:48:12 +08:00
|
|
|
std::string ErrMsg = "could not write bitcode file: ";
|
2015-09-01 07:44:06 +08:00
|
|
|
ErrMsg += Path;
|
2015-11-18 03:48:12 +08:00
|
|
|
emitError(ErrMsg);
|
2010-09-01 22:20:41 +08:00
|
|
|
Out.os().clear_error();
|
2013-08-07 13:19:23 +08:00
|
|
|
return false;
|
2009-08-23 15:49:08 +08:00
|
|
|
}
|
2012-03-31 18:50:14 +08:00
|
|
|
|
2010-08-21 00:59:15 +08:00
|
|
|
Out.keep();
|
2013-08-07 13:19:23 +08:00
|
|
|
return true;
|
2008-02-27 04:26:43 +08:00
|
|
|
}
|
|
|
|
|
2015-11-18 03:48:12 +08:00
|
|
|
bool LTOCodeGenerator::compileOptimizedToFile(const char **Name) {
|
2015-11-20 07:59:24 +08:00
|
|
|
// make unique temp output file to put generated code
|
2013-08-13 05:07:31 +08:00
|
|
|
SmallString<128> Filename;
|
|
|
|
int FD;
|
2015-11-20 07:59:24 +08:00
|
|
|
|
|
|
|
const char *Extension =
|
|
|
|
(FileType == TargetMachine::CGFT_AssemblyFile ? "s" : "o");
|
|
|
|
|
2014-06-13 10:24:39 +08:00
|
|
|
std::error_code EC =
|
2015-11-20 07:59:24 +08:00
|
|
|
sys::fs::createTemporaryFile("lto-llvm", Extension, FD, Filename);
|
2013-08-13 05:07:31 +08:00
|
|
|
if (EC) {
|
2015-11-18 03:48:12 +08:00
|
|
|
emitError(EC.message());
|
2013-08-07 13:19:23 +08:00
|
|
|
return false;
|
2013-08-13 05:07:31 +08:00
|
|
|
}
|
2011-03-23 04:57:13 +08:00
|
|
|
|
2013-08-13 05:07:31 +08:00
|
|
|
// generate object file
|
|
|
|
tool_output_file objFile(Filename.c_str(), FD);
|
2012-03-31 19:15:43 +08:00
|
|
|
|
2015-11-18 03:48:12 +08:00
|
|
|
bool genResult = compileOptimized(&objFile.os());
|
2013-08-13 05:07:31 +08:00
|
|
|
objFile.os().close();
|
|
|
|
if (objFile.os().has_error()) {
|
|
|
|
objFile.os().clear_error();
|
|
|
|
sys::fs::remove(Twine(Filename));
|
2013-08-07 13:19:23 +08:00
|
|
|
return false;
|
2013-08-13 05:07:31 +08:00
|
|
|
}
|
2012-03-31 19:15:43 +08:00
|
|
|
|
2013-08-13 05:07:31 +08:00
|
|
|
objFile.keep();
|
|
|
|
if (!genResult) {
|
|
|
|
sys::fs::remove(Twine(Filename));
|
2013-08-07 13:19:23 +08:00
|
|
|
return false;
|
2013-08-13 05:07:31 +08:00
|
|
|
}
|
2011-02-25 05:04:06 +08:00
|
|
|
|
2013-09-05 01:44:24 +08:00
|
|
|
NativeObjectPath = Filename.c_str();
|
2015-09-01 07:44:06 +08:00
|
|
|
*Name = NativeObjectPath.c_str();
|
2013-08-07 13:19:23 +08:00
|
|
|
return true;
|
2011-03-23 04:57:13 +08:00
|
|
|
}
|
2011-02-25 05:04:06 +08:00
|
|
|
|
2015-06-02 04:08:30 +08:00
|
|
|
std::unique_ptr<MemoryBuffer>
|
2015-11-18 03:48:12 +08:00
|
|
|
LTOCodeGenerator::compileOptimized() {
|
2011-03-23 04:57:13 +08:00
|
|
|
const char *name;
|
2015-11-18 03:48:12 +08:00
|
|
|
if (!compileOptimizedToFile(&name))
|
2014-04-15 14:32:26 +08:00
|
|
|
return nullptr;
|
2011-03-23 04:57:13 +08:00
|
|
|
|
|
|
|
// read .o file into memory buffer
|
2014-07-07 01:43:13 +08:00
|
|
|
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
|
|
|
|
MemoryBuffer::getFile(name, -1, false);
|
|
|
|
if (std::error_code EC = BufferOrErr.getError()) {
|
2015-11-18 03:48:12 +08:00
|
|
|
emitError(EC.message());
|
2013-09-05 01:44:24 +08:00
|
|
|
sys::fs::remove(NativeObjectPath);
|
2014-04-15 14:32:26 +08:00
|
|
|
return nullptr;
|
2011-03-23 04:57:13 +08:00
|
|
|
}
|
2008-02-28 06:25:36 +08:00
|
|
|
|
2013-08-13 05:07:31 +08:00
|
|
|
// remove temp files
|
2013-09-05 01:44:24 +08:00
|
|
|
sys::fs::remove(NativeObjectPath);
|
2013-08-13 02:29:43 +08:00
|
|
|
|
2015-06-02 04:08:30 +08:00
|
|
|
return std::move(*BufferOrErr);
|
2008-02-27 04:26:43 +08:00
|
|
|
}
|
|
|
|
|
2015-09-16 07:05:59 +08:00
|
|
|
bool LTOCodeGenerator::compile_to_file(const char **Name, bool DisableVerify,
|
|
|
|
bool DisableInline,
|
2015-09-01 07:44:06 +08:00
|
|
|
bool DisableGVNLoadPRE,
|
2015-11-18 03:48:12 +08:00
|
|
|
bool DisableVectorization) {
|
2015-09-16 07:05:59 +08:00
|
|
|
if (!optimize(DisableVerify, DisableInline, DisableGVNLoadPRE,
|
2015-11-18 03:48:12 +08:00
|
|
|
DisableVectorization))
|
2015-02-04 02:39:15 +08:00
|
|
|
return false;
|
|
|
|
|
2015-11-18 03:48:12 +08:00
|
|
|
return compileOptimizedToFile(Name);
|
2015-02-04 02:39:15 +08:00
|
|
|
}
|
|
|
|
|
2015-06-02 04:08:30 +08:00
|
|
|
std::unique_ptr<MemoryBuffer>
|
2015-09-16 07:05:59 +08:00
|
|
|
LTOCodeGenerator::compile(bool DisableVerify, bool DisableInline,
|
2015-11-18 03:48:12 +08:00
|
|
|
bool DisableGVNLoadPRE, bool DisableVectorization) {
|
2015-09-16 07:05:59 +08:00
|
|
|
if (!optimize(DisableVerify, DisableInline, DisableGVNLoadPRE,
|
2015-11-18 03:48:12 +08:00
|
|
|
DisableVectorization))
|
2015-02-04 02:39:15 +08:00
|
|
|
return nullptr;
|
|
|
|
|
2015-11-18 03:48:12 +08:00
|
|
|
return compileOptimized();
|
2015-02-04 02:39:15 +08:00
|
|
|
}
|
|
|
|
|
2015-11-18 03:48:12 +08:00
|
|
|
bool LTOCodeGenerator::determineTarget() {
|
2014-04-15 14:32:26 +08:00
|
|
|
if (TargetMach)
|
2013-08-07 05:51:21 +08:00
|
|
|
return true;
|
2012-08-07 06:52:45 +08:00
|
|
|
|
2015-08-25 06:22:53 +08:00
|
|
|
std::string TripleStr = MergedModule->getTargetTriple();
|
2015-08-22 10:25:53 +08:00
|
|
|
if (TripleStr.empty()) {
|
2012-10-13 01:39:25 +08:00
|
|
|
TripleStr = sys::getDefaultTargetTriple();
|
2015-08-25 06:22:53 +08:00
|
|
|
MergedModule->setTargetTriple(TripleStr);
|
2015-08-22 10:25:53 +08:00
|
|
|
}
|
2012-10-13 01:39:25 +08:00
|
|
|
llvm::Triple Triple(TripleStr);
|
2012-08-07 06:52:45 +08:00
|
|
|
|
|
|
|
// create target machine from info for merged modules
|
2015-11-18 03:48:12 +08:00
|
|
|
std::string ErrMsg;
|
2015-09-01 07:44:06 +08:00
|
|
|
const Target *march = TargetRegistry::lookupTarget(TripleStr, ErrMsg);
|
2015-11-18 03:48:12 +08:00
|
|
|
if (!march) {
|
|
|
|
emitError(ErrMsg);
|
2013-08-07 05:51:21 +08:00
|
|
|
return false;
|
2015-11-18 03:48:12 +08:00
|
|
|
}
|
2012-08-07 06:52:45 +08:00
|
|
|
|
2014-04-26 05:46:51 +08:00
|
|
|
// Construct LTOModule, hand over ownership of module and target. Use MAttr as
|
|
|
|
// the default set of features.
|
|
|
|
SubtargetFeatures Features(MAttr);
|
2012-10-13 01:39:25 +08:00
|
|
|
Features.getDefaultSubtargetFeatures(Triple);
|
2015-08-22 10:25:53 +08:00
|
|
|
FeatureStr = Features.getString();
|
2012-10-13 01:39:25 +08:00
|
|
|
// Set a default CPU for Darwin triples.
|
2013-09-05 01:44:24 +08:00
|
|
|
if (MCpu.empty() && Triple.isOSDarwin()) {
|
2012-10-13 01:39:25 +08:00
|
|
|
if (Triple.getArch() == llvm::Triple::x86_64)
|
2013-09-05 01:44:24 +08:00
|
|
|
MCpu = "core2";
|
2012-10-13 01:39:25 +08:00
|
|
|
else if (Triple.getArch() == llvm::Triple::x86)
|
2013-09-05 01:44:24 +08:00
|
|
|
MCpu = "yonah";
|
2014-07-23 20:32:47 +08:00
|
|
|
else if (Triple.getArch() == llvm::Triple::aarch64)
|
2014-03-29 18:18:08 +08:00
|
|
|
MCpu = "cyclone";
|
2012-10-13 01:39:25 +08:00
|
|
|
}
|
2013-10-01 00:39:19 +08:00
|
|
|
|
2015-08-21 12:45:57 +08:00
|
|
|
TargetMach.reset(march->createTargetMachine(TripleStr, MCpu, FeatureStr,
|
|
|
|
Options, RelocModel,
|
|
|
|
CodeModel::Default, CGOptLevel));
|
2013-08-07 05:51:21 +08:00
|
|
|
return true;
|
2008-02-27 04:26:43 +08:00
|
|
|
}
|
|
|
|
|
2012-03-31 19:15:43 +08:00
|
|
|
void LTOCodeGenerator::
|
|
|
|
applyRestriction(GlobalValue &GV,
|
2014-08-27 13:25:00 +08:00
|
|
|
ArrayRef<StringRef> Libcalls,
|
2013-09-05 04:08:46 +08:00
|
|
|
std::vector<const char*> &MustPreserveList,
|
2014-08-21 13:55:13 +08:00
|
|
|
SmallPtrSetImpl<GlobalValue*> &AsmUsed,
|
2013-09-05 04:08:46 +08:00
|
|
|
Mangler &Mangler) {
|
2014-02-20 01:23:20 +08:00
|
|
|
// There are no restrictions to apply to declarations.
|
2011-03-02 12:14:42 +08:00
|
|
|
if (GV.isDeclaration())
|
|
|
|
return;
|
2014-02-20 01:23:20 +08:00
|
|
|
|
|
|
|
// There is nothing more restrictive than private linkage.
|
|
|
|
if (GV.hasPrivateLinkage())
|
|
|
|
return;
|
|
|
|
|
|
|
|
SmallString<64> Buffer;
|
2014-02-20 04:30:41 +08:00
|
|
|
TargetMach->getNameWithPrefix(Buffer, &GV, Mangler);
|
2014-02-20 01:23:20 +08:00
|
|
|
|
2013-09-05 01:44:24 +08:00
|
|
|
if (MustPreserveSymbols.count(Buffer))
|
2013-09-05 04:08:46 +08:00
|
|
|
MustPreserveList.push_back(GV.getName().data());
|
2013-09-05 01:44:24 +08:00
|
|
|
if (AsmUndefinedRefs.count(Buffer))
|
2013-09-05 04:08:46 +08:00
|
|
|
AsmUsed.insert(&GV);
|
2013-11-13 05:44:01 +08:00
|
|
|
|
|
|
|
// Conservatively append user-supplied runtime library functions to
|
|
|
|
// llvm.compiler.used. These could be internalized and deleted by
|
|
|
|
// optimizations like -globalopt, causing problems when later optimizations
|
|
|
|
// add new library calls (e.g., llvm.memset => memset and printf => puts).
|
|
|
|
// Leave it to the linker to remove any dead code (e.g. with -dead_strip).
|
|
|
|
if (isa<Function>(GV) &&
|
|
|
|
std::binary_search(Libcalls.begin(), Libcalls.end(), GV.getName()))
|
|
|
|
AsmUsed.insert(&GV);
|
2016-01-19 07:24:54 +08:00
|
|
|
|
|
|
|
// Record the linkage type of non-local symbols so they can be restored prior
|
|
|
|
// to module splitting.
|
|
|
|
if (ShouldRestoreGlobalsLinkage && !GV.hasAvailableExternallyLinkage() &&
|
|
|
|
!GV.hasLocalLinkage() && GV.hasName())
|
|
|
|
ExternalSymbols.insert(std::make_pair(GV.getName(), GV.getLinkage()));
|
2011-03-02 12:14:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void findUsedValues(GlobalVariable *LLVMUsed,
|
2014-08-21 13:55:13 +08:00
|
|
|
SmallPtrSetImpl<GlobalValue*> &UsedValues) {
|
2014-04-15 14:32:26 +08:00
|
|
|
if (!LLVMUsed) return;
|
2011-03-02 12:14:42 +08:00
|
|
|
|
2013-04-25 01:54:35 +08:00
|
|
|
ConstantArray *Inits = cast<ConstantArray>(LLVMUsed->getInitializer());
|
2011-03-02 12:14:42 +08:00
|
|
|
for (unsigned i = 0, e = Inits->getNumOperands(); i != e; ++i)
|
2012-03-31 18:50:14 +08:00
|
|
|
if (GlobalValue *GV =
|
2012-03-31 19:15:43 +08:00
|
|
|
dyn_cast<GlobalValue>(Inits->getOperand(i)->stripPointerCasts()))
|
2011-03-02 12:14:42 +08:00
|
|
|
UsedValues.insert(GV);
|
|
|
|
}
|
|
|
|
|
2015-01-30 09:16:24 +08:00
|
|
|
// Collect names of runtime library functions. User-defined functions with the
|
|
|
|
// same names are added to llvm.compiler.used to prevent them from being
|
|
|
|
// deleted by optimizations.
|
2013-11-13 05:44:01 +08:00
|
|
|
static void accumulateAndSortLibcalls(std::vector<StringRef> &Libcalls,
|
|
|
|
const TargetLibraryInfo& TLI,
|
2015-01-30 09:16:24 +08:00
|
|
|
const Module &Mod,
|
|
|
|
const TargetMachine &TM) {
|
2013-11-13 05:44:01 +08:00
|
|
|
// TargetLibraryInfo has info on C runtime library calls on the current
|
|
|
|
// target.
|
|
|
|
for (unsigned I = 0, E = static_cast<unsigned>(LibFunc::NumLibFuncs);
|
|
|
|
I != E; ++I) {
|
|
|
|
LibFunc::Func F = static_cast<LibFunc::Func>(I);
|
|
|
|
if (TLI.has(F))
|
|
|
|
Libcalls.push_back(TLI.getName(F));
|
|
|
|
}
|
|
|
|
|
2015-01-30 09:16:24 +08:00
|
|
|
SmallPtrSet<const TargetLowering *, 1> TLSet;
|
|
|
|
|
|
|
|
for (const Function &F : Mod) {
|
|
|
|
const TargetLowering *Lowering =
|
|
|
|
TM.getSubtargetImpl(F)->getTargetLowering();
|
|
|
|
|
|
|
|
if (Lowering && TLSet.insert(Lowering).second)
|
|
|
|
// TargetLowering has info on library calls that CodeGen expects to be
|
|
|
|
// available, both from the C runtime and compiler-rt.
|
|
|
|
for (unsigned I = 0, E = static_cast<unsigned>(RTLIB::UNKNOWN_LIBCALL);
|
|
|
|
I != E; ++I)
|
|
|
|
if (const char *Name =
|
|
|
|
Lowering->getLibcallName(static_cast<RTLIB::Libcall>(I)))
|
|
|
|
Libcalls.push_back(Name);
|
|
|
|
}
|
2013-11-13 05:44:01 +08:00
|
|
|
|
2013-11-17 00:15:56 +08:00
|
|
|
array_pod_sort(Libcalls.begin(), Libcalls.end());
|
2013-11-13 05:44:01 +08:00
|
|
|
Libcalls.erase(std::unique(Libcalls.begin(), Libcalls.end()),
|
|
|
|
Libcalls.end());
|
|
|
|
}
|
|
|
|
|
2010-03-13 02:44:54 +08:00
|
|
|
void LTOCodeGenerator::applyScopeRestrictions() {
|
2015-04-18 01:10:09 +08:00
|
|
|
if (ScopeRestrictionsDone || !ShouldInternalize)
|
2013-09-05 01:44:24 +08:00
|
|
|
return;
|
2010-03-13 02:44:54 +08:00
|
|
|
|
|
|
|
// Start off with a verification pass.
|
2015-02-13 18:01:29 +08:00
|
|
|
legacy::PassManager passes;
|
2010-03-13 02:44:54 +08:00
|
|
|
passes.add(createVerifierPass());
|
|
|
|
|
2012-03-31 18:50:14 +08:00
|
|
|
// mark which symbols can not be internalized
|
2015-06-23 21:59:29 +08:00
|
|
|
Mangler Mangler;
|
2013-09-05 04:08:46 +08:00
|
|
|
std::vector<const char*> MustPreserveList;
|
|
|
|
SmallPtrSet<GlobalValue*, 8> AsmUsed;
|
2013-11-13 05:44:01 +08:00
|
|
|
std::vector<StringRef> Libcalls;
|
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass
manager to support the actual uses of it. =]
When I ported instcombine to the new pass manager I discover that it
didn't work because TLI wasn't available in the right places. This is
a somewhat surprising and/or subtle aspect of the new pass manager
design that came up before but I think is useful to be reminded of:
While the new pass manager *allows* a function pass to query a module
analysis, it requires that the module analysis is already run and cached
prior to the function pass manager starting up, possibly with
a 'require<foo>' style utility in the pass pipeline. This is an
intentional hurdle because using a module analysis from a function pass
*requires* that the module analysis is run prior to entering the
function pass manager. Otherwise the other functions in the module could
be in who-knows-what state, etc.
A somewhat surprising consequence of this design decision (at least to
me) is that you have to design a function pass that leverages
a module analysis to do so as an optional feature. Even if that means
your function pass does no work in the absence of the module analysis,
you have to handle that possibility and remain conservatively correct.
This is a natural consequence of things being able to invalidate the
module analysis and us being unable to re-run it. And it's a generally
good thing because it lets us reorder passes arbitrarily without
breaking correctness, etc.
This ends up causing problems in one case. What if we have a module
analysis that is *definitionally* impossible to invalidate. In the
places this might come up, the analysis is usually also definitionally
trivial to run even while other transformation passes run on the module,
regardless of the state of anything. And so, it follows that it is
natural to have a hard requirement on such analyses from a function
pass.
It turns out, that TargetLibraryInfo is just such an analysis, and
InstCombine has a hard requirement on it.
The approach I've taken here is to produce an analysis that models this
flexibility by making it both a module and a function analysis. This
exposes the fact that it is in fact safe to compute at any point. We can
even make it a valid CGSCC analysis at some point if that is useful.
However, we don't want to have a copy of the actual target library info
state for each function! This state is specific to the triple. The
somewhat direct and blunt approach here is to turn TLI into a pimpl,
with the state and mutators in the implementation class and the query
routines primarily in the wrapper. Then the analysis can lazily
construct and cache the implementations, keyed on the triple, and
on-demand produce wrappers of them for each function.
One minor annoyance is that we will end up with a wrapper for each
function in the module. While this is a bit wasteful (one pointer per
function) it seems tolerable. And it has the advantage of ensuring that
we pay the absolute minimum synchronization cost to access this
information should we end up with a nice parallel function pass manager
in the future. We could look into trying to mark when analysis results
are especially cheap to recompute and more eagerly GC-ing the cached
results, or we could look at supporting a variant of analyses whose
results are specifically *not* cached and expected to just be used and
discarded by the consumer. Either way, these seem like incremental
enhancements that should happen when we start profiling the memory and
CPU usage of the new pass manager and not before.
The other minor annoyance is that if we end up using the TLI in both
a module pass and a function pass, those will be produced by two
separate analyses, and thus will point to separate copies of the
implementation state. While a minor issue, I dislike this and would like
to find a way to cleanly allow a single analysis instance to be used
across multiple IR unit managers. But I don't have a good solution to
this today, and I don't want to hold up all of the work waiting to come
up with one. This too seems like a reasonable thing to incrementally
improve later.
llvm-svn: 226981
2015-01-24 10:06:09 +08:00
|
|
|
TargetLibraryInfoImpl TLII(Triple(TargetMach->getTargetTriple()));
|
|
|
|
TargetLibraryInfo TLI(TLII);
|
2015-01-30 09:16:24 +08:00
|
|
|
|
2015-08-25 05:15:35 +08:00
|
|
|
accumulateAndSortLibcalls(Libcalls, TLI, *MergedModule, *TargetMach);
|
2011-03-02 12:14:42 +08:00
|
|
|
|
2015-08-25 05:15:35 +08:00
|
|
|
for (Function &f : *MergedModule)
|
|
|
|
applyRestriction(f, Libcalls, MustPreserveList, AsmUsed, Mangler);
|
|
|
|
for (GlobalVariable &v : MergedModule->globals())
|
|
|
|
applyRestriction(v, Libcalls, MustPreserveList, AsmUsed, Mangler);
|
|
|
|
for (GlobalAlias &a : MergedModule->aliases())
|
|
|
|
applyRestriction(a, Libcalls, MustPreserveList, AsmUsed, Mangler);
|
2011-03-02 12:14:42 +08:00
|
|
|
|
|
|
|
GlobalVariable *LLVMCompilerUsed =
|
2015-08-25 05:15:35 +08:00
|
|
|
MergedModule->getGlobalVariable("llvm.compiler.used");
|
2013-09-05 04:08:46 +08:00
|
|
|
findUsedValues(LLVMCompilerUsed, AsmUsed);
|
2011-03-02 12:14:42 +08:00
|
|
|
if (LLVMCompilerUsed)
|
|
|
|
LLVMCompilerUsed->eraseFromParent();
|
|
|
|
|
2013-09-05 04:08:46 +08:00
|
|
|
if (!AsmUsed.empty()) {
|
2013-09-05 01:44:24 +08:00
|
|
|
llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(Context);
|
2013-04-25 01:54:35 +08:00
|
|
|
std::vector<Constant*> asmUsed2;
|
2014-05-06 04:06:41 +08:00
|
|
|
for (auto *GV : AsmUsed) {
|
2013-04-25 01:54:35 +08:00
|
|
|
Constant *c = ConstantExpr::getBitCast(GV, i8PTy);
|
|
|
|
asmUsed2.push_back(c);
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, asmUsed2.size());
|
|
|
|
LLVMCompilerUsed =
|
2015-08-25 05:15:35 +08:00
|
|
|
new llvm::GlobalVariable(*MergedModule, ATy, false,
|
2013-04-25 01:54:35 +08:00
|
|
|
llvm::GlobalValue::AppendingLinkage,
|
|
|
|
llvm::ConstantArray::get(ATy, asmUsed2),
|
|
|
|
"llvm.compiler.used");
|
|
|
|
|
|
|
|
LLVMCompilerUsed->setSection("llvm.metadata");
|
2010-03-13 02:44:54 +08:00
|
|
|
}
|
2011-03-02 12:14:42 +08:00
|
|
|
|
2014-04-03 06:05:57 +08:00
|
|
|
passes.add(createInternalizePass(MustPreserveList));
|
2011-03-02 12:14:42 +08:00
|
|
|
|
2010-03-13 02:44:54 +08:00
|
|
|
// apply scope restrictions
|
2015-08-25 05:15:35 +08:00
|
|
|
passes.run(*MergedModule);
|
2012-03-31 18:50:14 +08:00
|
|
|
|
2013-09-05 01:44:24 +08:00
|
|
|
ScopeRestrictionsDone = true;
|
2008-02-27 04:26:43 +08:00
|
|
|
}
|
|
|
|
|
2016-01-19 07:24:54 +08:00
|
|
|
/// Restore original linkage for symbols that may have been internalized
|
|
|
|
void LTOCodeGenerator::restoreLinkageForExternals() {
|
|
|
|
if (!ShouldInternalize || !ShouldRestoreGlobalsLinkage)
|
|
|
|
return;
|
|
|
|
|
|
|
|
assert(ScopeRestrictionsDone &&
|
|
|
|
"Cannot externalize without internalization!");
|
|
|
|
|
|
|
|
if (ExternalSymbols.empty())
|
|
|
|
return;
|
|
|
|
|
|
|
|
auto externalize = [this](GlobalValue &GV) {
|
|
|
|
if (!GV.hasLocalLinkage() || !GV.hasName())
|
|
|
|
return;
|
|
|
|
|
|
|
|
auto I = ExternalSymbols.find(GV.getName());
|
|
|
|
if (I == ExternalSymbols.end())
|
|
|
|
return;
|
|
|
|
|
|
|
|
GV.setLinkage(I->second);
|
|
|
|
};
|
|
|
|
|
|
|
|
std::for_each(MergedModule->begin(), MergedModule->end(), externalize);
|
|
|
|
std::for_each(MergedModule->global_begin(), MergedModule->global_end(),
|
|
|
|
externalize);
|
|
|
|
std::for_each(MergedModule->alias_begin(), MergedModule->alias_end(),
|
|
|
|
externalize);
|
|
|
|
}
|
|
|
|
|
2008-02-27 04:26:43 +08:00
|
|
|
/// Optimize merged modules using various IPO passes
|
2015-09-16 07:05:59 +08:00
|
|
|
bool LTOCodeGenerator::optimize(bool DisableVerify, bool DisableInline,
|
|
|
|
bool DisableGVNLoadPRE,
|
2015-11-18 03:48:12 +08:00
|
|
|
bool DisableVectorization) {
|
|
|
|
if (!this->determineTarget())
|
2013-08-07 05:51:21 +08:00
|
|
|
return false;
|
2008-02-27 04:26:43 +08:00
|
|
|
|
2013-05-24 05:21:50 +08:00
|
|
|
// Mark which symbols can not be internalized
|
2012-04-10 06:18:01 +08:00
|
|
|
this->applyScopeRestrictions();
|
|
|
|
|
2012-03-31 19:15:43 +08:00
|
|
|
// Instantiate the pass manager to organize the passes.
|
2015-02-13 18:01:29 +08:00
|
|
|
legacy::PassManager passes;
|
2008-02-27 04:26:43 +08:00
|
|
|
|
2012-10-09 00:39:34 +08:00
|
|
|
// Add an appropriate DataLayout instance for this module...
|
2015-08-25 05:15:35 +08:00
|
|
|
MergedModule->setDataLayout(TargetMach->createDataLayout());
|
2012-03-31 18:50:14 +08:00
|
|
|
|
2015-02-01 20:26:09 +08:00
|
|
|
passes.add(
|
|
|
|
createTargetTransformInfoWrapperPass(TargetMach->getTargetIRAnalysis()));
|
2015-01-30 21:33:42 +08:00
|
|
|
|
2014-08-22 02:49:52 +08:00
|
|
|
Triple TargetTriple(TargetMach->getTargetTriple());
|
2014-08-22 04:03:44 +08:00
|
|
|
PassManagerBuilder PMB;
|
|
|
|
PMB.DisableGVNLoadPRE = DisableGVNLoadPRE;
|
2014-10-27 05:50:58 +08:00
|
|
|
PMB.LoopVectorize = !DisableVectorization;
|
|
|
|
PMB.SLPVectorize = !DisableVectorization;
|
2014-08-22 04:03:44 +08:00
|
|
|
if (!DisableInline)
|
|
|
|
PMB.Inliner = createFunctionInliningPass();
|
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass
manager to support the actual uses of it. =]
When I ported instcombine to the new pass manager I discover that it
didn't work because TLI wasn't available in the right places. This is
a somewhat surprising and/or subtle aspect of the new pass manager
design that came up before but I think is useful to be reminded of:
While the new pass manager *allows* a function pass to query a module
analysis, it requires that the module analysis is already run and cached
prior to the function pass manager starting up, possibly with
a 'require<foo>' style utility in the pass pipeline. This is an
intentional hurdle because using a module analysis from a function pass
*requires* that the module analysis is run prior to entering the
function pass manager. Otherwise the other functions in the module could
be in who-knows-what state, etc.
A somewhat surprising consequence of this design decision (at least to
me) is that you have to design a function pass that leverages
a module analysis to do so as an optional feature. Even if that means
your function pass does no work in the absence of the module analysis,
you have to handle that possibility and remain conservatively correct.
This is a natural consequence of things being able to invalidate the
module analysis and us being unable to re-run it. And it's a generally
good thing because it lets us reorder passes arbitrarily without
breaking correctness, etc.
This ends up causing problems in one case. What if we have a module
analysis that is *definitionally* impossible to invalidate. In the
places this might come up, the analysis is usually also definitionally
trivial to run even while other transformation passes run on the module,
regardless of the state of anything. And so, it follows that it is
natural to have a hard requirement on such analyses from a function
pass.
It turns out, that TargetLibraryInfo is just such an analysis, and
InstCombine has a hard requirement on it.
The approach I've taken here is to produce an analysis that models this
flexibility by making it both a module and a function analysis. This
exposes the fact that it is in fact safe to compute at any point. We can
even make it a valid CGSCC analysis at some point if that is useful.
However, we don't want to have a copy of the actual target library info
state for each function! This state is specific to the triple. The
somewhat direct and blunt approach here is to turn TLI into a pimpl,
with the state and mutators in the implementation class and the query
routines primarily in the wrapper. Then the analysis can lazily
construct and cache the implementations, keyed on the triple, and
on-demand produce wrappers of them for each function.
One minor annoyance is that we will end up with a wrapper for each
function in the module. While this is a bit wasteful (one pointer per
function) it seems tolerable. And it has the advantage of ensuring that
we pay the absolute minimum synchronization cost to access this
information should we end up with a nice parallel function pass manager
in the future. We could look into trying to mark when analysis results
are especially cheap to recompute and more eagerly GC-ing the cached
results, or we could look at supporting a variant of analyses whose
results are specifically *not* cached and expected to just be used and
discarded by the consumer. Either way, these seem like incremental
enhancements that should happen when we start profiling the memory and
CPU usage of the new pass manager and not before.
The other minor annoyance is that if we end up using the TLI in both
a module pass and a function pass, those will be produced by two
separate analyses, and thus will point to separate copies of the
implementation state. While a minor issue, I dislike this and would like
to find a way to cleanly allow a single analysis instance to be used
across multiple IR unit managers. But I don't have a good solution to
this today, and I don't want to hold up all of the work waiting to come
up with one. This too seems like a reasonable thing to incrementally
improve later.
llvm-svn: 226981
2015-01-24 10:06:09 +08:00
|
|
|
PMB.LibraryInfo = new TargetLibraryInfoImpl(TargetTriple);
|
2015-03-20 06:01:00 +08:00
|
|
|
PMB.OptLevel = OptLevel;
|
2015-09-16 07:05:59 +08:00
|
|
|
PMB.VerifyInput = !DisableVerify;
|
|
|
|
PMB.VerifyOutput = !DisableVerify;
|
2014-08-22 04:03:44 +08:00
|
|
|
|
2015-01-30 21:33:42 +08:00
|
|
|
PMB.populateLTOPassManager(passes);
|
2008-02-27 04:26:43 +08:00
|
|
|
|
2015-02-04 02:39:15 +08:00
|
|
|
// Run our queue of passes all at once now, efficiently.
|
2015-08-25 05:15:35 +08:00
|
|
|
passes.run(*MergedModule);
|
2015-02-04 02:39:15 +08:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2015-11-18 03:48:12 +08:00
|
|
|
bool LTOCodeGenerator::compileOptimized(ArrayRef<raw_pwrite_stream *> Out) {
|
|
|
|
if (!this->determineTarget())
|
2015-02-04 02:39:15 +08:00
|
|
|
return false;
|
|
|
|
|
2015-08-28 07:37:36 +08:00
|
|
|
legacy::PassManager preCodeGenPasses;
|
2008-02-27 04:26:43 +08:00
|
|
|
|
2013-03-30 07:28:55 +08:00
|
|
|
// If the bitcode files contain ARC code and were compiled with optimization,
|
|
|
|
// the ObjCARCContractPass must be run, so do it unconditionally here.
|
2015-08-28 07:37:36 +08:00
|
|
|
preCodeGenPasses.add(createObjCARCContractPass());
|
|
|
|
preCodeGenPasses.run(*MergedModule);
|
|
|
|
|
2016-01-19 07:24:54 +08:00
|
|
|
// Re-externalize globals that may have been internalized to increase scope
|
|
|
|
// for splitting
|
|
|
|
restoreLinkageForExternals();
|
|
|
|
|
2015-08-28 07:37:36 +08:00
|
|
|
// Do code generation. We need to preserve the module in case the client calls
|
|
|
|
// writeMergedModules() after compilation, but we only need to allow this at
|
|
|
|
// parallelism level 1. This is achieved by having splitCodeGen return the
|
|
|
|
// original module at parallelism level 1 which we then assign back to
|
|
|
|
// MergedModule.
|
|
|
|
MergedModule =
|
2015-09-01 07:44:06 +08:00
|
|
|
splitCodeGen(std::move(MergedModule), Out, MCpu, FeatureStr, Options,
|
2016-01-19 07:24:54 +08:00
|
|
|
RelocModel, CodeModel::Default, CGOptLevel, FileType,
|
|
|
|
ShouldRestoreGlobalsLinkage);
|
2009-07-27 06:16:39 +08:00
|
|
|
|
2016-02-17 05:41:51 +08:00
|
|
|
// If statistics were requested, print them out after codegen.
|
|
|
|
if (llvm::AreStatisticsEnabled())
|
|
|
|
llvm::PrintStatistics();
|
|
|
|
|
2013-08-07 05:51:21 +08:00
|
|
|
return true;
|
2008-02-27 04:26:43 +08:00
|
|
|
}
|
|
|
|
|
2012-03-31 18:49:43 +08:00
|
|
|
/// setCodeGenDebugOptions - Set codegen debugging options to aid in debugging
|
|
|
|
/// LTO problems.
|
2015-09-01 07:44:06 +08:00
|
|
|
void LTOCodeGenerator::setCodeGenDebugOptions(const char *Options) {
|
|
|
|
for (std::pair<StringRef, StringRef> o = getToken(Options); !o.first.empty();
|
|
|
|
o = getToken(o.second))
|
2015-08-21 12:45:55 +08:00
|
|
|
CodegenOptions.push_back(o.first);
|
2008-07-09 05:14:10 +08:00
|
|
|
}
|
2013-10-02 22:36:23 +08:00
|
|
|
|
|
|
|
void LTOCodeGenerator::parseCodeGenDebugOptions() {
|
|
|
|
// if options were requested, set them
|
2015-08-21 12:45:55 +08:00
|
|
|
if (!CodegenOptions.empty()) {
|
|
|
|
// ParseCommandLineOptions() expects argv[0] to be program name.
|
|
|
|
std::vector<const char *> CodegenArgv(1, "libLLVMLTO");
|
|
|
|
for (std::string &Arg : CodegenOptions)
|
|
|
|
CodegenArgv.push_back(Arg.c_str());
|
|
|
|
cl::ParseCommandLineOptions(CodegenArgv.size(), CodegenArgv.data());
|
|
|
|
}
|
2013-10-02 22:36:23 +08:00
|
|
|
}
|
2014-01-16 06:04:35 +08:00
|
|
|
|
|
|
|
void LTOCodeGenerator::DiagnosticHandler(const DiagnosticInfo &DI,
|
|
|
|
void *Context) {
|
|
|
|
((LTOCodeGenerator *)Context)->DiagnosticHandler2(DI);
|
|
|
|
}
|
|
|
|
|
|
|
|
void LTOCodeGenerator::DiagnosticHandler2(const DiagnosticInfo &DI) {
|
|
|
|
// Map the LLVM internal diagnostic severity to the LTO diagnostic severity.
|
|
|
|
lto_codegen_diagnostic_severity_t Severity;
|
|
|
|
switch (DI.getSeverity()) {
|
|
|
|
case DS_Error:
|
|
|
|
Severity = LTO_DS_ERROR;
|
|
|
|
break;
|
|
|
|
case DS_Warning:
|
|
|
|
Severity = LTO_DS_WARNING;
|
|
|
|
break;
|
2014-02-28 17:08:45 +08:00
|
|
|
case DS_Remark:
|
|
|
|
Severity = LTO_DS_REMARK;
|
|
|
|
break;
|
2014-01-16 06:04:35 +08:00
|
|
|
case DS_Note:
|
|
|
|
Severity = LTO_DS_NOTE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
// Create the string that will be reported to the external diagnostic handler.
|
2014-06-27 06:52:05 +08:00
|
|
|
std::string MsgStorage;
|
|
|
|
raw_string_ostream Stream(MsgStorage);
|
|
|
|
DiagnosticPrinterRawOStream DP(Stream);
|
2014-01-16 06:04:35 +08:00
|
|
|
DI.print(DP);
|
2014-06-27 06:52:05 +08:00
|
|
|
Stream.flush();
|
2014-01-16 06:04:35 +08:00
|
|
|
|
|
|
|
// If this method has been called it means someone has set up an external
|
|
|
|
// diagnostic handler. Assert on that.
|
|
|
|
assert(DiagHandler && "Invalid diagnostic handler");
|
2014-06-27 06:52:05 +08:00
|
|
|
(*DiagHandler)(Severity, MsgStorage.c_str(), DiagContext);
|
2014-01-16 06:04:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
LTOCodeGenerator::setDiagnosticHandler(lto_diagnostic_handler_t DiagHandler,
|
|
|
|
void *Ctxt) {
|
|
|
|
this->DiagHandler = DiagHandler;
|
|
|
|
this->DiagContext = Ctxt;
|
|
|
|
if (!DiagHandler)
|
2014-04-15 14:32:26 +08:00
|
|
|
return Context.setDiagnosticHandler(nullptr, nullptr);
|
2014-01-16 06:04:35 +08:00
|
|
|
// Register the LTOCodeGenerator stub in the LLVMContext to forward the
|
|
|
|
// diagnostic to the external DiagHandler.
|
2014-10-03 05:11:04 +08:00
|
|
|
Context.setDiagnosticHandler(LTOCodeGenerator::DiagnosticHandler, this,
|
|
|
|
/* RespectFilters */ true);
|
2014-01-16 06:04:35 +08:00
|
|
|
}
|
2015-11-18 03:48:12 +08:00
|
|
|
|
|
|
|
namespace {
|
|
|
|
class LTODiagnosticInfo : public DiagnosticInfo {
|
|
|
|
const Twine &Msg;
|
|
|
|
public:
|
|
|
|
LTODiagnosticInfo(const Twine &DiagMsg, DiagnosticSeverity Severity=DS_Error)
|
|
|
|
: DiagnosticInfo(DK_Linker, Severity), Msg(DiagMsg) {}
|
|
|
|
void print(DiagnosticPrinter &DP) const override { DP << Msg; }
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
void LTOCodeGenerator::emitError(const std::string &ErrMsg) {
|
|
|
|
if (DiagHandler)
|
|
|
|
(*DiagHandler)(LTO_DS_ERROR, ErrMsg.c_str(), DiagContext);
|
|
|
|
else
|
|
|
|
Context.diagnose(LTODiagnosticInfo(ErrMsg));
|
|
|
|
}
|