llvm-project/llvm/lib/Target/ARM/Utils/ARMBaseInfo.h

238 lines
7.4 KiB
C
Raw Normal View History

//===-- ARMBaseInfo.h - Top level definitions for ARM ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains small standalone helper functions and enum definitions for
// the ARM target useful for the compiler back-end and the MC libraries.
// As such, it deliberately does not include references to LLVM core
// code gen types, passes, etc..
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_ARM_UTILS_ARMBASEINFO_H
#define LLVM_LIB_TARGET_ARM_UTILS_ARMBASEINFO_H
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/MC/SubtargetFeature.h"
#include "MCTargetDesc/ARMMCTargetDesc.h"
namespace llvm {
// Enums corresponding to ARM condition codes
namespace ARMCC {
// The CondCodes constants map directly to the 4-bit encoding of the
// condition field for predicated instructions.
enum CondCodes { // Meaning (integer) Meaning (floating-point)
EQ, // Equal Equal
NE, // Not equal Not equal, or unordered
HS, // Carry set >, ==, or unordered
LO, // Carry clear Less than
MI, // Minus, negative Less than
PL, // Plus, positive or zero >, ==, or unordered
VS, // Overflow Unordered
VC, // No overflow Not unordered
HI, // Unsigned higher Greater than, or unordered
LS, // Unsigned lower or same Less than or equal
GE, // Greater than or equal Greater than or equal
LT, // Less than Less than, or unordered
GT, // Greater than Greater than
LE, // Less than or equal <, ==, or unordered
AL // Always (unconditional) Always (unconditional)
};
inline static CondCodes getOppositeCondition(CondCodes CC) {
switch (CC) {
default: llvm_unreachable("Unknown condition code");
case EQ: return NE;
case NE: return EQ;
case HS: return LO;
case LO: return HS;
case MI: return PL;
case PL: return MI;
case VS: return VC;
case VC: return VS;
case HI: return LS;
case LS: return HI;
case GE: return LT;
case LT: return GE;
case GT: return LE;
case LE: return GT;
}
}
/// getSwappedCondition - assume the flags are set by MI(a,b), return
/// the condition code if we modify the instructions such that flags are
/// set by MI(b,a).
inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
switch (CC) {
default: return ARMCC::AL;
case ARMCC::EQ: return ARMCC::EQ;
case ARMCC::NE: return ARMCC::NE;
case ARMCC::HS: return ARMCC::LS;
case ARMCC::LO: return ARMCC::HI;
case ARMCC::HI: return ARMCC::LO;
case ARMCC::LS: return ARMCC::HS;
case ARMCC::GE: return ARMCC::LE;
case ARMCC::LT: return ARMCC::GT;
case ARMCC::GT: return ARMCC::LT;
case ARMCC::LE: return ARMCC::GE;
}
}
} // end namespace ARMCC
[ARM] Set up infrastructure for MVE vector instructions. This commit prepares the way to start adding the main collection of MVE instructions, which operate on the 128-bit vector registers. The most obvious thing that's needed, and the simplest, is to add the MQPR register class, which is like the existing QPR except that it has fewer registers in it. The more complicated part: MVE defines a system of vector predication, in which instructions operating on 128-bit vector registers can be constrained to operate on only a subset of the lanes, using a system of prefix instructions similar to the existing Thumb IT, in that you have one prefix instruction which designates up to 4 following instructions as subject to predication, and within that sequence, the predicate can be inverted by means of T/E suffixes ('Then' / 'Else'). To support instructions of this type, we've added two new Tablegen classes `vpred_n` and `vpred_r` for standard clusters of MC operands to add to a predicated instruction. Both include a flag indicating how the instruction is predicated at all (options are T, E and 'not predicated'), and an input register field for the register controlling the set of active lanes. They differ from each other in that `vpred_r` also includes an input operand for the previous value of the output register, for instructions that leave inactive lanes unchanged. `vpred_n` lacks that extra operand; it will be used for instructions that don't preserve inactive lanes in their output register (either because inactive lanes are zeroed, as the MVE load instructions do, or because the output register isn't a vector at all). This commit also adds the family of prefix instructions themselves (VPT / VPST), and all the machinery needed to work with them in assembly and disassembly (e.g. generating the 't' and 'e' mnemonic suffixes on disassembled instructions within a predicated block) I've added a couple of demo instructions that derive from the new Tablegen base classes and use those two operand clusters. The bulk of the vector instructions will come in followup commits small enough to be manageable. (One exception is that I've added the full version of `isMnemonicVPTPredicable` in the AsmParser, because it seemed pointless to carefully split it up.) Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D62669 llvm-svn: 363258
2019-06-13 21:11:13 +08:00
namespace ARMVCC {
enum VPTCodes {
None = 0,
Then,
Else
};
} // namespace ARMVCC
namespace ARM {
/// Mask values for IT and VPT Blocks, to be used by MCOperands.
/// Note that this is different from the "real" encoding used by the
/// instructions. In this encoding, the lowest set bit indicates the end of
/// the encoding, and above that, "1" indicates an else, while "0" indicates
/// a then.
/// Tx = x100
/// Txy = xy10
/// Txyz = xyz1
enum class PredBlockMask {
T = 0b1000,
TT = 0b0100,
TE = 0b1100,
TTT = 0b0010,
TTE = 0b0110,
TEE = 0b1110,
TET = 0b1010,
TTTT = 0b0001,
TTTE = 0b0011,
TTEE = 0b0111,
TTET = 0b0101,
TEEE = 0b1111,
TEET = 0b1101,
TETT = 0b1001,
TETE = 0b1011
};
} // namespace ARM
// Expands a PredBlockMask by adding an E or a T at the end, depending on Kind.
// e.g ExpandPredBlockMask(T, Then) = TT, ExpandPredBlockMask(TT, Else) = TTE,
// and so on.
ARM::PredBlockMask expandPredBlockMask(ARM::PredBlockMask BlockMask,
ARMVCC::VPTCodes Kind);
[ARM] Set up infrastructure for MVE vector instructions. This commit prepares the way to start adding the main collection of MVE instructions, which operate on the 128-bit vector registers. The most obvious thing that's needed, and the simplest, is to add the MQPR register class, which is like the existing QPR except that it has fewer registers in it. The more complicated part: MVE defines a system of vector predication, in which instructions operating on 128-bit vector registers can be constrained to operate on only a subset of the lanes, using a system of prefix instructions similar to the existing Thumb IT, in that you have one prefix instruction which designates up to 4 following instructions as subject to predication, and within that sequence, the predicate can be inverted by means of T/E suffixes ('Then' / 'Else'). To support instructions of this type, we've added two new Tablegen classes `vpred_n` and `vpred_r` for standard clusters of MC operands to add to a predicated instruction. Both include a flag indicating how the instruction is predicated at all (options are T, E and 'not predicated'), and an input register field for the register controlling the set of active lanes. They differ from each other in that `vpred_r` also includes an input operand for the previous value of the output register, for instructions that leave inactive lanes unchanged. `vpred_n` lacks that extra operand; it will be used for instructions that don't preserve inactive lanes in their output register (either because inactive lanes are zeroed, as the MVE load instructions do, or because the output register isn't a vector at all). This commit also adds the family of prefix instructions themselves (VPT / VPST), and all the machinery needed to work with them in assembly and disassembly (e.g. generating the 't' and 'e' mnemonic suffixes on disassembled instructions within a predicated block) I've added a couple of demo instructions that derive from the new Tablegen base classes and use those two operand clusters. The bulk of the vector instructions will come in followup commits small enough to be manageable. (One exception is that I've added the full version of `isMnemonicVPTPredicable` in the AsmParser, because it seemed pointless to carefully split it up.) Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D62669 llvm-svn: 363258
2019-06-13 21:11:13 +08:00
inline static const char *ARMVPTPredToString(ARMVCC::VPTCodes CC) {
switch (CC) {
case ARMVCC::None: return "none";
case ARMVCC::Then: return "t";
case ARMVCC::Else: return "e";
}
llvm_unreachable("Unknown VPT code");
}
inline static unsigned ARMVectorCondCodeFromString(StringRef CC) {
return StringSwitch<unsigned>(CC.lower())
.Case("t", ARMVCC::Then)
.Case("e", ARMVCC::Else)
.Default(~0U);
}
inline static const char *ARMCondCodeToString(ARMCC::CondCodes CC) {
switch (CC) {
case ARMCC::EQ: return "eq";
case ARMCC::NE: return "ne";
case ARMCC::HS: return "hs";
case ARMCC::LO: return "lo";
case ARMCC::MI: return "mi";
case ARMCC::PL: return "pl";
case ARMCC::VS: return "vs";
case ARMCC::VC: return "vc";
case ARMCC::HI: return "hi";
case ARMCC::LS: return "ls";
case ARMCC::GE: return "ge";
case ARMCC::LT: return "lt";
case ARMCC::GT: return "gt";
case ARMCC::LE: return "le";
case ARMCC::AL: return "al";
}
llvm_unreachable("Unknown condition code");
}
inline static unsigned ARMCondCodeFromString(StringRef CC) {
return StringSwitch<unsigned>(CC.lower())
.Case("eq", ARMCC::EQ)
.Case("ne", ARMCC::NE)
.Case("hs", ARMCC::HS)
.Case("cs", ARMCC::HS)
.Case("lo", ARMCC::LO)
.Case("cc", ARMCC::LO)
.Case("mi", ARMCC::MI)
.Case("pl", ARMCC::PL)
.Case("vs", ARMCC::VS)
.Case("vc", ARMCC::VC)
.Case("hi", ARMCC::HI)
.Case("ls", ARMCC::LS)
.Case("ge", ARMCC::GE)
.Case("lt", ARMCC::LT)
.Case("gt", ARMCC::GT)
.Case("le", ARMCC::LE)
.Case("al", ARMCC::AL)
.Default(~0U);
}
// System Registers
namespace ARMSysReg {
struct MClassSysReg {
const char *Name;
uint16_t M1Encoding12;
uint16_t M2M3Encoding8;
uint16_t Encoding;
FeatureBitset FeaturesRequired;
// return true if FeaturesRequired are all present in ActiveFeatures
bool hasRequiredFeatures(FeatureBitset ActiveFeatures) const {
return (FeaturesRequired & ActiveFeatures) == FeaturesRequired;
}
// returns true if TestFeatures are all present in FeaturesRequired
bool isInRequiredFeatures(FeatureBitset TestFeatures) const {
return (FeaturesRequired & TestFeatures) == TestFeatures;
}
};
#define GET_MCLASSSYSREG_DECL
#include "ARMGenSystemRegister.inc"
// lookup system register using 12-bit SYSm value.
// Note: the search is uniqued using M1 mask
const MClassSysReg *lookupMClassSysRegBy12bitSYSmValue(unsigned SYSm);
// returns APSR with _<bits> qualifier.
// Note: ARMv7-M deprecates using MSR APSR without a _<bits> qualifier
const MClassSysReg *lookupMClassSysRegAPSRNonDeprecated(unsigned SYSm);
// lookup system registers using 8-bit SYSm value
const MClassSysReg *lookupMClassSysRegBy8bitSYSmValue(unsigned SYSm);
} // end namespace ARMSysReg
// Banked Registers
namespace ARMBankedReg {
struct BankedReg {
const char *Name;
uint16_t Encoding;
};
#define GET_BANKEDREG_DECL
#include "ARMGenSystemRegister.inc"
} // end namespace ARMBankedReg
} // end namespace llvm
#endif // LLVM_LIB_TARGET_ARM_UTILS_ARMBASEINFO_H